(en)The preparation and use of nucleic acid fragments useful in altering the oil phenotype in plants are disclosed. Recombinant DNA construct incorporating such nucleic acid fragments and suitable regulatory sequences can be used to create transgenic plants having altered lipid profiles. Methods for altering the oil phenotype in plants using such nucleic acid fragments also are disclosed.
1.ApplicationNumber: US-18037502-A
1.PublishNumber: US-2003126638-A1
2.Date Publish: 20030703
3.Inventor: ALLEN WILLIAM B.
CAHOON REBECCA E.
FAMODU OMOLAYO O.
HARVELL LESLIE T.
HELENTJARIS TIMOTHY G.
LI CHANGJIANG
LOWE KEITH S.
OLIVEIRA IGOR CUNHA
SHEN BO
TARCZYNSKI MITCHELL C.
4.Inventor Harmonized: ALLEN WILLIAM B(US)
CAHOON REBECCA E(US)
FAMODU OMOLAYO O(US)
HARVELL LESLIE T(US)
HELENTJARIS TIMOTHY G(US)
LI CHANGJIANG(US)
LOWE KEITH S(US)
OLIVEIRA IGOR CUNHA(US)
SHEN BO(US)
TARCZYNSKI MITCHELL C(US)
5.Country: US
6.Claims:
(en)The preparation and use of nucleic acid fragments useful in altering the oil phenotype in plants are disclosed. Recombinant DNA construct incorporating such nucleic acid fragments and suitable regulatory sequences can be used to create transgenic plants having altered lipid profiles. Methods for altering the oil phenotype in plants using such nucleic acid fragments also are disclosed.
7.Description:
(en)[0001] This application claims the priority benefit of U.S. Provisional Application 60/301,913 filed Jun. 29, 2001, the disclosure of which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present invention is in the field of plant breeding and genetics and, in particular, relates to the alteration of oil phenotype in plants through the controlled expression of selective genes.
BACKGROUND OF THE INVENTION
[0003] Plant lipids have a variety of industrial and nutritional uses and are central to plant membrane function and climatic adaptation. These lipids represent a vast array of chemical structures, and these structures determine the physiological and industrial properties of the lipid. Many of these structures result either directly or indirectly from metabolic processes that alter the degree of unsaturation of the lipid. Different metabolic regimes in different plants produce these altered lipids, and either domestication of exotic plant species or modification of agronomically adapted species is usually required to produce economically large amounts of the desired lipid.
[0004] There are serious limitations to using mutagenesis to alter fatty acid composition. Screens will rarely uncover mutations that a) result in a dominant (“gain-of-function”) phenotype, b) are in genes that are essential for plant growth, and c) are in an enzyme that is not rate-limiting and that is encoded by more than one gene. In cases where desired phenotypes are available in mutant corn lines, their introgression into elite lines by traditional breeding techniques is slow and expensive, since the desired oil compositions are likely the result of several recessive genes.
[0005] Recent molecular and cellular biology techniques offer the potential for overcoming some of the limitations of the mutagenesis approach, including the need for extensive breeding. Some of the particularly useful technologies are seed-specific expression of foreign genes in transgenic plants [see Goldberg et al (1989) Cell 56:149-160], and the use of antisense RNA to inhibit plant target genes in a dominant and tissue-specific manner [see van der Krol et al (1988) Gene 72:45-50]. Other advances include the transfer of foreign genes into elite commercial varieties of commercial oilcrops, such as soybean [Chee et al (1989) Plant Physiol. 91:1212-1218; Christou et al (1989) Proc. Natl. Acad. Sci. U.S.A. 86:7500-7504; Hinchee et al (1988) Bio/Technology 6:915-922; EPO publication 0 301 749 A2], rapeseed [De Block et al (1989) Plant Physiol. 91:694-701], and sunflower [Everett et al(1987) Bio/Technology 5:1201-1204], and the use of genes as restriction fragment length polymorphism (RFLP) markers in a breeding program, which makes introgression of recessive traits into elite lines rapid and less expensive [Tanksley et al (1989) Bio/Technology 7:257-264]. However, application of each of these technologies requires identification and isolation of commercially-important genes.
[0006] The regulation of transcription of most eukaryotic genes is coordinated through sequence-specific binding of proteins to the promoter region located upstream of the gene. Many of these protein-binding sequences have been conserved during evolution and are found in a wide variety of organisms. One such feature is the “CCAAT” sequence element. (Edwards et al, 1998, Plant Physiol. 117:1015-1022). CCAAT boxes are a feature of gene promoters in many eukaryotes including several plant gene promoters.
[0007] HAP proteins constitute a large family of transcription factors first identified in yeast. They combine to from a heteromeric protein complex that activates transcription by binding to CCAAT boxes in eukaryotic promoters. The orthologous Hap proteins display a high degree of evolutionary conservation in their functional domains in all species studied to date (Li et al, 1991).
[0008] WO 00/28058 published on May 18, 2000 describes Hap3-type CCAAT-box binding transcriptional activator polynucleotides and polypeptides, especially, the leafy cotyledon 1 transcriptional activator (LEC1) polynucleotides and polypeptides.
[0009] WO 99/67405 describes leafy cotyledons 1 genes and their uses.
[0010] The human, murine and plant homologues of CCAAT-binding proteins have been isolated and characterized based on their sequence similarity with their yeast counterparts (Li et al, 1991). This high degree of sequence homology translates remarkably into functional interchangeability among orthologue proteins of different species (Sinha et al, 1995). Unlike yeast, multiple forms of each HAP homolog have been identified in plants (Edwards et al, 1998).
[0011] Molecular and genetic analysis revealed HAP members to be involved in the control of diverse and critical biological processes ranging from development and cell cycle regulation to metabolic control and homeostasis (Lotan et al, 1998; Lopez et al, 1996). In yeast, HAPs are involved in the transcriptional control of metabolic relevant processes such as the regulation of catabolic derepression of cyc1 and other genes involved in respiration (Becker et al., 1991).
[0012] In mammalian systems, several reports describe HAPs as direct or indirect regulators of several important genes involved in lipid biosynthesis such as fatty acid synthase (Roder et al, 1997), farnesyl diphosphate (FPP) synthase (Jackson et al, 1995; Ericsson et al, 1996), glycerol-3-phosphate acyltransferase (GPA, Jackson et al, 1997), acetyl-CoA carboxylase (ACC, Lopez et al, 1996) and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase (Jackson et al, 1995), among others.
[0013] In addition, other CCAAT-binding transcription factors have also been reported to be involved in different aspects of the control of lipid biosynthesis and adipocyte growth and differentiation in mammalian systems (see McKnight et al, 1989).
[0014] It appears that the currently available evidence to date points to a family of proteins of the CCAAT-binding transcription factors as important modulators of metabolism and lipid biosynthesis in mammalian systems. Such a determination has not been made for plant systems.
SUMMARY OF THE INVENTION
[0015] This invention concerns an isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0016] (a) a nucleic acid sequence encoding a fifth polypeptide having Hap2-like transcription factor activity, the fifth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a sixth polypeptide selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6,10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,40, 42, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, or 208, 210, 212, 214, or 216;
[0017] (b) a nucleic acid sequence encoding a seventh polypeptide having Hap5-like transcription factor activity, the seventh polypeptide having at least 80% identity based on the Clustal method of alignment when compared to an eighth polypeptide selected from the group consisting of SEQ ID NOs: 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, or 221;
[0018] (c) a nucleic acid sequence encoding a seventeenth polypeptide having Hap3/Lec1-like activity, the seventeenth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a eighteenth polypeptide selected from the group consisting of SEQ ID NOs: 130, 132, 134, or 136.
[0019] Also of interest are the complements of such nucleotide fragment as well as the use of such fragments or a part thereof in antisense inhibition or co-suppression in a transformed plant.
[0020] In a second embodiment, this invention concerns recombinant DNA constructs comprising such fragments, plants comprising such recombinant DNA constructs in their genome, seeds obtained from such plants and oil obtained from these seeds.
[0021] In a third embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises: (a) transforming a plant with a recombinant DNA construct the invention, (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0022] In a fourth embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0023] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0024] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 130 to 148, and SEQ ID NOs: 195 and 196;
[0025] (ii) the complement of the nucleic acid sequence of (i);
[0026] (iii) the sequence of (i) or (ii) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0027] (iv) a nucleic acid sequence encoding a plant Lec1-related CCAAT binding transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 150 to 178, and SEQ ID NOs: 197 to 202;
[0028] (v) the complement of the nucleic acid sequence of (iv);
[0029] (vi) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0030] wherein said nucleic acid sequence is operably linked to at least one regulatory sequence;
[0031] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0032] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0033] In a fifth embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0034] (a) transforming a plant with a recombinant DNA construct comprising an isolated nucleic acid fragment operably linked to at least one regulatory sequence wherein said fragment has a nucleic acid sequence encoding a polypeptide having a sequence identity of at least 60% based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of even SEQ ID NOs: from 2 to 178, and 206 to 214, and SEQ ID NOs: 179 to 202, 216 to 219, 221, and 222;
[0035] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0036] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0037] In a sixth embodiment, this invention concerns method of mapping genetic variations related to altered oil phenotypes in a plant comprising:
[0038] (a) crossing two plant varieties; and
[0039] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0040] In a seventh embodiment, this invention concerns a method of molecular breeding to obtain altered oil phenotypes in a plant comprising:
[0041] (a) crossing two plant varieties; and
[0042] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0043] In an eighth embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0044] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0045] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 70% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of SEQ ID NOs: 130 to 148, and SEQ ID NOs: 195, 196, and 206;
[0046] (ii) the complement of the nucleic acid sequence of (iv);
[0047] (iii) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0048] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0049] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0050] In a ninth embodiment, this invention concerns a method to isolate nucleic acid fragments associated with altering oil phenotype in a plant which comprises:
[0051] (a) comparing even SEQ ID NOs: from 2 to 178, and 206 to 214, and SEQ ID NOs: 179 to 202, 216 to 219, 221, and 222 with other polypeptide sequences for the purpose of identifying polypeptides associated with altering oil phenotype in a plant;
[0052] (b) identifying the conserved sequences(s) or 4 or more amino acids obtained in step (a);
[0053] (c) making region-specific nucleotide probe(s) or oligomer(s) based on the conserved sequences identified in step (b); and
[0054] (d) using the nucleotide probe(s) or oligomer(s) of step (c) to isolate sequences associated with altering oil phenotype by sequence dependent protocols.
BRIEF DESCRIPTION OF THE FIGURES AND SEQUENCE LISTINGS
[0055] The invention can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing which form a part of this application.
[0056]FIG. 1 shows the fatty acid composition of maize somatic embryos over-expressing Hap3/Lec1 (solid bars, “Hap3/Lec1”) compared to control embryos (striped bars, “con”). A ubiquitin promoter was used to drive Hap3/Lec1 expression in maize embryogenic callus. More than ten different events were analyzed by GC for fatty acid content-composition and compared to controls transformed with the selectable marker (BAR gene) plasmid alone. The somatic embryos over-expressing Lec1 contain elevated fatty acid contents averaging 119% over control oil levels.
[0057]FIG. 2 shows the fatty acid composition of maize embryos transformed with additional copies of Hap3/Lec1 (solid bars, “+transgene”) compared to control embryos (cross-hatched bars, “−transgene”). An oleosin promoter was used to direct the expression of a transgenic copy of Hap3/Lec 1. More than twenty events producing segregating T1 seed were analyzed by NMR for embryo oil content. Six to twelve embryos were analyzed for each of five different events. Some embryos within each event contained elevated oil content. The same embryos from these five events were analyzed by PCR to determine the presence or absence of the Lec1 construct. Embryos with high oil were always found to contain the Lec1 construct (darkly shaded bars), whereas embryos with normal levels of oil were typically found not to contain the Lec1 construct (cross-hatched bars). These data demonstrate the presence of the Lec1 gene does lead to increased oil in the embryo. It is believed that embryos containing sharply higher levels of oil were homozygous for the Lec1 construct, as these events were segregating 1:2:1. The oil concentration in the embryos containing the Lec1 construct greatly surpassed any increase previously achieved through enzymatic modification of the fatty acid biosynthetic pathway, with some embryos containing an average increase of 56% in embryo oil content.
[0058] Table 1 lists the polypeptides that are described herein, the designation of the cDNA clones that comprise the nucleic acid fragments encoding polypeptides representing all or a substantial portion of these polypeptides (for the corresponding SEQ ID NO: identifier as used in the attached Sequence Listing see Table 3). The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. §1.821-1.825.
TABLE 1 Genes Involved in Alteration of Oil Traits in Plants Gene Name Clone Plant Hap2a transcription factor ncs.pk0013.c4 Catalpa [ Catalpa speciosa ] Hap2c-like transcription etr1c.pk006.f9 cattail [ Typha latifolia ] factor Hap2a transcription factor vmb1na.pk015.d18:fis grape [Vitis sp.] Hap2a transcription factor vpl1c.pk008.o5:fis grape [Vitis sp.] Hap2c-like transcription vdb1c.pk001.m5:fis grape [Vitis sp.] factor Hap2 transcription factor cho1c.pk004.b19:fis maize [ Zea mays ] Hap2 transcription factor p0015.cdpgu90r:fis maize [ Zea mays ] Hap2a transcription factor cta1n.pk0010.f3:fis maize [ Zea mays ] Hap2a-like transcription cco1n.pk0014.d4:fis maize [ Zea mays ] factor Hap2a-like transcription cco1n.pk086.d20:fis maize [ Zea mays ] factor Hap2b transcription factor p0126.cnlau71r:fis maize [ Zea mays ] Hap2b-like transcription p0104.cabav52r maize [ Zea mays ] factor Hap2c transcription factor cho1c.pk007.l21:fis maize [ Zea mays ] Hap2c-like transcription contig of: maize [ Zea mays ] factor cca.pk0026.d6 cen3n.pk0061.e10:fis cen3n.pk0135.c2 cho1c.pk001.n24 p0092.chwae40r Hap2c-like transcription cpf1c.pk006.e3:fis maize [ Zea mays ] factor Hap2c-like transcription contig of: maize [ Zea mays ] factor cr1n.pk0080.g6 p0003.cgpge51r Hap2c-like transcription p0015.cpdfm55r:fis maize [ Zea mays ] factor Hap2c-like transcription p0083.cldct11r:fis maize [ Zea mays ] factor Hap2c-like transcription p0083.cldeu68r:fis maize [ Zea mays ] factor Hap2a transcription factor pps1c.pk001.h3:fis prickly poppy [ Argemone mexicana ] Hap2c-like transcription pps1c.pk007.j21:fis prickly poppy factor [ Argemone mexicana ] Hap2 transcription factor rr1.pk0030.f7:fis rice [ Oryza sativa ] Hap2a transcription factor r1s72.pk0023.c8:fis rice [ Oryza sativa ] Hap2a-like transcription rca1n.pk002.c15 rice [ Oryza sativa ] factor Hap2a-like transcription rds3c.pk001.g9 rice [ Oryza sativa ] factor Hap2b transcription factor rca1n.pk002.j3:fis rice [ Oryza sativa ] Hap2c-like transcription rca1n.pk029.n22:fis rice [ Oryza sativa ] factor Hap2c-like transcription rl0n.pk131.j17 rice [ Oryza sativa ] factor Hap2a transcription factor sdp3c.pk018.b9:fis soybean [ Glycine max ] Hap2a transcription factor sfl1.pk0102.h8 soybean [ Glycine max ] Hap2a transcription factor srr3c.pk001.l10:fis soybean [ Glycine max ] Hap2a-like transcription sdp2c.pk003.o5:fis soybean [ Glycine factor max ] Hap2b transcription factor sif1c.pk001.m16:fis soybean [ Glycine max ] Hap2c-like transcription src1c.pk003.o16:fis soybean [ Glycine factor max ] Hap2c-like transcription src3c.pk012.m6:fis soybean [ Glycine factor max ] Hap2c-like transcription hss1c.pk011.h10:fis sunflower [Helianthus factor sp.] Hap2 transcription factor wr1.pk0094.f2:fis wheat-common [ Triticum aestivum ] Hap2a-like transcription wre1n.pk0143.h2:fis wheat-common factor [ Triticum aestivum ] Hap2b transcription factor wds1f.pk002.p21:fis wheat-common [ Triticum aestivum ] Hap2c transcription factor contig of: wheat-common wdi1c.pk002.b10 [ Triticum aestivum ] wr1.pk0153.c7:fis Hap2c-like transcription wre1n.pk0066.e4:fis wheat-common factor [ Triticum aestivum ] Hap2c-like transcription ncs.pk0013.c4:fis catalpa [ Catalpa factor speciosa ] Hap2c-like transcription p0117.chc1n94r:fis maize [ Zea mays ] factor Hap2c-like transcription rdi2c.pk011.f19:fis rice [ Oryza sativa ] factor Hap2c-like transcription sfl1.pk0101.g7:fis soybean [ Glycine factor max ] Hap2c-like transcription wdi1c.pk002.b10:fis wheat-common factor [ Triticum aestivum ] Hap5c-like transcription ect1c.pk001.k17:fis Canna [ Canna edulis ] factor Hap5a-like transcription vrr1c.pk004.o20:fis grape [Vitis sp.] factor Hap5a-like transcription clm1f.pk001.k17:fis maize [ Zea mays ] factor Hap5b-like transcription cde1n.pk003.a5:fis maize [ Zea mays ] factor Hap5b-like transcription cen3n.pk0164.a10:fis maize [ Zea mays ] factor Hap5b-like transcription p0118.chsbc77r maize [ Zea mays ] factor Hap5c-like transcription cco1n.pk055.o18:fis maize [ Zea mays ] factor Hap5c-like transcription cho1c.pk001.l23:fis maize [ Zea mays ] factor Hap5c-like transcription cse1c.pk001.h6:fis maize [ Zea mays ] factor Hap5a-like transcription rlm3n.pk005.d20:fis rice [ Oryza sativa ] factor Hap5b-like transcription rr1.pk0003.a3:fis rice [ Oryza sativa ] factor Hap5b-like transcription rr1.pk0039.d4:fis rice [ Oryza sativa ] factor Hap5c-like transcription rca1n.pk021.b20:fis rice [ Oryza sativa ] factor Hap5a-like transcription sdp2c.pk029k17:fis soybean [ Glycine factor max ] Hap5a-like transcription sdp2c.pk044.e5:fis soybean [ Glycine factor max ] Hap5b-like transcription sgs4c.pk004.j2 soybean [ Glycine factor max ] Hap5b-like transcription src3c.pk002.h4:fis soybean [ Glycine factor max ] Hap5b-like transcription src3c.pk009.b15:fis soybean [ Glycine factor max ] Hap5b-like transcription src3c.pk019.d4:fis soybean [ Glycine factor max ] Hap5c-like transcription sls1c.pk032.j4:fis soybean [ Glycine factor max ] Hap5 transcription factor wdk2c.pk009.e4:fis wheat-common [ Triticum aestivum ] Hap5a-like transcription contig of: wheat-common factor w1m96.pk036.j11 [ Triticum aestivum ] w1m96.pk060.d5:fis Hap5c-like transcription wle1n.pk0076.h7:fis wheat-common factor [ Triticum aestivum ] Hap5c-like transcription sgs4c.pk004.j2:fis soybean [ Glycine factor max ] Lec1-embryonic type eas1c.pk003.e16 amaranth [ Amaranthus retroflexus ] Lec1-embryonic type fds1n.pk008.m14 balsam pear [ Momordica charantia ] Lec1-embryonic type p0015.cdpgp75rb:fis maize [ Zea mays ] Lec1-embryonic type p0083.clder12r:fis maize [ Zea mays ] Lec1-embryonic type pps1c.pk002.l19 prickly poppy [ Argemone mexicana ] Lec1-embryonic type Contig of: soybean [ Glycine scb1c.pk004.j10 max ] se1.pk0042.d8:fis Lec1-embryonic type se2.11d12:fis soybean [ Glycine max ] Lec1-embryonic type ses2w.pk0015.a4:fis soybean [ Glycine max ] Lec1-embryonic type vs1n.pk013.m13:fis vernonia [ Vernonia mespilifolia ] Lec1-embryonic type wdk3c.pk023.h15:fis wheat-common [ Triticum aestivum ] Lec1-related CCAAT binding ect1c.pk007.p18:fis Canna [ Canna edulis ] protein Lec1-related CCAAT binding fds.pk0003.h5:fis balsam pear protein [ Momordica charantia ] Lec1-related CCAAT binding eef1c.pk004.c8:fis eucalyptus protein [ Eucalyptus grandis ] Lec1-related CCAAT binding cbn10.pk0005.e6:fis maize [ Zea mays ] protein Lec1-related CCAAT binding p0006.cbysa51r:fis maize [ Zea mays ] protein Lec1-related CCAAT binding rl0n.pk0061.c8:fis rice [ Oryza sativa ] protein Lec1-related CCAAT binding rsl1n.pk002.g10:fis rice [ Oryza sativa ] protein Lec1-related CCAAT binding ses4d.pk0037.e3:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src2c.pk003.i13:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src2c.pk011.m12:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src2c.pk025.b3:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src3c.pk028.j21:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding wkm1c.pk0002.d7:fis wheat-common protein [ Triticum aestivum ] Lec1-related CCAAT binding wlk8.pk0001.e10:fis wheat-common protein [ Triticum aestivum ] Lec1-related CCAAT binding w1m96.pk037.k9:fis wheat-common protein [ Triticum aestivum ]
[0059] The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the IUPAC-IUBMB standards described in Nucleic Acids Res. 13:3021-3030 (1985) and in the Biochemical J. 219 (No. 2):345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.
DETAILED DESCRIPTION OF THE INVENTION
[0060] All patents, patent applications and publications which are referred to herein are incorporated by reference in their entirety.
[0061] As used herein, an “isolated nucleic acid fragment” is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. An isolated nucleic acid fragment in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA. Nucleotides (usually found in their 5′-monophosphate form) are referred to by their single letter designation as follows: “A” for adenylate or deoxyadenylate (for RNA or DNA, respectively), “C” for cytidylate or deoxycytidylate, “G” for guanylate or deoxyguanylate, “U” for uridylate, “T” for deoxythymidylate, “R” for purines (A or G), “Y” for pyrimidines (C or T), “K” for g or T, “H” for A or C or T, “I” for inosine, and “N” for any nucleotide.
[0062] The terms “subfragment that is functionally equivalent” and “functionally equivalent subfragment” are used interchangeably herein. These terms refer to a portion or subsequence of an isolated nucleic acid fragment in which the ability to alter gene expression or produce a certain phenotype is retained whether or not the fragment or subfragment encodes an active enzyme. For example, the fragment or subfragment can be used in the design of recombinant DNA constructs to produce the desired phenotype in a transformed plant. Recombinant DNA constructs can be designed for use in co-suppression or antisense by linking a nucleic acid fragment or subfragment thereof, whether or not it encodes an active enzyme, in the appropriate orientation relative to a plant promoter sequence.
[0063] The terms “homology”, “homologous”, “substantially similar” and “corresponding substantially” are used interchangeably herein. They refer to nucleic acid fragments wherein changes in one or more nucleotide bases does not affect the ability of the nucleic acid fragment to mediate gene expression or produce a certain phenotype. These terms also refer to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more nucleotides that do not substantially alter the functional properties of the resulting nucleic acid fragment relative to the initial, unmodified fragment. It is therefore understood, as those skilled in the art will appreciate, that the invention encompasses more than the specific exemplary sequences.
[0064] Moreover, the skilled artisan recognizes that substantially similar nucleic acid sequences encompassed by this invention are also defined by their ability to hybridize, under moderately stringent conditions (for example, 0.5×SSC, 0.1% SDS, 60° C.) with the sequences exemplified herein, or to any portion of the nucleotide sequences reported herein and which are functionally equivalent to the promoter of the invention. Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions. One set of preferred conditions involves a series of washes starting with 6×SSC, 0.5% SDS at room temperature for 15 min, then repeated with 2×SSC, 0.5% SDS at 45° C. for 30 min, and then repeated twice with 0.2×SSC, 0.5% SDS at 50° C. for 30 min. A more preferred set of stringent conditions involves the use of higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2×SSC, 0.5% SDS was increased to 60° C. Another preferred set of highly stringent conditions involves the use of two final washes in 0.1×SSC, 0.1% SDS at 65° C.
[0065] With respect to the degree of substantial similarity between the target (endogenous) mRNA and the RNA region in the construct having homology to the target mRNA, such sequences should be at least 25 nucleotides in length, preferably at least 50 nucleotides in length, more preferably at least 100 nucleotides in length, again more preferably at least 200 nucleotides in length, and most preferably at least 300 nucleotides in length; and should be at least 80% identical, preferably at least 85% identical, more preferably at least 90% identical, and most preferably at least 95% identical.
[0066] Sequence alignments and percent similarity calculations may be determined using a variety of comparison methods designed to detect homologous sequences including, but not limited to, the Megalign program of the LASARGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wis.). Multiple alignment of the sequences are performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal method are KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4.
[0067] A “substantial portion” of an amino acid or nucleotide sequence comprises an amino acid or a nucleotide sequence that is sufficient to afford putative identification of the protein or gene that the amino acid or nucleotide sequence comprises. Amino acid and nucleotide sequences can be evaluated either manually by one skilled in the art, or by using computer-based sequence comparison and identification tools that employ algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/). In general, a sequence of ten or more contiguous amino acids or thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene-specific oligonucleotide probes comprising 30 or more contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12 or more nucleotides may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a “substantial portion” of a nucleotide sequence comprises a nucleotide sequence that will afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. The instant specification teaches amino acid and nucleotide sequences encoding polypeptides that comprise one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.
[0068] “Codon degeneracy” refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the “codon-bias” exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell, it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell
[0069] “Synthetic nucleic acid fragments” can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form larger nucleic acid fragments which may then be enzymatically assembled to construct the entire desired nucleic acid fragment. “Chemically synthesized”, as related to a nucleic acid fragment, means that the component nucleotides were assembled in vitro. Manual chemical synthesis of nucleic acid fragments may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines. Accordingly, the nucleic acid fragments can be tailored for optimal gene expression based on optimization of the nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available.
[0070] “Gene” refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5′ non-coding sequences) and following (3′ non-coding sequences) the coding sequence. “Native gene” refers to a gene as found in nature with its own regulatory sequences. The term “recombinant DNA construct” and “recombinant DNA construct” are used interchangeably herein. A recombinant DNA construct comprises an artificial combination of nucleic acid fragments, e.g., regulatory and coding sequences that are not found together in nature. For example, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. A “foreign” gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or recombinant DNA constructs. A “transgene” is a gene that has been introduced into the genome by a transformation procedure.
[0071] “Coding sequence” refers to a DNA sequence that codes for a specific amino acid sequence. “Regulatory sequences” refer to nucleotide sequences located upstream (5′ non-coding sequences), within, or downstream (3′ non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
[0072] “Promoter” refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. The promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an “enhancer” is a DNA sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as “constitutive promoters”. New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg, (1989) Biochemistry of Plants 15:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity.
[0073] An “intron” is an intervening sequence in a gene that does not encode a portion of the protein sequence. Thus, such sequences are transcribed into RNA but are then excised and are not translated. The term is also used for the excised RNA sequences. An “exon” is a portion of the sequence of a gene that is transcribed and is found in the mature messenger RNA derived from the gene, but is not necessarily a part of the sequence that encodes the final gene product.
[0074] The “translation leader sequence” refers to a DNA sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D. (1995) Molecular Biotechnology 3:225).
[0075] The “3′ non-coding sequences” refer to DNA sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3′ end of the mRNA precursor. The use of different 3′ non-coding sequences is exemplified by Ingelbrecht et al, (1989) Plant Cell 1:671-680.
[0076] “RNA transcript” refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA. “Messenger RNA (mRNA)” refers to the RNA that is without introns and that can be translated into protein by the cell. “cDNA” refers to a DNA that is complementary to and synthesized from a mRNA template using the enzyme reverse transcriptase. The cDNA can be single-stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase I. “Sense” RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. “Antisense RNA” refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Pat. No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5′ non-coding sequence, 3′ non-coding sequence, introns, or the coding sequence. “Functional RNA” refers to antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes. The terms “complement” and “reverse complement” are used interchangeably herein with respect to mRNA transcripts, and are meant to define the antisense RNA of the message.
[0077] The term “endogenous RNA” refers to any RNA which is encoded by any nucleic acid sequence present in the genome of the host prior to transformation with the recombinant construct of the present invention, whether naturally-occurring or non-naturally occurring, i.e., introduced by recombinant means, mutagenesis, etc.
[0078] The term “non-naturally occurring” means artificial, not consistent with what is normally found in nature.
[0079] The term “operably linked” refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is regulated by the other. For example, a promoter is operably linked with a coding sequence when it is capable of regulating the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in a sense or antisense orientation. In another example, the complementary RNA regions of the invention can be operably linked, either directly or indirectly, 5′ to the target mRNA, or 3′ to the target mRNA, or within the target mRNA, or a first complementary region is 5′ and its complement is 3′ to the target mRNA.
[0080] The term “expression”, as used herein, refers to the production of a functional end-product. Expression of a gene involves transcription of the gene and translation of the mRNA into a precursor or mature protein. “Antisense inhibition” refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein. “Co-suppression” refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Pat. No. 5,231,020).
[0081] “Mature” protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed. “Precursor” protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.
[0082] “Stable transformation” refers to the transfer of a nucleic acid fragment into a genome of a host organism, including both nuclear and organellar genomes, resulting in genetically stable inheritance. In contrast, “transient transformation” refers to the transfer of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without integration or stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as “transgenic” organisms. The preferred method of cell transformation of rice, corn and other monocots is the use of particle-accelerated or “gene gun” transformation technology (Klein et al, (1987) Nature (London) 327:70-73; U.S. Pat. No. 4,945,050), or an Agrobacterium-mediated method using an appropriate Ti plasmid containing the transgene (Ishida Y. et al, 1996, Nature Biotech. 14:745-750). The term “transformation” as used herein refers to both stable transformation and transient transformation.
[0083] Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter “Sambrook”).
[0084] The term “recombinant” means, for example, that a nucleic acid sequence is made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated nucleic acids by genetic engineering techniques. A “recombinant DNA construct” comprises an isolated polynucleotide operably linked to at least one regulatory sequence. The term also embraces an isolated polynucleotide comprising a region encoding all or part of a functional RNA and at least one of the naturally occurring regulatory sequences directing expression in the source (e.g., organism) from which the polynucleotide was isolated, such as, but not limited to, an isolated polynucleotide comprising a nucleotide sequence encoding a herbicide resistant target gene and the corresponding promoter and 3′ end sequences directing expression in the source from which sequences were isolated.
[0085] A “transgene” is a recombinant DNA construct that has been introduced into the genome by a transformation procedure.
[0086] As used herein, “contig” refers to a nucleotide sequence that is assembled from two or more constituent nucleotide sequences that share common or overlapping regions of sequence homology. For example, the nucleotide sequences of two or more nucleic acid fragments can be compared and aligned in order to identify common or overlapping sequences. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences (and thus their corresponding nucleic acid fragments) can be assembled into a single contiguous nucleotide sequence.
[0087] “PCR” or “Polymerase Chain Reaction” is a technique for the synthesis of large quantities of specific DNA segments, consists of a series of repetitive cycles (Perkin Elmer Cetus Instruments, Norwalk, Conn.). Typically, the double stranded DNA is heat denatured, the two primers complementary to the 3′ boundaries of the target segment are annealed at low temperature and then extended at an intermediate temperature. One set of these three consecutive steps is referred to as a cycle.
[0088] The terms “recombinant construct”, “expression construct”, “recombinant expression construct”, “recombinant DNA construct” and “recombinant DNA construct” are used interchangeably herein. Such construct may be itself or may be used in conjunction with a vector. If a vector is used then the choice of vector is dependent upon the method that will be used to transform host plants as is well known to those skilled in the art. For example, a plasmid vector can be used. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells comprising any of the isolated nucleic acid fragments of the invention. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al, (1985) EMBO J. 4:2411-2418; De Almeida et al, (1989) Mol. Gen. Genetics 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.
[0089] Co-suppression constructs in plants previously have been designed by focusing on overexpression of a nucleic acid sequence having homology to an endogenous mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see Vaucheret et al (1998) Plant J 16:651-659; and Gura (2000) Nature 404:804-808). The overall efficiency of this phenomenon is low, and the extent of the RNA reduction is widely variable. Recent work has described the use of “hairpin” structures that incorporate all, or part, of an mRNA encoding sequence in a complementary orientation that results in a potential “stem-loop” structure for the expressed RNA (PCT Publication WO 99/53050 published on Oct. 21, 1999). This increases the frequency of co-suppression in the recovered transgenic plants. Another variation describes the use of plant viral sequences to direct the suppression, or “silencing”, of proximal mRNA encoding sequences (PCT Publication WO 98/36083 published on Aug. 20, 1998). Both of these co-suppressing phenomena have not been elucidated mechanistically, although recent genetic evidence has begun to unravel this complex situation (Elmayan et al (1998) Plant Cell 10:1747-1757).
[0090] Alternatively, a recombinant DNA construct designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in reverse orientation to plant promoter sequences. Either the co-suppression or antisense recombinant DNA constructs could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.
[0091] Molecular genetic solutions to the generation of plants with altered gene expression have a decided advantage over more traditional plant breeding approaches. Changes in plant phenotypes can be produced by specifically inhibiting expression of one or more genes by antisense inhibition or cosuppression (U.S. Pat. Nos. 5,190,931, 5,107,065 and 5,283,323). An antisense or cosuppression construct would act as a dominant negative regulator of gene activity. While conventional mutations can yield negative regulation of gene activity these effects are most likely recessive. The dominant negative regulation available with a transgenic approach may be advantageous from a breeding perspective. In addition, the ability to restrict the expression of a specific phenotype to the reproductive tissues of the plant by the use of tissue specific promoters may confer agronomic advantages relative to conventional mutations which may have an effect in all tissues in which a mutant gene is ordinarily expressed.
[0092] The person skilled in the art will know that special considerations are associated with the use of antisense or cosuppression technologies in order to reduce expression of particular genes. For example, the proper level of expression of sense or antisense genes may require the use of different recombinant DNA constructs utilizing different regulatory elements known to the skilled artisan. Once transgenic plants are obtained by one of the methods described above, it will be necessary to screen individual transgenics for those that most effectively display the desired phenotype. Accordingly, the skilled artisan will develop methods for screening large numbers of transformants. The nature of these screens will generally be chosen on practical grounds. For example, one can screen by looking for changes in gene expression by using antibodies specific for the protein encoded by the gene being suppressed, or one could establish assays that specifically measure enzyme activity. A preferred method will be one which allows large numbers of samples to be processed rapidly, since it will be expected that a large number of transformants will be negative for the desired phenotype.
[0093] Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer (1989) Proc. Natl. Acad. Sci USA 86:9402-9406; Koes et al (1995) Proc. Natl. Acad. Sci USA 92:8149-8153; Bensen et al (1995) Plant Cell 7:75-84). The latter approach may be accomplished in two ways. First, short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, supra). The amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the instant polypeptides. Alternatively, the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor. With either method, a plant containing a mutation in the endogenous gene encoding the instant polypeptides can be identified and obtained. This mutant plant can then be used to determine or confirm the natural function of the instant polypeptides disclosed herein.
[0094] The terms Hap3, Lec1, and Hap3/Lec1 are used interchangeably herein and refer to a class of transcription factors. The Hap3/Lec1 class is part of a broader family that includes other transcription factors such as Hap5, Hap2, and Lec1-CCAAT. The terms Hap3-like, Lec1-like, Hap3/Lec1-like, Hap5-like, Hap2-like, Lec1-CCAAT-like, etc. refer to any transcription factors that share sequence identity as disclosed herein and/or functionality with the nucleotide sequences and the corresponding amino acid sequences encoded by such nucleotide sequences disclosed in the present invention.
[0095] Surprisingly and unexpectedly, it has been found that there are a variety of regulatory/structural nucleic acid fragments, which heretofore have not been associated with altering oil phenotype in plants, that appear to be useful in altering oil phenotype in plants. In addition to the CCAAT-binding transcription factors, other proteins which heretofore have not been associated with altering oil phenotype in plants, have been identified. The nucleic acids identified encode a diverse class of regulatory and structural polypeptides whose expression correlates with altered oil phenotypes in plants. Altering the expression of these polypeptides would be expected to have an effect in altering oil accumulation in plants.
[0096] Other protein classes identified herein include:
[0097] a Hap2 transcription factor;
[0098] a Hap5 transcription factor;
[0099] a Hap3/Lec1 or Lec 1- CCAAT binding transcription factor.
[0100] They can be characterized as an isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0101] (a) a nucleic acid sequence encoding a fifth polypeptide having Hap2-like transcription factor activity, the fifth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a sixth polypeptide selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, or 208, 210, 212, 214, or 216; or
[0102] (b) a nucleic acid sequence encoding a seventh polypeptide having Hap5-like transcription factor activity, the seventh polypeptide having at least 80% identity based on the Clustal method of alignment when compared to an eighth polypeptide selected from the group consisting of SEQ ID NOs: 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, or 221; or
[0103] (c) a nucleic acid sequence encoding a seventeenth polypeptide having Hap3/Lec1-like activity, the seventeenth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a eighteenth polypeptide selected from the group consisting of SEQ ID NOs: 130, 132, 134, or 136.
[0104] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned characterization. Useful percent identities would include, but not be limited to, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0105] The complement of the nucleotide fragments of this inventions are encompassed within the scope of this invention.
[0106] Those skilled in the art with also appreciate that the nucleotide fragment of this invention and/or the complement thereof can be used in whole or in part in antisense inhibition or co-suppression of a transformed plant.
[0107] In a more preferred embodiment, the first polypeptide mentioned above is as follows with respect to each part, the first polypeptide in
[0108] part (a) is a Hap2 transcription factor;
[0109] part (b) is a Hap5 transcription factor;
[0110] part (c) is a Hap3/Lec1 or Lec 1- CCAAT binding transcription factor
[0111] Lec1 homologs may be further identified by using conserved sequence motifs. The following amino acid sequence (given in single letter code, with “x” representing any amino acid). Under lined amino acids are those that are conserved in Lec1 but not found in Lec1-related proteins.
[0112] REQDxx M PxANVxRIMRxxLPxxAKIS D DAKEx I QECVSExISFxTxEA N x R Cxxxx RKTxxxE
[0113] In a further embodiment, this invention encompasses recombinant DNA construct comprising any of the isolated nucleic acid fragments of the invention or complement thereof operably linked to at least one regulatory sequence. It is also understood that recombinant DNA constructs comprising such fragments or complements thereof or parts of either can be used in antisense inhibition or suppression of a transformed plant.
[0114] Also within the scope of this invention is a plant comprising in its genome a recombinant DNA construct as described herein. Recombinant DNA constructs designed for plant expression such as those described herein can be introduced into a plant cell in a number of art-recognized ways. Those skilled in the art will appreciate that the choice of method might depend on the type of plant (i.e, monocot or dicot) and/or organelle (i.e., nucleus, chloroplast, mitochondria) targeted for transformation. Suitable methods for transforming plant cells include microinjection, electroporation, Agrobacterium mediated transformation, direct gene transfer and particle-accelerated or “gene gun” transformation technology as is discussed above.
[0115] Examples of plants which can be transformed include, but are not limited to, corn, soybean, wheat, rice, canola, Brassica, sorghum, sunflower, and coconut.
[0116] The regeneration, development and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, In, Methods for Plant Molecular Biology, (Eds.), Academic Press, Inc., San Diego, Calif. (1988)). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
[0117] The development or regeneration of plants containing the foreign, exogenous gene that encodes a protein of interest is well known in the art. Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
[0118] There are a variety of methods for the regeneration of plants from plant tissue. The particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated. Methods for transforming dicots, primarily by use of Agrobacterium tumefaciens, and obtaining transgenic plants have been published for cotton (U.S. Pat. Nos. 5,004,863, 5,159,135, 5,518,908); soybean (U.S. Pat. Nos. 5,569,834 5,416,011, McCabe et. al., BiolTechnology 6:923 (1988), Christou et al., Plant Physiol. 87:671-674 (1988)); Brassica (U.S. Pat. No. 5,463,174); peanut (Cheng et al., Plant Cell Rep. 15:653-657 (1996), McKently et al., Plant Cell Rep. 14:699-703 (1995)); papaya; and pea (Grant et al., Plant Cell Rep. 15:254-258, (1995)).
[0119] Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacterium have also been reported. Transformation and plant regeneration have been achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. (USA) 84:5354, (1987)); barley (Wan and Lemaux, Plant Physiol 104:37 (1994)); Zea mays (Rhodes et al., Science 240:204 (1988), Gordon-Kamm et al., Plant Cell 2:603-618 (1990), Fromm et al., BiolTechnology 8:833 (1990), Koziel et al., BiolTechnology 11: 194, (1993), Armstrong et al., Crop Science 35:550-557 (1995)); oat (Somers et al., BiolTechnology 10: 15 89 (1992)); orchard grass (Horn et al., Plant Cell Rep. 7:469 (1988)); rice (Toriyama et al., TheorAppl. Genet. 205:34, (1986); Part et al., Plant Mol. Biol. 32:1135-1148, (1996); Abedinia et al., Aust. J. Plant Physiol. 24:133-141 (1997); Zhang and Wu, Theor. Appl. Genet. 76:835 (1988); Zhang et al. Plant Cell Rep. 7:379, (1988); Battraw and Hall, Plant Sci. 86:191-202 (1992); Christou et al., Bio/Technology 9:957 (1991)); rye (De la Pena et al., Nature 325:274 (1987)); sugarcane (Bower and Birch, Plant J. 2:409 (1992)); tall fescue (Wang et al., BiolTechnology 10:691 (1992)), and wheat (Vasil et al., Bio/Technology 10:667 (1992); U.S. Pat. No. 5,631,152).
[0120] Assays for gene expression based on the transient expression of cloned nucleic acid constructs have been developed by introducing the nucleic acid molecules into plant cells by polyethylene glycol treatment, electroporation, or particle bombardment (Marcotte et al., Nature 335:454-457 (1988); Marcotte et al., Plant Cell 1:523-532 (1989); McCarty et al., Cell 66:895-905 (1991); Hattori et al., Genes Dev. 6:609-618 (1992); Goff et al., EMBO J. 9:2517-2522 (1990)).
[0121] Transient expression systems may be used to functionally dissect gene constructs (see generally, Maliga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995)). It is understood that any of the nucleic acid molecules of the present invention can be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements such as vectors, promoters, enhancers etc.
[0122] In addition to the above discussed procedures, practitioners are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolating of clones, (see for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989); Maliga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995); Birren et al., Genome Analysis: Detecting Genes, 1, Cold Spring Harbor, N.Y. (1998); Birren et al., Genome Analysis: Analyzing DNA, 2, Cold Spring Harbor, N.Y. (1998); Plant Molecular Biology: A Laboratory Manual, eds. Clark, Springer, N.Y. (1997)).
[0123] Seeds obtained from such plants and oil obtained from these seeds constitute another aspect of the present invention.
[0124] In an even further aspect, the invention concerns a method for altering oil phenotype in a plant which comprises:
[0125] (a) transforming a plant with a recombinant DNA construct of the invention;
[0126] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0127] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0128] In a more specific embodiment, the invention concerns a method for altering oil phenotype in a plant which comprises:
[0129] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0130] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 130 to 148, and SEQ ID NOs: 195 and 196;
[0131] (ii) the complement of the nucleic acid sequence of (i);
[0132] (iii) the sequence of (i) or (ii) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0133] (iv) a nucleic acid sequence encoding a plant Lec -related CCAAT binding transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 150 to 178, and SEQ ID NOs: 197 to 202;
[0134] (v) the complement of the nucleic acid sequence of (vii);
[0135] (vi) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0136] wherein said nucleic acid sequence is operably linked to at least one regulatory sequence;
[0137] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0138] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0139] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned method. Useful percent identities would include, but not be limited to, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0140] In an even further aspect, this invention concerns a method to isolate nucleic acid fragments associated with altering oil phenotype in a plant which comprises:
[0141] (a) comparing even SEQ ID NOs: from 2 to 178, and 206 to 214, and SEQ ID NOs: 179 to 202, 216 to 219, 221, and 222 with other polypeptide sequences fort he purpose of identifying polypeptides associated with altering oil phenotype in a plant;
[0142] (b) identifying the conserved sequences(s) or 4 or more amino acids obtained in step (a);
[0143] (c) making region-specific nucleotide probe(s) or oligomer(s) based on the conserved sequences identified in step (b); and
[0144] (d) using the nucleotide probe(s) or oligomer(s) of step (c) to isolate sequences associated with altering oil phenotype by sequence dependent protocols.
[0145] In a most preferred aspect, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0146] (a) transforming a plant with a recombinant DNA construct comprising an isolated nucleic acid fragment operably linked to at least one regulatory sequence wherein said fragment has a nucleic acid sequence encoding a polypeptide having a sequence identity of at least 60% based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of even;
[0147] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0148] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0149] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned method. Useful percent identities would include, but not be limited to, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0150] In another aspect, this invention also concerns a method of mapping genetic variations related to altered oil phenotypes in a plant comprising:
[0151] (a) crossing two plant varieties; and
[0152] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0153] In another embodiment, this invention concerns a method of molecular breeding to obtain altered oil phenotypes in a plant comprising:
[0154] (a) crossing two plant varieties; and
[0155] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0156] The genetic variability at a particular locus (gene) due to even minor base changes can alter the pattern of restriction enzyme digestion fragments that can be generated. Pathogenic alterations to the genotype can be due to deletions or insertions within the gene being analyzed or even single nucleotide substitutions that can create or delete a restriction enzyme recognition site. RFLP analysis takes advantage of this and utilizes Southern blotting with a probe corresponding to the gene of interest.
[0157] Thus, if a polymorphism (i.e., a commonly occurring variation in a gene or segment of DNA; also, the existence of several forms of a gene (alleles) in the same species) creates or destroys a restriction endonuclease cleavage site, or if it results in the loss or insertion of DNA (e.g., a variable nucleotide tandem repeat (VNTR) polymorphism), it will alter the size or profile of the DNA fragments that are generated by digestion with that restriction endonuclease. As such, individuals that possess a variant sequence can be distinguished from those having the original sequence by restriction fragment analysis. Polymorphisms that can be identified in this manner are termed “restriction fragment length polymorphisms: (“RFLPs”). RFLPs have been widely used in human and plant genetic analyses (Glassberg, UK Patent Application 2135774; Skolnick et al, Cytogen. Cell Genet. 32:58-67 (1982); Botstein et al, Ann. J. Hum. Genet. 32:314-331 (1980); Fischer et al (PCT Application WO 90/13668; Uhlen, PCT Appliction WO 90/11369).
[0158] A central attribute of “single nucleotide polymorphisms” or “SNPs” is that the site of the polymorphism is at a single nucleotide. SNPs have certain reported advantages over RFLPs or VNTRs. First, SNPs are more stable than other classes of polymorphisms. Their spontaneous mutation rate is approximately 10 −9 (Kornberg, DNA Replication, W. H. Freeman & Co., San Francisco, 1980), approximately, 1,000 times less frequent than VNTRs (U.S. Pat. No. 5,679,524). Second, SNPs occur at greater frequency, and with greater uniformity than RFLPs and VNTRs. As SNPs result from sequence variation, new polymorphisms can be identified by sequencing random genomic or cDNA molecules. SNPs can also result from deletions, point mutations and insertions. Any single base alteration, whatever the cause, can be a SNP. The greater frequency of SNPs means that they can be more readily identified than the other classes of polymorphisms.
[0159] SNPs can be characterized using any of a variety of methods. Such methods include the direct or indirect sequencing of the site, the use of restriction enzymes where the respective alleles of the site create or destroy a restriction site, the use of allele-specific hybridization probes, the use of antibodies that are specific for the proteins encoded by the different alleles of the polymorphism or by other biochemical interpretation. SNPs can be sequenced by a number of methods. Two basic methods may be sued for DNA sequencing, the chain termination method of Sanger et al, Proc. Natl. Acad. Sci. (U.S.A.) 74:5463-5467 (1977), and the chemical degradation method of Maxam and Gilbert, Proc. Natl.,Acad. Sci. (U.S.A.) 74: 560-564 (1977).
[0160] Polymerase chain reaction (“PCR”) is a powerful technique used to amplify DNA millions of fold, by repeated replication of a template, in a short period of time. (Mullis et al, Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al, European Patent Application 50,424; European Patent Application 84,796; European Patent Application 258,017, European Patent Application 237,362; Mullis, European Patent Application 201,184, Mullis et al U.S. Pat. No. 4,683,202; Erlich, U.S. Pat. No. 4,582,788; and Saiki et al, U.S. Pat. No. 4,683,194). The process utilizes sets of specific in vitro synthesized oligonucleotides to prime DNA synthesis. The design of the primers is dependent upon the sequences of DNA that are desired to be analyzed. The technique is carried out through many cycles (usually 20-50) of melting the template at high temperature, allowing the primers to anneal to complementary sequences within the template and then replicating the template with DNA polymerase.
[0161] The products of PCR reactions are analyzed by separation in agarose gels followed by ethidium bromide staining and visualization with UV transillumination. Alternatively, radioactive dNTPs can be added to the PCR in order to incorporate label into the products. In this case the products of PCR are visualized by exposure of the gel to x-ray film. The added advantage of radiolabeling PCR products is that the levels of individual amplification products can be quantitated.
[0162] Furthermore, single point mutations can be detected by modified PCR techniques such as the ligase chain reaction (“LCR”) and PCR-single strand conformational polymorphisms (“PCR-SSCP”) analysis. The PCR technique can also be sued to identify the level of expression of genes in extremely small samples of material, e.g., tissues or cells from a body. The technique is termed reverse transcription-PCR (“RT-PCR”).
[0163] In another embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0164] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0165] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 70% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of SEQ ID NOs: 130 to 148, and SEQ ID NOs: 195 and 196;
[0166] (ii) the complement of the nucleic acid sequence of (iv);
[0167] (iii) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0168] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0169] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0170] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned method. Useful percent identities would include, but not be limited to, 45%, 50%, 55%, 60%, 65%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0171] In another aspect this invention concerns a method to isolate nucleic acid fragments associated with altering oil phenotype in a plant which comprises:
[0172] (a) comparing SEQ ID NOs: 130 to 148, and SEQ ID NOs: 195, 196, and 206 with other polypeptide sequences for the purpose of identifying polypeptides associated with altering oil phenotype in a plant;
[0173] (b) identifying the conserved sequences(s) or 4 or more amino acids obtained in step (a);
[0174] (c) making region-specific nucleotide probe(s) or oligomer(s) based on the conserved sequences identified in step (b); and
[0175] (d) using the nucleotide probe(s) or oligomer(s) of step (c) to isolate sequences associated with altering oil phenotype by sequence dependent protocols.
EXAMPLES
[0176] The present invention is further defined in the following Examples, in which parts and percentages are by weight and degrees are Celsius, unless otherwise stated. The disclosure of each reference set forth herein is incorporated herein by reference in its entirety.
Example 1
[0177] Composition of cDNA Libraries; Isolation and Sequencing of cDNA Clones
[0178] cDNA libraries representing mRNAs from various plant tissues were prepared. The characteristics of the libraries are described below.
TABLE 2 cDNA Libraries from Various Plants Library Tissue Clone cbn10 Corn Developing Kernel (Embryo and cbn10.pk0005.e6:fis Endosperm); 10 Days After Pollination cbn10.pk0064.e6 cc71se-a Corn Callus Type II Tissue, Somatic Embryo cc71se-a.pk0002.e11:fis Formed cc71se-b Corn Callus Type II Tissue, Somatic Embryo cc71se-b.pk0018.e4:fis Formed cca Corn Callus Type II Tissue, Undifferentiated, cca.pk0026.d6 Highly Transformable ccase-b Corn Callus Type II Tissue, Somatic Embryo ccase-b.pk0003.b9:fis Formed, Highly Transformable cco1n.pk062.j7 cco1n.pk086.d20:fis cco1n Corn Cob of 67 Day Old Plants Grown in cco1n.pk0014.d4:fis Green House* cco1n.pk055.o18 cco1n.pk089.g17 cco1n.pk068.f18:fis cde1c Corn ( Zea Mays , B73) developing embryo cde1c.pk003.o22:fis 20 DAP ced1n Corn ( Zea mays , B73) developing embryo cde1n.pk003.a5 20 DAP normalized cde1n.pk001.n24:fis cdo1c Corn ( Zea mays L.) ovary, 5 days after cdolc.pk001.c1:fis silking (includes pedicel and glumes) ceb3 Corn Embryo 20 Days After Pollination ceb3.pk0012.a7 ceb5 Corn Embryo 30 Days After Pollination ceb5.pk0081.b4 cen3n.pk0164.a10 cen3n Corn Endosperm 20 Days After Pollination* cen3n.pk0044.b8:fis cen3n.pk0112.e10:fis cho1c.pk003.p17:fis cho1c.pk003.n23 cho1c Corn ( Zea mays L., Alexho Synthetic High Oil) cho1c.pk004.b19:f15 embryo 20 DAP cho1c.pk007.l21:fis cho1c.pk001.l23:fis cho1c.pk009.g10 clm1f Corn ( Zea mays , B73) leaf at V6-VT (full length) clm1f.pk001.k17 clm1f.pk002.o13:fis cpd1c Corn ( Zea mays L.) pooled BMS treated with cpd1c.pk011.15:fis chemicals related to protein kinases cpd1c.pk008.e21 cpf1c Corn ( Zea mays L.) pooled BMS treated with cpf1c.pk006.e3:fis chemicals related to protein synthesis cpj1c Corn ( Zea mays L.) pooled BMS treated with cpj1c.pk005.m20:fis chemicals related to membrane ionic force cr1n Corn Root From 7 Day Old Seedlings* cr1n.pk0080.g6 cse1c Corn ( Zea mays L.) seedling at V2 stage treated cse1c.pk001.h6 with Ethylene collected at 6 hr, 23 hr, 72 hr cta1n Corn Tassel* cta1n.pk0070.f3:fis cta1n.pk0074.h11 ctn1c Corn ( Zea mays L., B73) night harvested tassel ctn1c.pk002.o4 ect1c Canna edulis Tubers ect1c.pk001.k17:fis ect1c.pk007.p18:fis eef1c Eucalyptus tereticornis flower buds from adult eef1c.pk004.c8:fis tree etr1c Cattail ( Typha latifolia ) root etr1c.pk006.f9 fds Momordica charantia Developing Seed fds.pk0003.h5:fis hss1c Scierotinia infected sunflower plants hss1c.pk011.h10:fis ncs Catalpa speciosa Developing Seed ncs.pk0013.c4 p0006 Young shoot p0006.cbysa51r:fis p0015 13 DAP embryo p0015.cdpgu90r:fis p0015.cdpfm55r:fis p0016 Tassel shoTassel shoots, pooled, 0.1-1.4 cm p0016.ctsbf56rb p0026 Regenerating callus 5 days after auxin removal p0026.ccrab39r Hi-II callus 223a, 1129e p0027 GS3 shoot cultures that were transformed with p0027.cgsag51r PHP5869 and were maintained on 273T shoot multiplication medium since 3/17/94 (sample received on 5/29/96 for RNA prep). The original transformation was done on 11/6/93 p0031 CM45 shoot culture. It was initiated on 2/28/96 p0031.ccmau15r:fis from seed derived meristems. The culture was p0031.ccmbc81r maintained on 273N medium. p0032 Regenerating callus, 10 and 14 days after auxin p0032.crcac77r:fis removal. Hi-II callus 223a, 1129e 10 days. Hi-II callus 223a, 1129e 14 days p0037 corn Root Worm infested V5 roots p0037.crwbs90r:fis p0083.cldct11r:fis p0083 7 DAP whole kernels p0083.cldeu68r:fis p0083.clder12r p0086 P0067 screened 1; 11 DAP pericarp p0086.cbsaa24r p0118 Night harvested, pooled stem tissue from the p0118.chsbc77r 4-5 internodes subtending the tassel; V8-V12 p0118.chsbh89r stages, Screened 1 p0125 Anther: Prophase I sceened 1 p0125.czaab60rb:f15 p0126 Night harvested leaf tissue; V8-V10 p0126.cnlau71r:fis p0134 Hi-II callus 223a, 1129e, 10 days hi-II callus p0134.carah47r 233a, 1129e, 14 days pps1c Prickly poppy developing seeds pps1c.pk001.h3:fis pps1c.pk007.j21:fis rbm5c Rice ( Oryza sativa , Cypress) bran 10 days after rbm5c.pk001.a19 milling rca1c Rice Nipponbare Callus. rca1c.pk007.b22:fis rca1n.pk029.n22 rca1n.pk002.j3 rca1n Rice ( Oryza sativa L., Nipponbare) callus rca1n.pk021.b20:fis normalized. rca1n.pk004.j14:fis rca1n.pk026.m9 rca1n.pk008.o5:fis r10n.pk096.h23 r10n.pk0061.c8:fis r10n Rice 15 Day Old Leaf* r10n.pk131.j17 r10n.pk0015.a4:fis rlm3n Rice ( Oryza Sativa , YM) leaf mixture (rsr9) rlm3n.pk005.d20:fis normalized at 45 C. for 24 hrs using 20 fold excess of driver rlr2 Rice ( Oryza sativa L.) leaf (15 DAG) 2 hrs after rlr2.pk0012.d2 infection of strain 4360-R-62 (AVR2-YAMO); Resistant rlr24 Rice Leaf 15 Days After Germination, 24 Hours rlr24.pk0032.e10 After Infection of Strain Magnaporthe grisea 4360-R-62 (AVR2-YAMO); Resistant rls6 Rice Leaf 15 Days After Germination, 6 Hours rls6.pk0033.a9:fis After Infection of Strain Magnaporthe grisea 4360-R-67 (AVR2-YAMO); Susceptible rls72 Rice Leaf 15 Days After Germination, 72 Hours rls72.pk0023.c8:fis After Infection of Strain Magnaporthe grisea 4360-R-67 (AVR2-YAMO); Susceptible rr1 Rice Root of Two Week Old Developing rr1.pk0039.d4:fis rr1.pk0003.a3:fis rr1.pk097.f22:fis rr1.pk0047.g12:fis rsl1n.pk002.g10:fis rsl1n.pk002.j2:fis rsl1n Rice ( Oryza sativa , YM) 15 day old rsl1n.pk006.n24:fis normalized rsl1n.pk013.g2 scb1c Soybean ( Glycine max L., 2872) Embryogenic scb1c.pk004.n19:fis suspension culture subjected to 4 bombardments and collected 12 hrs later. sde4c Soybean Developing Embryo (9-11 mm) sde4c.pk0001.a2:fis sdp2c.pk003.o5:fis sdp2c Soybean ( Glycine max L.) developing pods sdp2c.pk023.n6:fis 6-7 mm sdp2c.pk029.k17:fis sdp2c.pk044.e5:fis sdp3c.pk018.b9:fis sdp3c Soybean Developing Pods (8-9 mm) sdp3c.pk019.n1:fis spd4c Soybean ( Glycine max L.) developing pods sdp4c.pk009.e3s 10-12 mm dp4c.pk016.e10 sdr1f Soybean ( Glycine max , Wye) 10 day old root sdr1f.pk001.p7 sds1f Soybean ( Glycine max , Wye) 11 day old sds1f.pk001.f7:fis seedling full length library using trehalose se1 Soybean Embryo, 6 to 10 Days After Flowering se1.pk0042.d8:fis se2 Soybean Embryo, 13 Days After Flowering se2.11d12:fis ses2w Soybean Embryogenic Suspension 2 Weeks ses2w.pk0015.a4:fis After Subculture ses2w.pk0035.a9:fis ses2w.pk0012.d10:fis ses4d.pk0037.e3:fis ses4d Soybean Embryogenic Suspension 4 Days After ses4d.pk0044.c12 Subculture ses4d.pk0006.a12 ses4d.pk0006.a12:fis ses4d.pk0043.d10:fis sfl1.pk0102.h8 sf11.pk131.j19 sfl1 Soybean Immature Flower sfl1.pk135.g3 sfl1.pk0029.h10:fis sgc5c Soybean ( Glycine max L., Wye) germanating sgc5c.pk001.h16 cotyledon (¾ yellow; 15-24 DAG) sgs1c Soybean Seeds 4 Hours After Germination sgs1c.pk004.f19:fis sgs4c Soybean ( Glycine max L.) seeds 2 days after sgs4c.pk004.j2 germination. sgs4c.pk006.g6 sgs4c.pk006.n21 sic1c Soybean ( Glycine max ) pooled tissue of root, sic1c.pk003.o13:fis stem, and leaf with iron chlorosis conditions sic1c.pk003.o18:fis sif1c Soybean ( Glycine max ) pooled tissue of basal sif1c.pk001.m16:fis stem and root infected with fusarium sls1c Soybean ( Glycine max L., S1990) infected with sls1c.pk010.l1:fis Sclerotinia sclerotiorum mycelium . sls1c.pk032.j4 sls1c Soybean ( Glycine max L., S1990) infected with sls1c.pk010.l1:fis Sclerotinia sclerotiorum mycelium . sls1c.pk020.h24 sls2c Soybean ( Glycine max L., Manta) infected with sls2c.pk007.c23:fis Sclerotinia sclerotiorum mycelium . sr1 Soybean Root sr1.pk0041.a11:fis sr1.pk0049.c2 srb Scarlett runner bean (R. Goldberg) srb.08g04 src1c Soybean 8 Day Old Root Infected With Cyst src1c.pk003.o16:fis Nematode src2c.pk025.b3:fis src2c Soybean ( Glycine max L., 437654) 8 day old src2c.pk011.m12:fis root inoculated with eggs of cyst Nematode src2c.pk009.g9:fis (Race 1) for 4 days. src2c.pk003.i13:fis src3c.pk018.d10:fis sr3c.pk011.g22 src3c Soybean 8 Day Old Root Infected With Cyst src3c.pk012.n16:fis Nematode src3c.pk019.d4:fis src3c.pk009.b15 src3c.pk028.j21:fis srr1c Soybean 8-Day-Old Root srr1c.pk001.i24:fis srr3c Soybean 8-Day-Old Root srr3c.pk001.l10:fis tlw1c Tobacco ( Nicotiana benthamiana ) Leaves tlw1c.pk006.o16 Wounded by Abrasion and Harvested After 1.5 Hour. vdb1c Grape (Vitis sp.) developing bud vdb1c.pk001.m5:fis vmb1na Grape (Vitis sp.) midstage berries normalized vmb1na.pk015.d18:fis vpl1c Grape (Vitis sp.) In vitro plantlets vpl1c.pk008.o5:fis vrr1c Grape (Vitis sp.) resistant roots vrr1c.pk004.o20:fis vs1n Vernonia Seed* vs1n.pk013.m13:fis wdelf Wheat ( Triticum aestivum , Hi Line) developing wde1f.pk003.h2:fis endosperm 2-7 DPA wdk2c Wheat Developing Kernel, 7 Days After Anthesis. wdk2c.pk009.e4 wdk2c Wheat Developing Kernel, 7 Days After Anthesis. wdk2c.pk018.c16:fis wdk3c Wheat Developing Kernel, 14 Days After wdk3c.pk023.h15:fis Anthesis. wdk5c Wheat Developing Kernel, 30 Days After wdk5c.pk006.m13 Anthesis wdk9n Wheat ( Triticum aestivu , Spring Wheat) kernels wdk9n.pk001.k5 3, 7, 14 and 21 days after anthesis wdr1f Wheat ( Triticum aestivum ) developing root (full wdr1f.pk003.b21:fis length) wds1f Wheat developing seedling full length wds1f.pk002.p21:fis wia1c Wheat ( Triticum aestivum , Hi Line) immature wia1c.pk001.d20:fis anthers wkm1c Wheat Kernel malted 55 Hours at 22 Degrees wkm1c.pk0002.d7:fis Celsius wl1n Wheat Leaf From 7 Day Old Seedling* wl1n.pk0114.f9 wle1n Wheat Leaf From 7 Day Old Etiolated Seedling* wle1n.pk0076.h7:fis wlk8 Wheat Seedlings 8 Hours After Treatment With wlk8.pk0001.e10:fis Fungicide** wlm96.pk060.d5 wlm96.pk037.k9:fis wlm96 Wheat Seedlings 96 Hours After Inoculation With wlm96.pk035.j11:fis Erysiphe graminis f. sp tritici wlm96.pk0007.e4:fis wr1 Wheat Root From 7 Day Old Seedling wr1.pk0094.f2:fis wr1.pk0153.c7:fis wr1.pk148.f7:fis wre1n Wheat Root From 7 Day Old Etiolated wre1n.pk0066.e4:fis Seedling* wre1n.pk0143.h2:fis
[0179] cDNA libraries may be prepared by any one of many methods available. For example, the cDNAs may be introduced into plasmid vectors by first preparing the cDNA libraries in Uni-ZAP™ XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, Calif.). The Uni-ZAP™ XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the plasmid vector pBluescript. In addition, the cDNAs may be introduced directly into precut Bluescript II SK(+) vectors (Stratagene) using T4 DNA ligase (New England Biolabs), followed by transfection into DH10B cells according to the manufacturer's protocol (GIBCO BRL Products). Once the cDNA inserts are in plasmid vectors, plasmid DNAs are prepared from randomly picked bacterial colonies containing recombinant pBluescript plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences. Amplified insert DNAs or plasmid DNAs are sequenced in dye-primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or “ESTs”; see Adams et al, (1991) Science 252:1651-1656). The resulting ESTs are analyzed using a Perkin Elmer Model 377 fluorescent sequencer.
[0180] Full-insert sequence (FIS) data is generated utilizing a modified transposition protocol. Clones identified for FIS are recovered from archived glycerol stocks as single colonies, and plasmid DNAs are isolated via alkaline lysis. Isolated DNA templates are reacted with vector primed M13 forward and reverse oligonucleotides in a PCR-based sequencing reaction and loaded onto automated sequencers. Confirmation of clone identification is performed by sequence alignment to the original EST sequence from which the FIS request is made.
[0181] Confirmed templates are transposed via the Primer Island transposition kit (PE Applied Biosystems, Foster City, Calif.) which is based upon the Saccharomyces cerevisiae Ty1 transposable element (Devine and Boeke (1994) Nucleic Acids Res. 22:3765-3772). The in vitro transposition system places unique binding sites randomly throughout a population of large DNA molecules. The transposed DNA is then used to transform DH10B electro-competent cells (Gibco BRL/Life Technologies, Rockville, Md.) via electroporation. The transposable element contains an additional selectable marker (named DHFR; Fling and Richards (1983) Nucleic Acids Res. 11:5147-5158), allowing for dual selection on agar plates of only those subclones containing the integrated transposon. Multiple subclones are randomly selected from each transposition reaction, plasmid DNAs are prepared via alkaline lysis, and templates are sequenced (ABI Prism dye-terminator ReadyReaction mix) outward from the transposition event site, utilizing unique primers specific to the binding sites within the transposon.
[0182] Sequence data is collected (ABI Prism Collections) and assembled using Phred/Phrap (P. Green, University of Washington, Seattle). Phrep/Phrap is a public domain software program which re-reads the ABI sequence data, re-calls the bases, assigns quality values, and writes the base calls and quality values into editable output files. The Phrap sequence assembly program uses these quality values to increase the accuracy of the assembled sequence contigs. Assemblies are viewed by the Consed sequence editor (D. Gordon, University of Washington, Seattle).
[0183] In some of the clones the cDNA fragment corresponds to a portion of the 3′-terminus of the gene and does not cover the entire open reading frame. In order to obtain the upstream information one of two different protocols are used. The first of these methods results in the production of a fragment of DNA containing a portion of the desired gene sequence while the second method results in the production of a fragment containing the entire open reading frame. Both of these methods use two rounds of PCR amplification to obtain fragments from one or more libraries. The libraries some times are chosen based on previous knowledge that the specific gene should be found in a certain tissue and some times are randomly-chosen. Reactions to obtain the same gene may be performed on several libraries in parallel or on a pool of libraries. Library pools are normally prepared using from 3 to 5 different libraries and normalized to a uniform dilution. In the first round of amplification both methods use a vector-specific (forward) primer corresponding to a portion of the vector located at the 5′-terminus of the clone coupled with a gene-specific (reverse) primer. The first method uses a sequence that is complementary to a portion of the already known gene sequence while the second method uses a gene-specific primer complementary to a portion of the 3′-untranslated region (also referred to as UTR). In the second round of amplification a nested set of primers is used for both methods. The resulting DNA fragment is ligated into a pBluescript vector using a commercial kit and following the manufacturer's protocol. This kit is selected from many available from several vendors including Invitrogen (Carlsbad, Calif.), Promega Biotech (Madison, Wis.), and Gibco-BRL (Gaithersburg, Md.). The plasmid DNA is isolated by alkaline lysis method and submitted for sequencing and assembly using Phred/Phrap, as above.
Example 2
[0184] Identification of cDNA Clones
[0185] cDNA clones encoding proteins involved in altering plant oil traits were identified by gene profiling (see Example 7) and by conducting BLAST (Basic Local Alignment Search Tool; Altschul et al (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST “nr” database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the “nr” database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the “nr” database using the BLASTX algorithm (Gish and States (1993) Nat. Genet. 3:266-272) provided by the NCBI. For convenience, the P-value (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as “pLog” values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST “hit” represent homologous proteins.
[0186] ESTs submitted for analysis are compared to the genbank database as described above. ESTs that contain sequences more 5- or 3-prime can be found by using the BLASTn algorithm (Altschul et al (1997) Nucleic Acids Res. 25:3389-3402.) against the DuPont proprietary database comparing nucleotide sequences that share common or overlapping regions of sequence homology. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences can be assembled into a single contiguous nucleotide sequence, thus extending the original fragment in either the 5 or 3 prime direction. Once the most 5-prime EST is identified, its complete sequence can be determined by Full Insert Sequencing as described in Example 1. Homologous genes belonging to different species can be found by comparing the amino acid sequence of a known gene (from either a proprietary source or a public database) against an EST database using the tBLASTn algorithm. The tBLASTn algorithm searches an amino acid query against a nucleotide database that is translated in all 6 reading frames. This search allows for differences in nucleotide codon usage between different species, and for codon degeneracy.
Example 3
[0187] Characterization of cDNA Clones Encoding Proteins Involved in Altering Oil
Phenotypes
[0188] The BLASTX search using the EST sequences from clones listed in Table 3 revealed similarity of the polypeptides encoded by the cDNAs to Hap2 homologs, Hap5 homologs, and Lec1 transcription factors from various species including Arabidopsis thaliana, rice ( Oryza sativa ), corn ( Zea mays ), soybean ( Glycine max ), cucmber ( Cucumis sativus ), Sordaria ( Sordaria macrospora ), sesame ( Sesamum indicum ), grape (Vitis sp.), Brassica ( Brassica napus ), and tobacco ( Nicotiana tabacum ). Shown in Table 3 are the BLAST results for individual ESTs (“EST”), the sequences of the entire cDNA inserts comprising the indicated cDNA clones (“FIS”), the sequences of contigs assembled from two or more ESTs (“Contig”), sequences of contigs assembled from an FIS and one or more ESTs (“Contig*”), or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR (“CGS”):
TABLE 3 BLAST Results for Sequences Encoding Polypeptides Homologous to Proteins Involved in Altering Oil Phenotypes SEQ ID NO. Gene Name Clone Homolog Genbank # pLOG 2 Hap2a ncs.pk0013.c4 No hits — 4 Hap2c etr1c.pk006.f9 No hits — 6 Hap2a vmb1na.pk015.d18 Arabidopsis 11282597 8.1 8 Hap2a vpl1c.pk008.o5:fis Grape 7141243 91.2 10 Hap2c vdb1c.pk001.m5:fis Rice 7489565 38.0 12 Hap2c cho1c.pk004.b19:fis Rice 7489565 94.3 14 Hap2c p0015.cdpgu90r:fis Rice 7489565 96.2 16 Hap2a cta1n.pk0070.f3:fis Rice 7489565 38.1 18 Hap2a cco1n.pk0014.d4:fis Arabidopsis 6634774 37.2 20 Hap2a cco1n.pk086.d20:fis Arabidopsis 6634774 36.3 22 Hap2b p0126.cnlau71r:fis Rice 7489565 23.7 24 Hap2b p0104.cabav52r Rice 7489565 16.7 26 Hap2b cho1c.pk007.l21:fis Rice 7489565 35.0 contig of: cca.pk0026.d6 28 Hap2c cen3n.pk0061.e10:fis Rice 7489565 43.5 cen3n.pk0135.c2 cho1c.pk001.n24 p0092.chwae40r 30 Hap2c cpf1c.pk006.e3:fis Rice 7489565 44.0 contig of: Rice 7489565 32 Hap2c cr1n.pk0080.g6 35.0 p0003.cgpge51r 34 Hap2c p0015.cdpfm55r:fis Arabidopsis 4587559 26.4 36 Hap2 p0083.cldct11r:fis Rice 7489565 91.4 38 Hap2 p0083.cldeu68r:fis Rice 7489565 14.2 40 Hap2a pps1c.pk001.h3:fis Arabidopsis 9293997 45.5 42 Hap2c pps1c.pk007.j21:fis Arabidopsis 5903072 53.7 44 Hap2 rr1.pk0030.f7:fis Rice 7489565 identical 46 Hap2a r1s72.pk0023.c8:fis Arabidopsis 9293997 36.5 48 Hap2a rca1n.pk002.c15 Grape 7141243 7.7 50 Hap2a rds3c.pk001.g9 Rice 7489565 18.2 52 Hap2b rca1n.pk002.j3:fis Rice 7489565 26.0 54 Hap2c rca1n.pk029.n22:fis Arabidopsis 8778470 29.2 56 Hap2b r10n.pk131.j17 Rice 7489565 10.5 58 Hap2a sdp3c.pk018.b9:fiS Arabidopsis 2398521 74.5 60 Hap2a sfl1.pk0102.h8 Grape 7141243 36.7 62 Hap2a srr3c.pk001.l10:fis Brassica 1586551 48.7 64 Hap2a sdp2c.pk003.o5:fiS Arabidopsis 6634774 53.0 66 Hap2b sif1c.pk001.m16:fis Arabidopsis 6714441 180.0 68 Hap2c src1c.pk003.o16:fis Rice 7489565 33.5 70 Hap2c src3c.pk012.m6:fis Rice 7489565 31.5 72 Hap2a hss1c.pk011.h10:fis Arabidopsis 9293997 48.7 74 Hap2c wr1.pk0094.f2:fis Rice 7489565 92.7 76 Hap2a wre1n.pk0143.h2:fis Arabidopsis 6634774 35.0 78 Hap2b wds1f.pk002.p21:fis Arabidopsis 6714441 26.5 contig of: 80 Hap2b wdi1c.pk002.b10 Rice 7489565 38.5 wr1.pk0153.c7:fis 82 Hap2c wre1n.pk0066.e4:fis Rice 7489565 42.7 84 Hap5c ect1c.pk001.k17:fis Rice 5257260 57.0 86 Hap5a vrr1c.pk004.o20:fis Arabidopsis 6523090 93.0 88 Hap5a clm1f.pk001.k17:fis Arabidopsis 6523090 66.7 90 Hap5b cde1n.pk003.a5:fis Arabidopsis 3776575 57.0 92 Hap5b cen3n.pk0164.a10:fis Arabidopsis 3776575 57.0 94 Hapsb p0118.chsbc77r Arabidopsis 3776575 58.5 96 Hap5c cco1n.pk055.o18 Rice 5257260 41.0 98 Hap5c cho1c.pk001.l23:fis Rice 5257260 82.0 100 Hap5c cse1c.pk001.h6:fis Rice 5257260 86.4 102 Hap5a rlm3n.pk005.d20:fis Arabidopsis 6523090 66.7 104 Hap5b rr1.pk0003.a3:fis Arabidopsis 6289057 58.5 106 Hap5b rr1.pk0039.d4:fis Arabidopsis 3776575 57.2 108 Hap5c rca1n.pk021.b20:fis Rice 5257260 74.0 110 Hap5a sdp2c.pk029.k17:fis Arabidopsis 6523090 90.5 112 Hap5a sdp2c.pk044.e5:fis Arabidopsis 6523090 92.4 114 Hap5b sgs4c.pk004.j2 Arabidopsis 3776575 18.5 116 Hap5b src3c.pk002.h4:fis Arabidopsis 6289057 61.1 118 Hap5b src3c.pk009.b15:fis Arabidopsis 6289057 61.5 120 Hap5b src3c.pk019.d4:fis Arabidopsis 6056368 51.5 122 Hap5c sls1c.pk032.j4:fis Arabidopsis 6289057 74.5 124 Hap5 wdk2c.pk009.e4:fis Rice 5257260 20.0 Contig of: 126 Hap5a w1m96.pk036.j11 Arabidopsis 9758288 19.7 w1m96.pk060.d5:fis 128 Hap5c wle1n.pk0076.h7:fis Rice 5257260 82.0 130 Lec1 eas1c.pk003.e16 Arabidopsis 9758795 49.2 132 Lec1 fds1n.pk008.m14 Arabidopsis 9758795 46.1 134 Lec1 p0015.cdpg75rb:fis Arabidopsis 9758795 45.4 136 Lec1 p0083.clder12r:fis Arabidopsis 6552738 35.2 138 Lec1 pps1c.pk002.l19 Arabidopsis 9758795 45.2 Contig of: 140 Lec1 scb1c.pk004.j10 Arabidopsis 9758795 47.4 se1.pk0042.d8:fis 142 Lec1 se2.11d12:fis Arabidopsis 9758795 52.2 144 Lec1 ses2w.pk0015.a4:fis Arabidopsis 9758795 43.7 146 Lec1 vs1n.pk013.m13:fis Arabidopsis 9758795 53.1 148 Lec1 wdk3c.pk023.h15:fis Arabidopsis 9758795 36.7 150 Lec1-CCAAT ect1c.pk007.p18:fis Zea mays 22380 44.7 152 Lec1-CCAAT fds.pk0003.h5:fis Arabidopsis 6729485 57.7 154 Lec1-CCAAT eef1c.pk004.c8:fis Zea mays 22380 61.7 156 Lec1-CCAAT cbn10.pk0005.e6:fis Zea mays 22380 72.2 158 Lec1-CCAAT p0006.cbysa51r:fis Arabidopsis 2244810 55.5 160 Lec1-CCAAT rl0n.pk0061.c8:fis Zea mays 22380 46.5 162 Lec1-CCAAT rsl1n.pk002.g10:fis Zea mays 22380 68.7 164 Lec1-CCAAT ses4d.pk0037.e3:fis Arabidopsis 2398529 49.0 166 Lec1-CCAAT src2c.pk003.i13:fis Arabidopsis 3738293 41.1 168 Lec1-CCAAT src2c.pk011.m12:fis Arabidopsis 6729485 62.0 170 Lec1-CCAAT src2c.pk025.b3:fis Zea mays 22380 45.5 172 LecI-CCAAT src3c.pk028.j21:fis Zea mays 22380 54.3 174 Lec1-CCAAT wkm1c.pk0002.d7:fis Zea mays 22380 79.5 176 Lec1-CCAAT wlk8.pk0001.e10:fis Arabidopsis 2398529 52.7 178 LecI-CCAAT wlm96.pk037.k9:fis Zea mays 22380 73.5 206 Lec1 rice genome seq Oryza sativa 7378310 180 208 Hap2 ncs.pk0013.c4:fis Arabidopsis 9293997 46.7 210 Hap2 p0117.chcln94r:fis Oryza sativa 1489565 26.0 212 Hap2 rdi2c.pk011.f19:fis Oryza sativa 1489565 45.0 214 Hap2 sfl1.pk0101.g7:fis Vitis sp. 7141243 38.4 216 Hap2 wdi1c.pk002.b10:fis Oryza sativa 1489565 40.3 221 Hap5 sgs4c.pk004.j2:fis Arabidopsis 15223482 69.0
[0189] The sequence of the entire cDNA insert in the clones listed in Table 3 was determined. Further sequencing and searching of the DuPont proprietary database allowed the identification of other corn, rice, soybean and/or wheat clones encoding polypetides involved in altering oil phenotypes. The BLASTX search using the sequences from clones listed in Table 4 revealed similarity of the polypeptides encoded by the various cDNAs from plant and fungal species (noted by their NCBI General Identifier No. in Tables 3 and 4). Shown in Table 4 are the BLAST results for individual ESTs (“EST”), the sequences of the entire cDNA inserts comprising the indicated cDNA clones (“FIS”), sequences of contigs assembled from two or more ESTs (“Contig”), sequences of contigs assembled from an FIS and one or more ESTs (“Contig*”), or sequences encoding the entire protein derived from an FIS, a contig, or an FIS and PCR (“CGS”):
TABLE 4 Percent Identity of Amino Acid Sequences Deduced From the Nucleotide Sequences of cDNA Clones Encoding Polypeptides Homologous to Polypeptides Involved in Altering Plant Oil Phenotypes SEQ ID NO. Accession No. (SEQ ID NO) Percent Identity 2 1586551 (187) 23.4% 4 7489565 (181) 27.4% 6 11282597 (179) 22.1% 10 7489565 (181) 36.1% 12 7489565 (181) 67.2% 14 7489565 (181) 70.6% 16 7489565 (181) 33.2% 18 6634774 (182) 40.1% 20 6634774 (182) 39.1% 22 7489565 (181) 28.2% 24 7489565 (181) 53.2% 26 7489565 (181) 34.0% 28 7489565 (181) 39.5% 30 7489565 (181) 39.5% 32 7489565 (181) 35.5% 34 4587559 (202) 54.1% 36 7489565 (181) 67.2% 38 7489565 (181) 29.0% 40 9293997 (217) 31.5% 42 5903072 (184) 35.3% 46 5903072 (184) 33.7% 48 7141243 (180) 34.5% 50 7489565 (181) 35.7% 52 7489565 (181) 27.2% 54 8778470 (185) 40.5% 56 7489565 (181) 22.1% 58 2398521 (186) 49.1% 60 7141243 (180) 40.9% 62 1586551 (187) 37.8% 64 6634774 (182) 49.2% 66 6714441 (188) 32.5% 68 7489565 (181) 32.4% 70 7489565 (181) 31.1% 72 9293997 (217) 40.6% 74 7489565 (181) 68.5% 76 6634774 (182) 36.5% 78 6714441 (188) 23.7% 80 7489565 (181) 34.5% 82 7489565 (181) 37.4% 84 5257260 (189) 62.9% 86 6523090 (190) 77.7% 88 6523090 (190) 53.8% 90 3776575 (191) 50.7% 92 3776575 (191) 51.6% 94 3776575 (191) 60.0% 96 5257260 (189) 62.7% 98 5257260 (189) 75.0% 100 5257260 (189) 77.5% 102 6523090 (190) 53.8% 104 6289057 (192) 60.6% 106 3776575 (191) 52.1% 108 5257260 (189) 77.9% 110 6523090 (190) 70.3% 112 6523090 (190) 70.7% 114 3776575 (191) 35.7% 116 6289057 (192) 53.2% 118 6289057 (192) 52.8% 120 6056368 (193) 73.0% 122 6289057 (192) 57.1% 124 5257260 (189) 27.3% 126 9758288 (194) 46.3% 128 5257260 (189) 74.9% 130 9758795 (196) 49.0% 132 9758795 (196) 49.7% 134 9758795 (196) 49.8% 136 6552738 (195) 38.9% 208 9293997 (217) 34.9% 210 7489565 (218) 28.6% 212 7489565 (218) 35.7% 214 7141243 (219) 42.3% 216 7489565 (218) 34.9% 221 15223482 (222) 64.8%
[0190] Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wis.). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. Sequence alignments and BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones encode a substantial portion of cDNAs to receptor protein kinases, MEK3 homologs, Hap2 homologs, LIP 15 homologs, calcium EF-hand proteins, ATP citrate lyase, glucose metabolism proteins such as SNF1 homologs, Lec1 transcription factors, and seed developmentally regulated transcription factors such as CKC (Aintegumenta-like) homologs.
Example 4
[0191] Expression of Recombinant DNA Constructs in Monocot Cells
[0192] A recombinant DNA construct comprising a cDNA encoding the instant polypeptides in sense orientation with respect to the maize 27 kD zein promoter that is located 5′ to the cDNA fragment, and the 10 kD zein 3′ end that is located 3′ to the cDNA fragment, can be constructed. The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites (Ncol or Smal) can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below. Amplification is then performed in a standard PCR. The amplified DNA is then digested with restriction enzymes Ncol and SmaI and fractionated on an agarose gel. The appropriate band can be isolated from the gel and combined with a 4.9 kb NcoI-SmaI fragment of the plasmid pML103. Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Blvd., Manassas, Va. 20110-2209), and bears accession number ATCC 97366. The DNA segment from pML103 contains a 1.05 kb SaII-NcoI promoter fragment of the maize 27 kD zein gene and a 0.96 kb SmaI-SaII fragment from the 3′ end of the maize 10 kD zein gene in the vector pGem9Zf(+) (Promega). Vector and insert DNA can be ligated at 15° C. overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform E. coli XL 1-Blue (Epicurian Coli XL-1 Blue™; Stratagene). Bacterial transformants can be screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (Sequenase™ DNA Sequencing Kit; U.S. Biochemical). The resulting plasmid construct would comprise a recombinant DNA construct encoding, in the 5′ to 3′ direction, the maize 27 kD zein promoter, a cDNA fragment encoding the instant polypeptides, and the 10 kD zein 3′ region.
[0193] The recombinant DNA construct described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al (1975) Sci. Sin. Peking 18:659-668). The embryos are kept in the dark at 27° C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.
[0194] The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the Pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The pat gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al (1985) Nature 313:810-812) and the 3′ region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
[0195] The particle bombardment method (Klein et al (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μL of a suspension of gold particles (60 mg per ml). Calcium chloride (50 μL of a 2.5 M solution) and spermidine free base (20 μL of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μL of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μL of ethanol. An aliquot (5 μL) of the DNA-coated gold particles can be placed in the center of a Kapton™ flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a Biolistic™ PDS-1000/He (Bio-Rad Instruments, Hercules Calif.), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
[0196] For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covered a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
[0197] Seven days after bombardment the tissue can be transferred to N6 medium that contains bialophos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing bialophos. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialophos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
[0198] Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al (1990) Bio/Technology 8:833-839).
Example 5
[0199] Expression of Recombinant DNA Constructs in Dicot Cells
[0200] A seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the β subunit of the seed storage protein phaseolin from the bean Phaseolus vulgaris (Doyle et al (1986) J. Biol. Chem. 261:9228-9238) can be used for expression of the instant polypeptides in transformed soybean. The phaseolin cassette includes about 500 nucleotides upstream (5′) from the translation initiation codon and about 1650 nucleotides downstream (3′) from the translation stop codon of phaseolin. Between the 5′ and 3′ regions are the unique restriction endonuclease sites Nco I (which includes the ATG translation initiation codon), Sma I, Kpn I and Xba I. The entire cassette is flanked by Hind III sites.
[0201] The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette.
[0202] Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides. To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26° C. on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.
[0203] Soybean embryogenic suspension cultures can be maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26° C. with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium.
[0204] Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al (1987) Nature (London) 327:70-73, U.S. Pat. No. 4,945,050). A DuPont Biolistic™ PDS1000/HE instrument (helium retrofit) can be used for these transformations.
[0205] A selectable marker gene which can be used to facilitate soybean transformation is a recombinant DNA construct composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al (1985) Nature 313:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al(1983) Gene 25:179-188) and the 3′ region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. The seed expression cassette comprising the phaseolin 5′ region, the fragment encoding the instant polypeptides and the phaseolin 3′ region can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.
[0206] To 50 μL of a 60 mg/mL 1 μm gold particle suspension is added (in order): 5 μL DNA (1 μg/μL), 20 μL spermidine (0.1 M), and 50 μL CaCl 2 (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μL 70% ethanol and resuspended in 40 μL of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five μL of the DNA-coated gold particles are then loaded on each macro carrier disk.
[0207] Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60×15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
[0208] Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
Example 6
[0209] Expression Vector for Plant Transformation by Particle Gun Bombardment.
[0210] A seed specific gene expression cassette was used for making recombinant DNA constructs for expression of candidate genes in corn. The expression cassette is composed of the 0.9 kb oleosin promoter, the intron 1 of the maize shrunken 1 gene and adjacent exon (Vasil et al, 1989, Plant Physiol 91: 1575-1579; Mascarenhas et al, 1990, Plant Mol Biol 15:913-920) and 3′ transcription termination region from the nopaline synthase (Nos) gene. In between the exon adjacent to the shrunken 1 gene and the nopaline synthase (Nos) gene are unique restriction endonuclease sites MfeI and XmaI. This vector has been designated pBN256 (REF. Jennie Shen's patent). pMUT256 refers to a pBN256 plasmid in which a EcoRI site has been removed by site directed mutagenesis. A modified version of pMUT256, designated pMUT256e was modified by additon of a synthetic multiple cloning site. The synthetic polylinker was generated by annealing of oligos (5′-acagtacagtacagtacagtacagt-3′) and (5′-actgtactgtactgtacgtgactgt-3′) [SEQ ID NOs: 430 and 431, respectively] and subsequent subcloning into the pMut256 open with MfeI and XmaI. Additional expression cassettes/vectors will be described in reference to specific examples where they have been used (see below).
Example 7
[0211] Isolation and Cloning of Candidate Genes into Embryo-specific Plant Expression Vectors.
[0212] HAP3/LEC1 (Heme-Activated Protein 3/Leafy Cotyledon 1):
[0213] A full length clone (p0015.cdpgp75rb, SEQ ID NOs: 263) for the corn homolog of the HAP3/Lec1 gene was obtained from Dupont/Pioneer EST Database. The ORF of maize HAP3/Lec1 (a 1 kb SaII/HpaI fragment, PCT Application No. WO 00/28058, published on May 18, 2000) was moved into an expression cassette containing a maize oleosin promoter (a 0.9 kb BamHI/XhoI fragment, PCT Application No. WO 99/64579, published on Dec. 16, 1999) and a polyadenylation sequence from the Agrobacterium nopaline synthase gene. This expression cassette was then subcloned adjacent to a 35S::Bar expression cassette (Sidorenko et al (2000) Plant J 22:471-482). The resulting expression cassettes flanked by T-DNA border sequences were then mobilized into the Agrobacterium “super-binary” vector (Komari, 1990) using electroporation. Additional constructs were made to confer expression patterns different from those obtained with the oleosin promoter. A ubiquitin promoter (UBI, Christensen et al (1992) Plant Mol Biol 18:675-680), a lipid transfer protein (LTP) promoter (U.S. Pat. No. 5,525,716), and a gamma zein promoter (GZP) (Boronat et al (1986) Plant Science 47: 95-102) were each fused to Lec1 as described above for the oleosin promoter. The two transcription units, LTP-Lec1 and GZP-Lec1, were combined into one expression construct next to the 35S:Bar expression construct and flanked by T-DNA border sequences (as described above).
[0214] HAP2 (Heme-Activated Protein 2):
[0215] A full length clone (cho1c.pk006.b14, a 30 nucleotide shorter cDNA than cho1c.pk004.b19:fis, shown in SEQ ID NO: 27) for the corn homolog of the HAP2 gene was obtained from Dupont/Pioneer EST Database. The ApoI/ApaI 1.1 kb fragment of cho1c.pk006.b14 was isolated and subcloned into pMUT256e opened by digestion with EcoRI/ApaI. One clone was selected for corn transformation by restriction digestion analysis for correct insert size. Subcloning artifacts were excluded by 5′ and 3′ sequence of the vector-insert boundaries.
[0216] HAP5 (Heme-Activated Protein 5):
[0217] A full length clone (cho1c.pk001.I23, shown in SEQ ID NO: 113) for the corn homolog of HAP5 gene was obtained from Dupont/Pioneer EST Database. The EcoRI/ApaI 1.1 kb fragment of cho1c.pk001.I23 was isolated and subcloned into pMUT256e opened by digestion with EcoRI/ApaI. One clone was selected for corn transformation after restriction digestion analysis for correct insert size. Subcloning artifacts were excluded by 5′ and 3′ sequence of the vector-insert boundaries.
Example 8
[0218] Transformation of Immature Embryos BY Particle Bombardment and Regeneration of Corn Plants
[0219] Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing the gene of the invention operably linked to a weak promoter, such as the nos promoter, or an inducible promoter, such as ln2, plus a plasmid containing the selectable marker gene PAT (Wohileben et al (1988) Gene 70:25-37) that confers resistance to the herbicide Bialaphos. Transformation is performed as follows. The ears are surface sterilized in 30% Chloral bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate. These are cultured on 560 L medium 4 days prior to bombardment in the dark. Medium 560 L is an N6-based medium containing Eriksson's vitamins, thiamine, sucrose, 2,4-D, and silver nitrate. The day of bombardment, the embryos are transferred to 560 Y medium for 4 hours and are arranged within the 2.5-cm target zone. Medium 560Y is a high osmoticum medium (560 L with high sucrose concentration). A plasmid vector comprising the gene of the invention operably linked to the selected promoter is constructed. This plasmid DNA plus plasmid DNA containing a PAT selectable marker is precipitated onto 1.1 μm (average diameter) tungsten pellets using a CaCl 2 precipitation procedure as follows: 100 μl prepared tungsten particles in water, 10 μl (1 μg) DNA in TrisEDTA buffer (1 μg total), 100 μl 2.5 M CaCl 2 , 10 μl 0.1 M spermidine. Each reagent is added sequentially to the tungsten particle suspension, while maintained on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 ml 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 μl 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated and 10 μl spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment. The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2. All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA. Following bombardment, the embryos are kept on 560Y medium, an N6 based medium, for 2 days, then transferred to 560R selection medium, an N6 based medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are sampled for PCR and activity of the gene of interest. Positive lines are transferred to 288J medium, an N6 based medium with lower sucrose and hormone levels, to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5″ pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored for expression of the gene of interest.
Example 9
[0220] Transformation of Callus and Regeneration of Corn Plants—Particle Gun.
[0221] Type II Callus Isolation and Maintenance.
[0222] After 10-21 days, type II callus is initiated from the scutellum and appears as a friable, embryogenic outgrowth of rapidly dividing cells. Callus is subcultured every 5-10 days and maintained on N6 medium supplemented with 1 mg/L 2,4-D (CM). These cultures are used in transformation experiments from 5 to 12 weeks after initiation.
[0223] Preparation of Callus for Transformation.
[0224] Proembryogenic type II callus is transferred to #4 Whatman filter paper on CM media. The CM plates with callus is wrapped with parafilm and incubated in the dark Conviron growth chamber (45% humidity, 27-28° C.) for two days before bombardment. Prior to bombardment, the osmotic plates are left partially ajar for thirty minutes in the laminar flow hood to allow moisture on the tissue to dissipate.
[0225] Gold Particle Preparation
[0226] Sixty mg of 0.6 micron gold is weighed out in a siliconized eppendorf tube (Axgen Microtubes—1.7 ml clear tube). The tube is left stationary for 15 minutes and spun down. The pellet is rinsed with sterile water three more times. Subsequently, one ml of sterile water is added to the gold pellet and vortexed for 10 minutes. The gold particles are divided into 50 ul aliquots.
[0227] DNA/Gold Preparation
[0228] Fifty μL of 0.6 micron gold in sterile dd H2O. A 2:1 molar ratio of trait gene:bar gene (usually ˜5-10 ug in total DNA) is added and vortexed. Subsequently, fifty μL of 2.5 M CaCl 2 is added quickly into the suspension and vortexed followed by the addition of 20 μL of 0.1 M spermidine and vortexed and spun down. The pellet is rinsed 3× in 100% ethanol. The pellet is gently resuspended by tapping the side of the eppendorf tube several times. The DNA prep is stored in the 20° C. freezer.
[0229] Loading of the Macrocarrier
[0230] The DNA/gold prep is thawed and sonicated (2 strokes) in the Branson 200 Ultrasonic cleaner prior to the addition to macrocarriers. The suspension is mixed well by pipetting in and out. Immediately, 6 μl of DNA/gold suspension is dispensed quickly to the center of each macrocarrier. Once the DNA prep is dried onto the macrocarrier, the PDS-100/He Gun is used to bombard the maize callus cells with the DNA-coated gold particles.
[0231] Particle Gun Parameters.
[0232] Plates containing callus are the bombarded with the PDS-1000/He Gun using the following parameters: 1) DNA precipitated onto 0.6 μM Gold particles; 2) 8 cm distance from stopping screen; 3) 27-29 inches Hg vacuum; 4) 1050-1100 PSI He pressure.
[0233] Selection of Transgenic Callus Lines.
[0234] After 3-4 days of incubation in the dark chamber the callus is transferred (3-4 mm clumps) onto media containing 3-5 ppm bialaphos (SM3 or SM5). The SM plates are incubated in the dark at 27° C. for ˜7-14 days. Thereafter, all callus is transferred onto SM (5 ppm bialaphos) keeping track of unique lines as above. Each clump may be split into several pieces at this transfer.
[0235] Regeneration of Transgenic Maize Plants.
[0236] Callus events are isolated onto fresh SM medium, sampled for PCR (polymerase chain reaction) and placed on first-stage regeneration media (RM31). After 10-14 days, the proembryogenic callus are transferred onto fresh RM3 plates and placed in the light chamber at 26° C. Plantlets approximately 2-3 cm are removed and transfer to RM4 media tubs. After 1-2 weeks plants from RM4 are potted to a maximum of two plantlets per pot. The pots are then placed in the Conviron growth chamber (photolight=20 hours, humidity=65%, temperature=24° C.) and watered with Roots2 solution. Plants (˜20 cm tall) are tested for expression of the bar gene by performing a 2% basta swipe test.
Example 10
[0237] Analysis of Fatty Acid Content and Composition by Gas Chromatography (GC)
[0238] Fatty acid (FA) determination was done from a total of 300-400 mg of tissue lyophilized for 24 hours. The tissue was then ground using a FastPrep mill (Biol101) at 4.5 speed and 20 seconds in the presence of 0.5 ml of 2.5% Sulfuric Acid+97.5% Methanol and Heptadecanoic acid (17:0, stock 10 mg/ml in Tuloene) as an external standard. Thereafter, another 0.5 ml 2.5% Sulfuric Acid +97.5% Methanol was used to wash each tube and incubate in 95° C. for 1 hour for transesterification. The tubes were removed from the water bath and allowed to cool down to RT. FAs were extracted in one volume of heptane:H 2 O (1:1) and cleared by centrifugation. The supernatant (50 ul) containing the fatty acid methyl esters were loaded into a Hewlett Packard 6890 gas chromatograph fitted with a 30 m×0.32 mm Omegawax column and the separated peaks were analyzed and characterized.
Example 11
[0239] Lec 1 Over-Expression Leads to Altered Fatty Acid Accumulation in Maize Somatic Embryos
[0240] The ubiquitin promoter (Christensen et al (1992) Plant Mol Biol 18:675-89) was used to drive Hap3/Lec1 expression (outlined in Example 7) in maize embryogenic callus to test what phenotype would arise from over-expression of Lec1 in somatic embryos. Transformation of the construct into maize embryogenic callus and generation of somatic embryos is outlined in Example 9.
[0241] More than ten different events were analysed by GC for fatty acid content/composition and compared to controls transformed with the selectable marker (BAR gene) plasmid alone. A pool of three embryos each from XX different events showed that the somatic embryos overexpressing Lec1 contain elevated fatty acid content (average 119% increase over control) with no significant alteration in fatty acid composition when compared to the control somatic embryos (FIG. 1).
Example 12
[0242] Nuclear Magnetic Resonance (NMR) ANALYSIS
[0243] Seed are imbibed in distilled water for 12-24 hours at 4° C. The embryo is dissected away and stored in a 48 well plate. The samples are lyophilized over-night in a Virtis 24×48 lyophilizer. The NMR (Process Control Technologies—PCT (Ft. Collins, Colo.) is set up as per the manufacturer's instructions. The NMR is calibrated using a series of 5 mm NMR tubes containing precisely measured amounts of corn oil (Mazola). The calibration standards are 3, 6, 9, 12, 15, 18, 21, 27, 33, and 40 mg of oil.
Example 13
[0244] Lec 1 Over-Expression Leads to Altered Oil Accumulation in Maize Kernels
[0245] The Hap3/Lec1 expression construct with the oleosin promoter (outlined in Example 7) was introduced into maize to test what phenotype would arise from seed specific over-expression. Transformation of the construct into maize was accomplished using Agrobacterium tumefaciens as follows.
[0246] Freshly isolated immature embryos of maize, about 10 days after pollination (DAP), are incubated with the Agrobacterium. The preferred genotype for transformation is the highly transformable genotype Hi-II (Armstrong, C. L., 1991, Development and Availability of Germplasm with High Type II Culture Formation Response, Maize Genetics Cooperation Newsletter, 65:92-93). An F 1 hybrid created by crossing with an Hi-II with an elite inbred may also be used. After Agrobacterium treatment of immature embryos, the embryos are cultured on medium containing toxic levels of herbicide. Only those cells which receive the herbicide-resistance gene, and the linked gene(s), grow on selective medium. Transgenic events so selected are propagated and regenerated to whole plants, produce seed, and transmit transgenes to progeny.
[0247] The engineered Agrobacterium tumefaciens LBA4404 is constructed as per U.S. Pat. No. 5,591,616 to contain the linked gene(s) and the selectable marker gene. Typically either BAR (D'Halluin et al (1992) Methods Enzymol. 216:415-426) or PAT (Wohileben et al (1988) Gene 70:25-37) may be used.
[0248] To use the engineered vector in plant transformation, a master plate of single bacterial colonies is first prepared by inoculating the bacteria on minimal AB medium and then incubating the bacteria plate inverted at 28° C. in darkness for about 3 days. A working plate is then prepared by selecting a single colony from the plate of minimal A medium and streaking it across a plate of YP medium. The YP-medium bacterial plate is then incubated inverted at 28° C. in darkness for 1-2 days.
[0249] Agrobacterium for plant transfection and co-cultivation is prepared 1 day prior to transformation. Into 30 ml of minimal A medium in a flask is placed 50 μg/ml spectinomycin (or appropriate bacterial antibiotic depending on marker in co-integrate), 100 μM acetosyringone, and about a ⅛ loopful of Agrobacterium from a 1 to 2-day-old working plate. The Agrobacterium is then grown at 28° C. at 200 rpm in darkness overnight (about 14 hours). In mid-log phase, the Agrobacterium is harvested and resuspended at 3 to 5×10 8 CFU/ml in 561 Q medium+100 μM acetosyringone using standard microbial techniques and standard curves.
[0250] Immature Embryo Preparation
[0251] Nine to ten days after controlled pollination of a corn plant, developing immature embryos are opaque and 1-1.5 mm long and are the appropriate size for Agro-infection. The husked ears are sterilized in 50% commercial bleach and 1 drop Tween for 30 minutes, and then rinsed twice with sterile water. The immature embryos are aseptically removed from the caryopsis and placed into 2 ml of sterile holding solution comprising of 561Q+100 μM acetosyringone.
[0252] Agrobacterium Infection and Co-cultivation of Embryos
[0253] Holding solution is decanted from excised immature embryos and replaced with prepared Agrobacterium. Following gentle mixing and incubation for about 5 minutes, the Agrobacterium is decanted from the immature embryos. Immature embryos are then moved to a plate of 562P medium, scutellum surface upwards, and incubated at 20° C. for 3 days in darkness followed by incubation at 28° C. for 3 days in darkness on medium 562P+100 mg/ml carbenecillin (see U.S. Pat. No. 5,981,840).
[0254] Selection of Transgenic Events
[0255] Following incubation, the immature embryos are transferred to 563O medium for selection of events. The transforming DNA possesses a herbicide-resistance gene, in this example the PAT gene, which confers resistance to bialaphos. At 10- to 14-day intervals, embryos are transferred to 5630 medium. Actively growing putative transgenic embryogenic tissue is visible in 6-8 weeks.
[0256] Regeneration of T 0 Plants
[0257] Transgenic embryogenic tissue is transferred to 288W medium and incubated at 28° C. in darkness until somatic embryos matured, or about 10 to 18 days. Individual matured somatic embryos with well-defined scutellum and coleoptile are transferred to 272 embryo germination medium and incubated at 28° C. in the light. After shoots and roots emerge, individual plants are potted in soil and hardened-off using typical horticultural methods.
[0258] Confirmation of Transformation
[0259] Putative transgenic events are subjected to analysis to confirm their transgenic nature. Events are tested for the presence of Lec1 by PCR amplification. Additionally, T 0 plants are painted with bialaphos herbicide. The subsequent lack of a herbicide-injury lesion indicates the presence and action of the herbicide resistance gene. The plants are monitored and scored for altered Lec1 expression and/or phenotype such as increased organic sulfur compounds.
[0260] Media Recipes
[0261] Medium 561 Q contains the following ingredients: 950.000 ml of D-I Water, Filtered; 4.000 g of Chu (N6) Basal Salts (Sigma C-1416); 1.000 ml of Eriksson's Vitamin Mix (1000+Sigma-1511); 1.250 ml of Thiamine.HCL.4 mg/ml; 3.000 ml of 2, 4-D 0.5 mg/ml (No. 2A); 0.690 g of L-proline; 68.500 g of Sucrose; and 36.000 g of Glucose. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 5.2 w/KOH; Q.S. to volume with polished deionized water after adjusting pH; and filter sterilize (do not autoclave).
[0262] Medium 562 P contains the following ingredients: 950.000 ml of D-I Water, Filtered; 4.000 g of Chu (N6) Basal Salts (Sigma C-1416); 1.000 ml of Eriksson's Vitamin Mix (1000×Sigma-1511); 1.250 ml of Thiamine.HCL.4 mg/ml; 4.000 ml of 2, 4-D 0.5 mg/ml; 0.690 g of L-proline; 30.000 g of Sucrose; 3.000 g of Gelrite, which is added after Q.S. to volume; 0.425 ml of Silver Nitrate 2 mg/ml #; and 1.000 ml of Aceto Syringone 100 mM #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 5.8 w/KOH; Q.S. to volume with polished deionized water after adjusting pH; and sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0263] Medium 563 O contains the following ingredients: 950.000 ml of D-I Water, Filtered; 4.000 g of Chu (N6) Basal Salts (Sigma C-1416); 1.000 ml of Eriksson's Vitamin Mix (1000×Sigma-1511); 1.250 ml of Thiamine.HCL.4 mg/ml; 30.000 g of Sucrose; 3.000 ml of 2, 4-D 0.5 mg/ml (No. 2A); 0.690 g of L-proline; 0.500 g of Mes Buffer; 8.000 g of Agar (Sigma A-7049, Purified), which is added after Q.S. to volume; 0.425 ml of Silver Nitrate 2 mg/ml #; 3.000 ml of Bialaphos 1 mg/ml #; and 2.000 ml of Agribio Carbenicillin 50 mg/ml #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust to pH 5.8 w/koh; Q.S. to volume with polished deionized water after adjusting pH; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0264] Medium 288 W contains the following ingredients: 950.000 ml of D-I H 2 O; 4.300 g of MS Salts; 0.100 g of Myo-Inositol; 5.000 ml of MS Vitamins Stock Solution (No. 36J); 1.000 ml of Zeatin.5 mg/ml; 60.000 g of Sucrose; 8.000 g of Agar (Sigma A-7049, Purified), which is added after Q.S. to volume; 2.000 ml of IAA 0.5 mg/ml #; 1.000 ml of 0.1 Mm ABA #; 3.000 ml of Bialaphos 1 mg/ml #; and 2.000 ml of Agribio Carbenicillin 50 mg/ml #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust to pH 5.6; Q.S. to volume with polished deionized water after adjusting pH; sterilize and cool to 60° C. Add 3.5 g/L of Gelrite for cell biology. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0265] Medium 272 contains the following ingredients: 950.000 ml of deionized water; 4.300 g of MS Salts; 0.100 g of Myo-Inositol; 5.000 of MS Vitamins Stock Solution; 40.000 g of Sucrose; and 1.500 g of Gelrite, which is added after Q.S. to volume. Directions are: dissolve ingredients in polished deionized water in sequence; adjust to pH 5.6; Q.S. to volume with polished deionized water after adjusting pH; and sterilize and cool to 60° C.
[0266] Medium minimal A contains the following ingredients: 950.000 ml of deionized water; 10.500 g of potassium phosphate dibasic K2HPO4; 4.500 g of potassium phosphate monobasic KH2PO4; 1.000 g of ammonium sulfate; 0.500 g of sodium citrate dihydrate; 10.000 ml of sucrose 20% solution #; and 1.000 ml of 1 M magnesium sulfate #. Directions are: dissolve ingredients in polished deionized water in sequence; Q.S. to volume with deionized water; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0267] Medium minimal AB contains the following ingredients: 850.000 ml of deionized water; 50.000 ml of stock solution 800A; 9 g of Phytagar which is added after Q.S. to volume; 50.000 ml of stock solution 800B #; 5.000 g of glucose #; and 2.000 ml of spectinomycin 50/mg/ml stock #. Directions are: dissolve ingredients in polished deionized water in sequence; Q.S. to volume with polished deionized water less 100 ml per liter; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature. Stock solution 800A contains the following ingredients: 950.000 ml of deionized water; 60.000 g of potassium phosphate dibasic K2HPO4; and 20.000 g of sodium phos. monobasic, hydrous. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 7.0 with potassium hydroxide; Q.S. to volume with polished deionized water after adjusting pH; and sterilize and cool to 60° C. Stock solution 800B contains the following ingredients: 950.000 ml of deionized water; 20.000 g of ammonium chloride; 6.000 g of magnesium sulfate 7-H 2 O, MgSO 4 , 7 H 2 O; 3.000 g of potassium chloride; 0.200 g of calcium chloride (anhydrate); and 0.050 g of ferrous sulfate 7-hydrate. Directions are: dissolve ingredients in polished deionized water in sequence; Q.S. to volume with polished deionized water; and sterilize and cool to 60° C.
[0268] Medium minimal YP contains the following ingredients: 950.000 ml of deionized water; 5.000 g of yeast extract (Difco); 10.000 g of peptone (Difco); 5.000 g of sodium chloride; 15.000 g of bacto-agar, which is added after Q.S. to volume; and 1.000 ml of spectinomycin 50 mg/ml stock #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 6.8 with potassium hydroxide; Q.S. to volume with polished deionized water after adjusting pH; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0269] More than twenty events producing segregating T1 seed were analyzed by NMR for embryo oil content (see Example 12). Six to twelve embryos analyzed for each of five different events showed that some embryos within each event contained elevated oil content. These results are shown in FIG. 2. The same embryos from these five events were analyzed by PCR to determine the presence or absence of the Lec1 construct. Embryos with high oil are always found to contain the Lec1 construct (darkly shaded bars), whereas embryos with normal levels of oil were typically found not to contain the Lec1 construct (cross-hatched bars). These data demonstrate the presence of the Lec1 gene does lead to increased oil in the embryo. It is believed that embryos containing sharply higher levels of oil were homozygous for the Lec1 construct, as these events were segregating 1:2:1. For these events, the oil concentration in the embryos containing the Lec1 construct greatly surpassed any increase previously achieved through enzymatic modification of the fatty acid biosynthetic pathway, with some embryos containing an average increase of 56% in embryo oil content (FIG. 2, Event 277267). Plants derived from seed that contained high oil exhibit some phenotypic changes in growth and development. There is an accumulation of additional leaves during early growth and development phase, and strong leaf curling throughout plant growth and development.
Example 14
[0270] Additional Promoters Coupled to Lec1 Also Result in Altered Maize Kernel Oil Accumulation
[0271] Other types of seed-specific promoters, the lipid transfer protein promoter and the gamma zein promoter, were also tested for their ability to alter oil accumulation in maize kernels when expressing Lec1. Transformation and analysis of these constructs was essentially the same as protocols outlined in Example 13. More than twenty events producing segregating T1 seed are analyzed by NMR for embryo oil content (see Example 12). Six to twelve embryos were analyzed for each event. Events containing embryos with high oil content were analyzed further. The same embryos from these events are analyzed by PCR to determine the presence or absence of the Lec1 construct. As with the oleosin promoter containing construct, all embryos with high oil contents are found to contain the Lec1 construct, whereas embryos with lower or normal oil contents are typically found not to contain the Lec1 construct. Like the events containing Lec1 and the oleosin promoter, the oil concentration in the embryo for these events also greatly surpass any increase previously achieved through enzymatic modification, with some embryos containing an average increase of more than 50% in embryo oil content.
[0272] Surprisingly, plants derived from seed containing high oil using this construct do not show the abnormal phenotype found for plants expressing Lec1 under the control of the oleosin promoter. It is believed that these data demonstrate that high oil can be achieved in the embryo without negative agronomic effects when the appropriate expression is employed.
1
222
1
638
DNA
Catalpa speciosa
unsure
(402)
n = A, C, G, or T
1
gtgctcttta aaattcacaa gtacatctga cctctacatc aacacacatt gactctaaat 60
tctctctcta aattctgtca acccccaaat tctagggttt tgttttaatt gtcatcagat 120
ttcgccttaa caggacacat tggttgattt ctttgggaga aattagggga gcatgcaatc 180
caagtcccag agcggcaacc aaggagaatc caacctttat aatgttccta actccaaagt 240
aaatccggat tcttggtgga ataatactgg gatataatcc ttttcctcaa caatgatggg 300
gtgggaaatg catcaagatt catcatccct agaacaatct gtgggatgga caagtcgcag 360
tctaaaggtg gtataaatga ggaagatgat gatactacca anacgatcac aaagttagta 420
cacctccggc tgccaagata gaaactatag gcaggagggc cgagctccag caagctccac 480
ctaccaatac atccaaagaa acaatgggat cgttaatcan ggccanagtt gagctgggng 540
gnatcagtag ctgggggnca aancctaaga tcatatacgg nggaagatgg aactaaggca 600
gcatggtcnc ccaattaang anagcacann anggtgga 638
2
77
PRT
Catalpa speciosa
UNSURE
(35)
Xaa = any amino acid
2
Met Gln Ser Lys Ser Gln Ser Gly Asn Gln Gly Glu Ser Asn Leu Tyr
1 5 10 15
Asn Val Pro Asn Ser Lys Val Asn Pro Asp Ser Trp Trp Asn Asn Thr
20 25 30
Gly Ile Xaa Ser Phe Ser Ser Thr Met Met Gly Gly Asn Ala Ser Arg
35 40 45
Phe Ile Ile Pro Arg Thr Ile Cys Gly Met Asp Lys Ser Gln Ser Lys
50 55 60
Gly Gly Ile Asn Glu Glu Asp Asp Asp Thr Thr Xaa Thr
65 70 75
3
441
DNA
Typha latifolia
unsure
(378)
n = A, C, G, or T
3
atttaggaga gagcttgagg tcgagaggag cagcagagga ggaaggaggc aggagaagca 60
aagggtttcg agaaagggga catgctcccc ttataaggac atggaaacca gaaagcaact 120
aggtcatcca ttgctgaagc aagactcatt ttcaaatgtc aactaatctg ttccaccaag 180
aagcatcggt aatgggtgaa gaccacctta gtgagaagca tacttcaaca caatctggga 240
atgctggtag ttatggaaat ataagggatg gttatccaaa atcagtatta tccttggcaa 300
atccagaagc tgcctttgta cctccgaaac ttgattgtag ccagtctttt acttgcatgc 360
catacccttt tgctgatnca tgctttggtg gtgtcatggc tgcatatggt tcgcnatgcc 420
tttattcaac aacaaatggt g 441
4
95
PRT
Typha latifolia
UNSURE
(75)
Xaa = any amino acid
4
Met Ser Thr Asn Leu Phe His Gln Glu Ala Ser Val Met Gly Glu Asp
1 5 10 15
His Leu Ser Glu Lys His Thr Ser Thr Gln Ser Gly Asn Ala Gly Ser
20 25 30
Tyr Gly Asn Ile Arg Asp Gly Tyr Pro Lys Ser Val Leu Ser Leu Ala
35 40 45
Asn Pro Glu Ala Ala Phe Val Pro Pro Lys Leu Asp Cys Ser Gln Ser
50 55 60
Phe Thr Cys Met Pro Tyr Pro Phe Ala Asp Xaa Cys Phe Gly Gly Val
65 70 75 80
Met Ala Ala Tyr Gly Ser Xaa Cys Leu Tyr Ser Thr Thr Asn Gly
85 90 95
5
849
DNA
Vitis sp.
5
ctgaggttgc agagacacca tggattccca ccaacggcca tgatttcctt ccaaactcct 60
accttttagg gtttattcct ctgctctcat cccacattag atttggggct aggggatttt 120
tgtttttctt ggtggaaaag aataatgccg actaaaccca aaattgagga tcggcggata 180
gaacctggtg gtaagagcaa tccgtcatca acagtctact cccaaccttg gtggcatggt 240
gttgggaaca atgccatctc cccagctgcc ttgggtggaa gcccatcaaa atcaacttca 300
gttgaacacc ttaacagtca tatcacgagc aatggtttcc aattacaagc taatggcagg 360
ctggatgatg gaactacctt taataaagga acacaaccta cggtagccct gcaatctgat 420
ggaaggaatg gacaggaaca ccagcacctc aatcctactg cttcctcaac actgccaatt 480
atgagtgaac atcttgaacc aaattcccaa atggaacttg ttggtcactc aattgtgttg 540
acatcatatc cgtatcaaga tccacataat gtggggatta tgacttctta tgggccacag 600
gctatggtat gcaaagaagt tggttgcatt tctgtgtgtt gtggtaacat tactgttggt 660
ggcactacca cttctgaaag tgatgcctca accttgaaaa ctagattctc ctgtactagg 720
gcctgcccct cttatagggg aggtcagcca ctgtagtgaa taatctgttt cataagaaaa 780
tcatcagttt ttatgtgaag gttccttctt ctagatttgg tctcgcccaa gaaaaaaaaa 840
aaaaaaaaa 849
6
154
PRT
Vitis sp.
6
Met Pro Thr Lys Pro Lys Ile Glu Asp Arg Arg Ile Glu Pro Gly Gly
1 5 10 15
Lys Ser Asn Pro Ser Ser Thr Val Tyr Ser Gln Pro Trp Trp His Gly
20 25 30
Val Gly Asn Asn Ala Ile Ser Pro Ala Ala Leu Gly Gly Ser Pro Ser
35 40 45
Lys Ser Thr Ser Val Glu His Leu Asn Ser His Ile Thr Ser Asn Gly
50 55 60
Phe Gln Leu Gln Ala Asn Gly Arg Leu Asp Asp Gly Thr Thr Phe Asn
65 70 75 80
Lys Gly Thr Gln Pro Thr Val Ala Leu Gln Ser Asp Gly Arg Asn Gly
85 90 95
Gln Glu His Gln His Leu Asn Pro Thr Ala Ser Ser Thr Leu Pro Ile
100 105 110
Met Ser Glu His Leu Glu Pro Asn Ser Gln Met Glu Leu Val Gly His
115 120 125
Ser Ile Val Leu Thr Ser Tyr Pro Tyr Gln Asp Pro His Asn Val Gly
130 135 140
Ile Met Thr Ser Tyr Gly Pro Gln Ala Met
145 150
7
1334
DNA
Vitis sp.
7
ctcatttgaa aatccgtaga ccgaaccatg gacttcgtat ccatcattct tctctctcca 60
tagctcctca attctagggt ttctctcact cttcttcctc tctgaatgga agctgtggac 120
aagaacaaaa gcatcctcag caagctgtat caatgatgcc tatgactatg gctgaatacc 180
accttgcacc accttcccag ctggaacttg ttggccactc aattgcgtgt gcatcatatc 240
catattctga accttattac acgggagtca ttcctgctta tggacctcag ggtttggtac 300
aatctcaatt tcttggtgtg aatgtggcta gaatggcttt gcctattgaa atggcagagg 360
aacctgttta tgtgaatgca aaacagtatc atgggattct gaggcgaaga caatcacggg 420
cgaaggccga gctggaaaaa aaactgataa aagttaggaa gccatatctt catgaatcaa 480
ggcaccagca tgctatgaga agggcaagag gatgtggagg ccgttttctc aacacaaaga 540
agcttgattc taatgcatcg tatgacatgc ctgacaaggg ctctgatcca gatgtaaacc 600
tttcaacacg acccatcagc tcatcagtct ctgaatctct gccctccaat tcttcccgaa 660
atgaggattc ccccaccagt catctagatg caagaggtcc ctctgtgcag gaattgcaca 720
ataggcaaac agcctcccat ggaaatggca acagctgtta tccacacaac cagggatttc 780
agttgtcgac ataccattcc cttaaagatg atcgcgtgga agaaggagac cacgcagggc 840
ggcagcatga gagaattctg gtgaataggg ccccccacag ggccctaacc atcaaatgaa 900
accttcgttg ctaagggatg aagggtcttt ccagcattgc tctgatctat tgcagatggc 960
atcagcttcc atgtgggctt gagggtgtca cagaagtggg ctagttcaaa tacaaaaata 1020
agtgaggagc atccttctgt gacttctact caagtatctg gtaacggatc cggatggcag 1080
cattgcaggg caaagctgga agcattaccc caaccaatca gagggggggg ggacccctgg 1140
cctatgtgtt gtattttcag gcaaatcatt cttggcttgt atttttcata ttcctgtgtt 1200
tgttggaccg ggggggaaag acagagagat tgggaatcgt ctaatttcac tcattacctt 1260
tttggaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1320
aaaaaaaaaa aaaa 1334
8
261
PRT
Vitis sp.
8
Cys Gly Gln Glu Gln Lys His Pro Gln Gln Ala Val Ser Met Met Pro
1 5 10 15
Met Thr Met Ala Glu Tyr His Leu Ala Pro Pro Ser Gln Leu Glu Leu
20 25 30
Val Gly His Ser Ile Ala Cys Ala Ser Tyr Pro Tyr Ser Glu Pro Tyr
35 40 45
Tyr Thr Gly Val Ile Pro Ala Tyr Gly Pro Gln Gly Leu Val Gln Ser
50 55 60
Gln Phe Leu Gly Val Asn Val Ala Arg Met Ala Leu Pro Ile Glu Met
65 70 75 80
Ala Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu
85 90 95
Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile
100 105 110
Lys Val Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met
115 120 125
Arg Arg Ala Arg Gly Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu
130 135 140
Asp Ser Asn Ala Ser Tyr Asp Met Pro Asp Lys Gly Ser Asp Pro Asp
145 150 155 160
Val Asn Leu Ser Thr Arg Pro Ile Ser Ser Ser Val Ser Glu Ser Leu
165 170 175
Pro Ser Asn Ser Ser Arg Asn Glu Asp Ser Pro Thr Ser His Leu Asp
180 185 190
Ala Arg Gly Pro Ser Val Gln Glu Leu His Asn Arg Gln Thr Ala Ser
195 200 205
His Gly Asn Gly Asn Ser Cys Tyr Pro His Asn Gln Gly Phe Gln Leu
210 215 220
Ser Thr Tyr His Ser Leu Lys Asp Asp Arg Val Glu Glu Gly Asp His
225 230 235 240
Ala Gly Arg Gln His Glu Arg Ile Leu Val Asn Arg Ala Pro His Arg
245 250 255
Ala Leu Thr Ile Lys
260
9
987
DNA
Vitis sp.
9
gcacgaggga aggtcaaagt caaatgaagc cagttttctt tatggctaat ccagatgttg 60
tcttcaatcc ttcacaagtt gactatggcc attctgtgac tcatgttgca tatccttatg 120
ctgatcctta ccatgggggg ttagtggctg catatggtcc acatgctgtt attcagcccc 180
agctggtggg gatagcacct accagagtcc cactgccctt tgatattgca gaggatggac 240
ctatttttgt caatgcaaaa cagtatcatg gaattctcag gaggaggcag tcacgagcaa 300
agatggaggc ccagaacaaa cttgtcaaag cccgaaagcc atatctgcac gagtctcggc 360
atcttcatgc cctaaatagg gttagaggat ctggtggacg cttcctcagc acgaaaaagc 420
tccaagaacc ggactcaact tccaatgctg gctgtcatag tgtatctggc tctggtcatt 480
ttcaccagaa gggagacaca actgagcagc cggagcacag gttctcaggc atgtctcccc 540
acatgggtgg agccatgcaa ggtggtggcg gtgggactta tgggcaatgg agtcctgctc 600
ctggttgtcc ggtgagaagt cgataggaac aagatcgatg gagtcactgg tctgggcaat 660
tcatccttgg ctttgttact ttcgtttcat gcgtgttaag aagataaaca catcaaactt 720
catggtgtag tagaaatact ctgcctttcc catttccaaa tgcatacatt ttggctctgt 780
aaacatggtt gagaagaggc tatgcttgaa actctctgtt tgtgaaccat tgttttgttt 840
tttcaagaca atgtgagata ttggttcacc ggtattttgt ttgttgctta cagaaagcaa 900
accctgcctt ttgtgcttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 960
aaaaaaaaaa aaaaaaaaaa aaaaaaa 987
10
205
PRT
Vitis sp.
10
Glu Gly Gln Ser Gln Met Lys Pro Val Phe Phe Met Ala Asn Pro Asp
1 5 10 15
Val Val Phe Asn Pro Ser Gln Val Asp Tyr Gly His Ser Val Thr His
20 25 30
Val Ala Tyr Pro Tyr Ala Asp Pro Tyr His Gly Gly Leu Val Ala Ala
35 40 45
Tyr Gly Pro His Ala Val Ile Gln Pro Gln Leu Val Gly Ile Ala Pro
50 55 60
Thr Arg Val Pro Leu Pro Phe Asp Ile Ala Glu Asp Gly Pro Ile Phe
65 70 75 80
Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser Arg
85 90 95
Ala Lys Met Glu Ala Gln Asn Lys Leu Val Lys Ala Arg Lys Pro Tyr
100 105 110
Leu His Glu Ser Arg His Leu His Ala Leu Asn Arg Val Arg Gly Ser
115 120 125
Gly Gly Arg Phe Leu Ser Thr Lys Lys Leu Gln Glu Pro Asp Ser Thr
130 135 140
Ser Asn Ala Gly Cys His Ser Val Ser Gly Ser Gly His Phe His Gln
145 150 155 160
Lys Gly Asp Thr Thr Glu Gln Pro Glu His Arg Phe Ser Gly Met Ser
165 170 175
Pro His Met Gly Gly Ala Met Gln Gly Gly Gly Gly Gly Thr Tyr Gly
180 185 190
Gln Trp Ser Pro Ala Pro Gly Cys Pro Val Arg Ser Arg
195 200 205
11
1256
DNA
Zea mays
11
gcacgagctc tgtctgtgtg cgagcgcaag agaaagggag tcagagagag agggaggaga 60
ccttgcagag gagcgaagca agcaaggtgg gaaagaggca gcaagggcgg cgggctgccg 120
gaaggggaac atgctccctc ctcatctcac agtacgaact gaaaaacaag agtaaagaat 180
ttccgtgaga tgagacagaa tggcgcggtg atgattcagt ttggccatca gatgcctgat 240
tacgactccc cggctaccca gtcaaccagt gagacgagcc atcaagaagc gtctggaatg 300
agcgaaggga gcctcaacga gcataataat gaccattcag gcaaccttga tgggtactcg 360
aagagtgacg aaaacaagat gatgtcagcg ttatccctgg gcaatccgga aacagcttac 420
gcacataatc cgaagcctga ccgtactcag tccttcgcca tatcataccc atatgccgat 480
ccatactacg gtggcgcggt ggcagcagct tatggcccgc atgctatcat gcaccctcag 540
ctggttggca tggttccgtc ctctcgagtg ccactgccga tcgagccagc cgctgaagag 600
cccatctatg tcaacgcgaa gcagtaccac gctattctcc ggaggagaca gctccgtgca 660
aagctagagg cggaaaacaa gctcgtgaaa agccgcaagc cgtacctcca cgagtctcgg 720
cacctgcacg cgatgaagag agctcgggga acaggcgggc ggttcctgaa cacgaagcag 780
cagccggagt cccccggcag cggcggctcc tcggacgcgc aacgcgtgcc cgcgaccgcg 840
agcggcggcc tgttcacgaa gcatgagcac agcctgccgc ccggcggtcg ccaccactat 900
cacgcgagag ggggcggtga gtagggagcc ccgacactgg caactcatcc ttggcttatc 960
agcgattcga ctcggctctc gctcgtctga aactgaactc tctgcaacta ctgtaactgt 1020
aactaaactg ggtgtgcccg gattggcggt cgttctgttc tactactact agtaccttag 1080
tacctgctac gcgtcgttgg gtctggacta gagagccgtg ctggttcttt gatgaacttg 1140
gctggacttg aggtgttgac tagcgcgaaa ctgagttcca tgtaaacttt tgcttcaaga 1200
ccgatgactg gcggcataat aagtagcagt aataaccaaa aaaaaaaaaa aaaaaa 1256
12
244
PRT
Zea mays
12
Met Arg Gln Asn Gly Ala Val Met Ile Gln Phe Gly His Gln Met Pro
1 5 10 15
Asp Tyr Asp Ser Pro Ala Thr Gln Ser Thr Ser Glu Thr Ser His Gln
20 25 30
Glu Ala Ser Gly Met Ser Glu Gly Ser Leu Asn Glu His Asn Asn Asp
35 40 45
His Ser Gly Asn Leu Asp Gly Tyr Ser Lys Ser Asp Glu Asn Lys Met
50 55 60
Met Ser Ala Leu Ser Leu Gly Asn Pro Glu Thr Ala Tyr Ala His Asn
65 70 75 80
Pro Lys Pro Asp Arg Thr Gln Ser Phe Ala Ile Ser Tyr Pro Tyr Ala
85 90 95
Asp Pro Tyr Tyr Gly Gly Ala Val Ala Ala Ala Tyr Gly Pro His Ala
100 105 110
Ile Met His Pro Gln Leu Val Gly Met Val Pro Ser Ser Arg Val Pro
115 120 125
Leu Pro Ile Glu Pro Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys
130 135 140
Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
145 150 155 160
Ala Glu Asn Lys Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser
165 170 175
Arg His Leu His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe
180 185 190
Leu Asn Thr Lys Gln Gln Pro Glu Ser Pro Gly Ser Gly Gly Ser Ser
195 200 205
Asp Ala Gln Arg Val Pro Ala Thr Ala Ser Gly Gly Leu Phe Thr Lys
210 215 220
His Glu His Ser Leu Pro Pro Gly Gly Arg His His Tyr His Ala Arg
225 230 235 240
Gly Gly Gly Glu
13
1203
DNA
Zea mays
13
ccacgcgtcc ggcaagagaa agggagtcag agagagagag agagggagga gaccttgcag 60
aggagcgaag caagcaaggt gggaaagagg cagcagcaag ggcggcgggc tgccggaagg 120
ggaacatgct ccctcctcat ctcacagaga atggcgcggt gatgattcag tttggccatc 180
agatgcctga ttacgactcc ccggctaccc agtcaaccag tgagacgagc catcaagaag 240
cgtctggaat gagcgaaggg agcctcaacg agcataataa tgaccattca ggcaaccttg 300
atgggtactc gaagagtgac gaaaacaaga tgatgtcagc gttatccctg ggcaatccgg 360
aaacagctta cgcacataat ccgaagcctg accgtactca gtccttcgcc atatcatacc 420
catatgccga tccatactac ggtggcgcgg tggcagcagc ttatggcccg catgctatca 480
tgcaccctca gctggttggc atggttccgt cctctcgagt gccactgccg atcgagccag 540
ccgctgaaga gcccatctat gtcaacgcga agcagtacca cgctattctc cggaggagac 600
agctccgtgc aaagctagag gcggaaaaca agctcgtgaa aagccgcaag ccgtacctcc 660
acgagtctcg gcacctgcac gcgatgaaga gagctcgggg aacaggcggg cggttcctga 720
acacgaagca gcagccggag tcccccggca gcggcggctc ctcggacgcg caacgcgtgc 780
ccgcgaccgc gagcggcggc ctgttcacga agcatgagca cagcctgccg cccggcggtc 840
gccaccacta tcacgcgaga gggggcggtg agtagggagc cccgacactg gcaactcatc 900
cttggcttat cagcgattcg actcggctct ccctcgtctg aaactgaact ctctgcaact 960
actgtaactg taactaaact gggtgtgccc ggattggcgg tcgttctgtt ctactactag 1020
tacctgctac gcgtcgttgg gttgggtctg gactagagag cgtgctggtt ctttgatgaa 1080
cttggctgga cttgagggtg ttgactagcg cgaagctgag ttccatgtaa aacttttgct 1140
tcaagaccga tgactggcgg cataataagt agcagtaata accaaaaaaa aaaaaaaaaa 1200
aag 1203
14
288
PRT
Zea mays
14
Pro Ala Arg Glu Arg Glu Ser Glu Arg Glu Arg Glu Gly Gly Asp Leu
1 5 10 15
Ala Glu Glu Arg Ser Lys Gln Gly Gly Lys Glu Ala Ala Ala Arg Ala
20 25 30
Ala Gly Cys Arg Lys Gly Asn Met Leu Pro Pro His Leu Thr Glu Asn
35 40 45
Gly Ala Val Met Ile Gln Phe Gly His Gln Met Pro Asp Tyr Asp Ser
50 55 60
Pro Ala Thr Gln Ser Thr Ser Glu Thr Ser His Gln Glu Ala Ser Gly
65 70 75 80
Met Ser Glu Gly Ser Leu Asn Glu His Asn Asn Asp His Ser Gly Asn
85 90 95
Leu Asp Gly Tyr Ser Lys Ser Asp Glu Asn Lys Met Met Ser Ala Leu
100 105 110
Ser Leu Gly Asn Pro Glu Thr Ala Tyr Ala His Asn Pro Lys Pro Asp
115 120 125
Arg Thr Gln Ser Phe Ala Ile Ser Tyr Pro Tyr Ala Asp Pro Tyr Tyr
130 135 140
Gly Gly Ala Val Ala Ala Ala Tyr Gly Pro His Ala Ile Met His Pro
145 150 155 160
Gln Leu Val Gly Met Val Pro Ser Ser Arg Val Pro Leu Pro Ile Glu
165 170 175
Pro Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala
180 185 190
Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu Ala Glu Asn Lys
195 200 205
Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His
210 215 220
Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys
225 230 235 240
Gln Gln Pro Glu Ser Pro Gly Ser Gly Gly Ser Ser Asp Ala Gln Arg
245 250 255
Val Pro Ala Thr Ala Ser Gly Gly Leu Phe Thr Lys His Glu His Ser
260 265 270
Leu Pro Pro Gly Gly Arg His His Tyr His Ala Arg Gly Gly Gly Glu
275 280 285
15
1301
DNA
Zea mays
15
gcacgagcca gtgcgacggc cacggcctga gcggcgctgc cagcaaggcg gctagtatga 60
gcagcatgga gtcgcggccg ggccgaacga acctggtgga gcccataggg cacggcgccg 120
cgctgccgtc cggcggccag gcagtgcagc cgtggtggac gagctccggg gctgtgctcg 180
gtgcagtctc gccagccgtc gtggcggtgg cgcccgggag cgggacgggg attagcctgt 240
cgagcagccc ggcaggtggt agtggtggtg gcggcgcggc taaaggagcc gcgagtgacg 300
agagcagcga ggattcacgg agatctgggg aaccaaaaga tggaagcgct agtcaagaaa 360
agaaccatgc cacatcgcag atacccgctc tggcgccaga gtatttggca ccatactcgc 420
agctggaact gaaccaatca attgcttctg cagcatatca gtacccagat ccttactatg 480
caggcatggt tgctccctat ggaagtcatg ctgtggctca ttttcagcta cctggactaa 540
ctcaatctcg aatgccatta cctcttgaag tatccgagga gcctgtttat gtaaatgcca 600
agcagtacca tggtatctta agacgacggc agtcccgtgc taaggctgaa cttgagaaaa 660
aggtggtcaa agccagaaag ccataccttc acgagtctcg tcatcagcac gcgatgagga 720
gggcaagagg aaacggggga cgcttcctga acacaaagaa aagtgacagt ggtgctccca 780
atggaggcga aaacgccgag catctccatg tccctcccga cttactacag ctacgacaga 840
acgaggcttg aagtagcggt atggctctgg catccttgaa cagcagttcc tgtccacggg 900
cgtaggcatt cgagaccgga ttcatatagc tctccacagc atacgcgcag ccatctctgc 960
ggtaacgcac gttctcctga acgagctttg tagcgagata ggtatgcaag tgcaatctgg 1020
gcgcaggaat ccatcatcaa gtgcccaatg cccatggggt aggtacgctg tttcaggcaa 1080
ttcattcttg gctttcacgt tccacccttg tgtaactggt gtgttgtaaa tgtgtggaaa 1140
actaagcttg tgctctgtat cgggccgttc agcggaactg caaaacgcct gtataattaa 1200
gatcgaactt tggattaact cggtaatgct ttgtctggtt ttcttttaaa aaaaaaaaaa 1260
aaaaaaaaaa aaaaaaaaaa aacaaaaaaa aaaaaaaaaa a 1301
16
264
PRT
Zea mays
16
Met Ser Ser Met Glu Ser Arg Pro Gly Arg Thr Asn Leu Val Glu Pro
1 5 10 15
Ile Gly His Gly Ala Ala Leu Pro Ser Gly Gly Gln Ala Val Gln Pro
20 25 30
Trp Trp Thr Ser Ser Gly Ala Val Leu Gly Ala Val Ser Pro Ala Val
35 40 45
Val Ala Val Ala Pro Gly Ser Gly Thr Gly Ile Ser Leu Ser Ser Ser
50 55 60
Pro Ala Gly Gly Ser Gly Gly Gly Gly Ala Ala Lys Gly Ala Ala Ser
65 70 75 80
Asp Glu Ser Ser Glu Asp Ser Arg Arg Ser Gly Glu Pro Lys Asp Gly
85 90 95
Ser Ala Ser Gln Glu Lys Asn His Ala Thr Ser Gln Ile Pro Ala Leu
100 105 110
Ala Pro Glu Tyr Leu Ala Pro Tyr Ser Gln Leu Glu Leu Asn Gln Ser
115 120 125
Ile Ala Ser Ala Ala Tyr Gln Tyr Pro Asp Pro Tyr Tyr Ala Gly Met
130 135 140
Val Ala Pro Tyr Gly Ser His Ala Val Ala His Phe Gln Leu Pro Gly
145 150 155 160
Leu Thr Gln Ser Arg Met Pro Leu Pro Leu Glu Val Ser Glu Glu Pro
165 170 175
Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln
180 185 190
Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val Lys Ala Arg Lys
195 200 205
Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala Arg
210 215 220
Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys Lys Ser Asp Ser Gly Ala
225 230 235 240
Pro Asn Gly Gly Glu Asn Ala Glu His Leu His Val Pro Pro Asp Leu
245 250 255
Leu Gln Leu Arg Gln Asn Glu Ala
260
17
1258
DNA
Zea mays
17
gcacgaggcc acgccgccgg ccacgcccca gacgaccccg cccgccgccg ccgcctcccg 60
ctccctccgc gcgcagccct cgtccggccg cccgggtccg agcgcgctcg ctcctcctcc 120
ccacgtcgga cagtttaagt gtggcttcat tgcatgagta gttgcagtta gcgtggcttt 180
tctccgtgct tgctcctggt cgtgctttgc cttgcaaagg aaggaatcat gacatctgtt 240
gttcacagtg tttcaggtga ccacagggct gaggatcaaa atcaacagaa gaagcaagct 300
gaacctgggg accagcaaga agccccagtt actagttcag atagccaacc aacagtaggc 360
acaccatcaa cagattatgt ggcaccctat gcccctcatg acatgagcca tgcaatgggt 420
caatacgctt atccaaatat tgacccatac tatggaagcc tttatgcagc agcttacggt 480
ggacagccat tgatgcatcc accgttagtt ggaatgcatc cggctggctt acctttgcct 540
accgatgcaa ttgaagagcc tgtgtatgta aatgcaaagc aatacaatgc catattaaga 600
cggcgtcaat ctcgggctaa agctgaatca gaacgaaagc ttatcaaggg gcgtaagccc 660
tatctccatg agtcacgtca tcagcatgcc ttgaaaaggg ccaggggagc tggaggtcgg 720
tttctcaact caaagtcaga tgacaaggaa gagaactccg actcgagtca caaagagaat 780
cagaacggag ttgcgcccca caggagcggc caaccgtcaa cccctccgtc tcccaacggt 840
gcatcgtcag ctaatcaggg caggcagtcg tgaatgatgg atgattcaaa actcacagct 900
gaagagattt cagcccctga gctagatatg gcagcagttt tgtacagaaa acgctagcaa 960
catggtgtcg gtcggtcggt cggttgttgt aggacatgtt ccatagaaaa agcatagacg 1020
agtctacagg ttttggagcc ttggtttggt cctctgtgta ttcacctttc tgtacaatct 1080
tagtagcgtt gtgtaccttc ccctggaagg aaggatagct tcagttagcg cttcagaaag 1140
tcaagtgtgt agcatattgg cttattgttt gctttgcttg gacaatggag atttgggagt 1200
ggagttcata accctgctga ataaatactc ttagctggct aaaaaaaaaa aaaaaaaa 1258
18
214
PRT
Zea mays
18
Met Thr Ser Val Val His Ser Val Ser Gly Asp His Arg Ala Glu Asp
1 5 10 15
Gln Asn Gln Gln Lys Lys Gln Ala Glu Pro Gly Asp Gln Gln Glu Ala
20 25 30
Pro Val Thr Ser Ser Asp Ser Gln Pro Thr Val Gly Thr Pro Ser Thr
35 40 45
Asp Tyr Val Ala Pro Tyr Ala Pro His Asp Met Ser His Ala Met Gly
50 55 60
Gln Tyr Ala Tyr Pro Asn Ile Asp Pro Tyr Tyr Gly Ser Leu Tyr Ala
65 70 75 80
Ala Ala Tyr Gly Gly Gln Pro Leu Met His Pro Pro Leu Val Gly Met
85 90 95
His Pro Ala Gly Leu Pro Leu Pro Thr Asp Ala Ile Glu Glu Pro Val
100 105 110
Tyr Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln Ser
115 120 125
Arg Ala Lys Ala Glu Ser Glu Arg Lys Leu Ile Lys Gly Arg Lys Pro
130 135 140
Tyr Leu His Glu Ser Arg His Gln His Ala Leu Lys Arg Ala Arg Gly
145 150 155 160
Ala Gly Gly Arg Phe Leu Asn Ser Lys Ser Asp Asp Lys Glu Glu Asn
165 170 175
Ser Asp Ser Ser His Lys Glu Asn Gln Asn Gly Val Ala Pro His Arg
180 185 190
Ser Gly Gln Pro Ser Thr Pro Pro Ser Pro Asn Gly Ala Ser Ser Ala
195 200 205
Asn Gln Gly Arg Gln Ser
210
19
1170
DNA
Zea mays
19
gcacgagcca cgccgtcggc cacgccccga cgaccaacac ctgctccctc cgccgccgcc 60
cgtgtcctcc cgctccgtcc gcgcgccgcc ctcatacctc caagcgcggt tggatctgct 120
ctgggtccaa gtccgctcga tcctcctctc gtcggaaact ttatgtgtgc cttcatccac 180
gaagagctga agatatcaca tgactagttg cagttagtgt ggcttttctc cctgcttggt 240
cctgattgtg tgctttgcct tgcaaaggaa ggaatcatga cctctgttgt tcagagcgtt 300
tcaggtgacc acagggctga ggatcaaagt catcagaaga agcaaactga acctggggac 360
cagcaagaag ccccagttac tagttcagat agccaaccaa cagtgggcac accatcaaca 420
gattatgtgg caccctatgc ccctcatgac atgagccatg caatgggtca atatgcttat 480
ccaaatattg atccatacta tggaagtctt tatgcggcgg cttatggtgg acatccattg 540
atgcatccaa cattagtcgg aatgcatccg gctggcttac ctttgcctac cgatgcaatt 600
gaagagccag tgtatgtaaa tgcaaagcaa tacaatgcca tattaagacg gcgtcaatct 660
cgggctaaag ctgaatcaga acggaagctt gtcaagggcc gcaagcccta tctccatgag 720
tcacggcatc agcatgcctt gaaaagggcc aggggagctg gaggtcggtt tctcaattcg 780
aagtcagatg acaaggaaga gaactccgac tcaagtcaaa aagagattca gaacggagtt 840
gcgccccaaa agggtggcca accgtcaacc cctccgtctc ccaacggtgc gtcgtcagct 900
tatcaggcgc ctagtcgtga atgatgattc ggaactcaca actgaagaga ttttagtccc 960
tgacgctagt tgtggcagca gctttgtaca gtaagtgcta gcgggcagca gcgaaatggt 1020
gtcatagaaa aacgttgacg agtcagacag gttttggagt cttggttttt tttcctctgt 1080
ttattttacc tgtctgcaat tttagtagct ttgtgtccct tcccctggat agttttttgg 1140
tcagcgctta agaaaaaaaa aaaaaaaaaa 1170
20
215
PRT
Zea mays
20
Met Thr Ser Val Val Gln Ser Val Ser Gly Asp His Arg Ala Glu Asp
1 5 10 15
Gln Ser His Gln Lys Lys Gln Thr Glu Pro Gly Asp Gln Gln Glu Ala
20 25 30
Pro Val Thr Ser Ser Asp Ser Gln Pro Thr Val Gly Thr Pro Ser Thr
35 40 45
Asp Tyr Val Ala Pro Tyr Ala Pro His Asp Met Ser His Ala Met Gly
50 55 60
Gln Tyr Ala Tyr Pro Asn Ile Asp Pro Tyr Tyr Gly Ser Leu Tyr Ala
65 70 75 80
Ala Ala Tyr Gly Gly His Pro Leu Met His Pro Thr Leu Val Gly Met
85 90 95
His Pro Ala Gly Leu Pro Leu Pro Thr Asp Ala Ile Glu Glu Pro Val
100 105 110
Tyr Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln Ser
115 120 125
Arg Ala Lys Ala Glu Ser Glu Arg Lys Leu Val Lys Gly Arg Lys Pro
130 135 140
Tyr Leu His Glu Ser Arg His Gln His Ala Leu Lys Arg Ala Arg Gly
145 150 155 160
Ala Gly Gly Arg Phe Leu Asn Ser Lys Ser Asp Asp Lys Glu Glu Asn
165 170 175
Ser Asp Ser Ser Gln Lys Glu Ile Gln Asn Gly Val Ala Pro Gln Lys
180 185 190
Gly Gly Gln Pro Ser Thr Pro Pro Ser Pro Asn Gly Ala Ser Ser Ala
195 200 205
Tyr Gln Ala Pro Ser Arg Glu
210 215
21
1892
DNA
Zea mays
21
ccacgcgtcc gcccgctggg gctgggctac ctcgttcgct tcgctgcctc tgcctactcc 60
tctctcccct ctttctccgc tcatgtgctg gtccatcgtc tgcctcctcg gtttgtcctg 120
aatccttgga cagacgcaca caggctcagc tcaggcggtt gctggatcct ttggcgttcc 180
ccatccggcc aagaatcctg caagagcctg cttggagttg gagccggcca aacctgctgc 240
cgtcgacgtc tcgggcgagg cagccttgag catcagtctc cttgacgagg caagcaggcc 300
atgatgagct tcaagggaca cgaggggttc ggtcaggtgt ccggagccgg gatgagccag 360
gcctcccatg gcgccgcgcc tgccggagcc ccgctgccgt ggtgggctgg ggcccagctg 420
ctgtccggcg agccggcgcc cctgtccccg gaggaggcgc cccgggacac ccagttccag 480
gtcgtgccgg gggcctctca gggcacgccg gatccagcgc cgcccaaggg agggacacct 540
aaggtcctca agttctctgt gttccaaggg aatttggagt cgggtggtaa aggagagaaa 600
accccaaaga actctaccgc tgtcgttctg cagtcgccat tcgcggaata caatggtcgt 660
ttcgagatcg gtctcggtca atctatgctg gtcccttcca gttattcttg tgctgaccag 720
tgctatggca tgcttacgac ttatggaatg agatccatgt ctggtgggag aatgctgttg 780
ccactaattg cgccagccga tgcacccgtt tatgtgaacc cgaaacagta cgaaggcatc 840
ctccgtcgtc gccgtgctcg cgctaaggcg gagagcgaga acaggctcac caaaggcaga 900
aagccttatc tccatgagtc gcgccacctc cacgcgatgc gccgggtgag aggctccggc 960
gggcgcttcc tcaacacgaa taaaggaggg cacggcacgg acgttgctgc aaacgggggc 1020
agcaagatgg cggcggcggc ggcaccatcc cgtctcgcca tgccccctag cgctgagcct 1080
ccatggctgt cagggctcag cgacggcagc aacccgtgct gccactcccg gagtagtgtc 1140
tccagcttgt ccgggtccta cgtggcgagc atctacggtg gcttggagca gcacctccgg 1200
gcgccgccct tcttcacccc gctgccgccc gtcatggacg gcgaccacgg cggccccacg 1260
gccgccacca tctcctcctt caagtgggcg gccagcgacg gctgctgcga gctcctcagg 1320
gcgtgaaccg aggagggagg ggatggctac tcagacgaac ggccttctcc ccgatggctg 1380
gttgtctgta ggcaaatcat tcttggctgt tctgcattgg ggtgcgacct acacatcatc 1440
cgcctaccgt acctacccca cccgtgtccc tgaaattcca gggtgcttgg gttacttaca 1500
ggggtcttgt gtggtgatgt ggctccccca tatgcatttg ctgtaacata gcgtacccaa 1560
accactgttg cttggtactt ctcgctatca ctgcctcatc agtatggatt ctgcatttct 1620
gcgttgtcac agtgtatgaa taattgaggc gtcagacttc agggttgctc cagttcttgg 1680
agataggtct gggtttgttt gaagcttgcc tggaggtctg aaactttgtg tttggtgaag 1740
atgctacgtt attgcagttt gaatctgtaa gtttgggatc agcattcagt tgttgcatcg 1800
tctgtgctct ggtgccgagg tgttcgttct gaatatttga ttcaattcaa aatcttcagc 1860
taagttacta ctgggacaaa aaaaaaaaaa aa 1892
22
341
PRT
Zea mays
22
Met Met Ser Phe Lys Gly His Glu Gly Phe Gly Gln Val Ser Gly Ala
1 5 10 15
Gly Met Ser Gln Ala Ser His Gly Ala Ala Pro Ala Gly Ala Pro Leu
20 25 30
Pro Trp Trp Ala Gly Ala Gln Leu Leu Ser Gly Glu Pro Ala Pro Leu
35 40 45
Ser Pro Glu Glu Ala Pro Arg Asp Thr Gln Phe Gln Val Val Pro Gly
50 55 60
Ala Ser Gln Gly Thr Pro Asp Pro Ala Pro Pro Lys Gly Gly Thr Pro
65 70 75 80
Lys Val Leu Lys Phe Ser Val Phe Gln Gly Asn Leu Glu Ser Gly Gly
85 90 95
Lys Gly Glu Lys Thr Pro Lys Asn Ser Thr Ala Val Val Leu Gln Ser
100 105 110
Pro Phe Ala Glu Tyr Asn Gly Arg Phe Glu Ile Gly Leu Gly Gln Ser
115 120 125
Met Leu Val Pro Ser Ser Tyr Ser Cys Ala Asp Gln Cys Tyr Gly Met
130 135 140
Leu Thr Thr Tyr Gly Met Arg Ser Met Ser Gly Gly Arg Met Leu Leu
145 150 155 160
Pro Leu Ile Ala Pro Ala Asp Ala Pro Val Tyr Val Asn Pro Lys Gln
165 170 175
Tyr Glu Gly Ile Leu Arg Arg Arg Arg Ala Arg Ala Lys Ala Glu Ser
180 185 190
Glu Asn Arg Leu Thr Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg
195 200 205
His Leu His Ala Met Arg Arg Val Arg Gly Ser Gly Gly Arg Phe Leu
210 215 220
Asn Thr Asn Lys Gly Gly His Gly Thr Asp Val Ala Ala Asn Gly Gly
225 230 235 240
Ser Lys Met Ala Ala Ala Ala Ala Pro Ser Arg Leu Ala Met Pro Pro
245 250 255
Ser Ala Glu Pro Pro Trp Leu Ser Gly Leu Ser Asp Gly Ser Asn Pro
260 265 270
Cys Cys His Ser Arg Ser Ser Val Ser Ser Leu Ser Gly Ser Tyr Val
275 280 285
Ala Ser Ile Tyr Gly Gly Leu Glu Gln His Leu Arg Ala Pro Pro Phe
290 295 300
Phe Thr Pro Leu Pro Pro Val Met Asp Gly Asp His Gly Gly Pro Thr
305 310 315 320
Ala Ala Thr Ile Ser Ser Phe Lys Trp Ala Ala Ser Asp Gly Cys Cys
325 330 335
Glu Leu Leu Arg Ala
340
23
323
DNA
Zea mays
unsure
(201)
n = A, C, G, or T
23
acgccatcat gcgtcggcgc tgtgcccgtg ccaaagcaga gagggaaaat aggctggtca 60
aaggcaggaa gccatatctc catgagtcac gccatcagca tgcactgcgt cgcccgcgag 120
gctctggcgg acgcttcctg aacacaaaga aagaatccag cgggaaggat gctggtggtg 180
gcagcaaggc aatgtttcaa ncaaccccct catgcgccag gtggcgttct cccaagctcc 240
aaanatccac cagtccagac ctgggccaac cccgancanc gttttccacc tgttcnggtt 300
tccaaagttt tttcaacctn ttt 323
24
77
PRT
Zea mays
UNSURE
(67)
Xaa = any amino acid
24
Ala Ile Met Arg Arg Arg Cys Ala Arg Ala Lys Ala Glu Arg Glu Asn
1 5 10 15
Arg Leu Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln
20 25 30
His Ala Leu Arg Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr
35 40 45
Lys Lys Glu Ser Ser Gly Lys Asp Ala Gly Gly Gly Ser Lys Ala Met
50 55 60
Phe Gln Xaa Thr Pro Ser Cys Ala Arg Trp Arg Ser Pro
65 70 75
25
1195
DNA
Zea mays
25
gcaccagacc agaggaaggg acggcgggga ggtggcaagg cgcagagagc aggttcgctt 60
ggcggacgca ccgagggagg cgtgtgggag ccatgcttct tccgtcttcg tcttcgtctt 120
ccgcttccgc ttccgcttcc aaaggtaact cctttgggaa aaccgttaac gatcatctga 180
ggtcaacttt gagttttgat aacaagcaac ctccatttgc aagtcaaaac tttgactacg 240
gtcaaacaat agcttgcatt tcatacccgt acaatcattc tggctcagga gatgtctggg 300
cagcctatga gtcacgcacc agcgctgcca ctgtgttccg ttcccaaatt gctggtgggg 360
gtacatccac aagaattccc ttgcctttgg aattagcaga gaatgaaccc atatatgtga 420
atcccaaaca atatcacggg atacttcgca gaagacagtt acgtgccaag ttagaggctc 480
agaacaagct agtcagagcc cgaaagcctt accttcatga gtctaggcat cttcatgcaa 540
tgaagagggc acgaggttcc ggtggacgat tcctcaacac taagcagctc cagcagtctc 600
acactgccct caccaggtcc accaccacaa gtggcacaag ctcctcaggc tcaactcatc 660
tgcggcttgg tggtggcgca gccgcagctg gagatcgatc tgtgctggca cccaaaacaa 720
tggcctcaca agacagtagc aagaaggccg tttcttcagc cctcgccttc actgcgactc 780
caatgctgcg cagagatgac ggcttcttgc agcacccaag ccatcttttc agtttttctg 840
gtcattttgg gcaggcaagc gcgcaagctg gcgtccataa tggaagtcag catagggttc 900
cagttatgag atgaccggtt tgcgaaccat agctggtgat ccaggcgtct agggtcaact 960
tcgctgtggt gtcttagtct ctcaggcaat tcatccttgg cttaatttct ggctttttat 1020
tagaaggtac caaaatgtgt tccataccgt tgtggccaca gagcccataa accagggggt 1080
ttgatggttg gcactcctac ccaaactatt gtcttgttgc agtggtgttt gttagaataa 1140
accttgacta ttattctgta caaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 1195
26
273
PRT
Zea mays
26
Met Leu Leu Pro Ser Ser Ser Ser Ser Ser Ala Ser Ala Ser Ala Ser
1 5 10 15
Lys Gly Asn Ser Phe Gly Lys Thr Val Asn Asp His Leu Arg Ser Thr
20 25 30
Leu Ser Phe Asp Asn Lys Gln Pro Pro Phe Ala Ser Gln Asn Phe Asp
35 40 45
Tyr Gly Gln Thr Ile Ala Cys Ile Ser Tyr Pro Tyr Asn His Ser Gly
50 55 60
Ser Gly Asp Val Trp Ala Ala Tyr Glu Ser Arg Thr Ser Ala Ala Thr
65 70 75 80
Val Phe Arg Ser Gln Ile Ala Gly Gly Gly Thr Ser Thr Arg Ile Pro
85 90 95
Leu Pro Leu Glu Leu Ala Glu Asn Glu Pro Ile Tyr Val Asn Pro Lys
100 105 110
Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
115 120 125
Ala Gln Asn Lys Leu Val Arg Ala Arg Lys Pro Tyr Leu His Glu Ser
130 135 140
Arg His Leu His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe
145 150 155 160
Leu Asn Thr Lys Gln Leu Gln Gln Ser His Thr Ala Leu Thr Arg Ser
165 170 175
Thr Thr Thr Ser Gly Thr Ser Ser Ser Gly Ser Thr His Leu Arg Leu
180 185 190
Gly Gly Gly Ala Ala Ala Ala Gly Asp Arg Ser Val Leu Ala Pro Lys
195 200 205
Thr Met Ala Ser Gln Asp Ser Ser Lys Lys Ala Val Ser Ser Ala Leu
210 215 220
Ala Phe Thr Ala Thr Pro Met Leu Arg Arg Asp Asp Gly Phe Leu Gln
225 230 235 240
His Pro Ser His Leu Phe Ser Phe Ser Gly His Phe Gly Gln Ala Ser
245 250 255
Ala Gln Ala Gly Val His Asn Gly Ser Gln His Arg Val Pro Val Met
260 265 270
Arg
27
1376
DNA
Zea mays
27
tctctatcta tctatacggt tcaagggact gaagaaggta gagagagaaa ctcgaagggg 60
agaggacaga agagggagat acaggttaat ttttaggtac cagatcatct gatttctcag 120
aagcaaaatg ttgtttggag ctcagtgaca ccatcttgta atgcctgtga ttttacggga 180
aatggaggat cattctgtcc atcccatgtc taagtctaac catggctcct tgtcaggaaa 240
tggttatgag atgaaacatt caggccataa agtttgcgat agggattcat catcggagtc 300
tgatcggtct caccaagaag catcagcagc aagtgaaagc agtccaaatg aacacacatc 360
aactcaatca gacaatgatg aagatcatgg gaaagataat caggacacaa tgaagccagt 420
attgtccttg gggaaggaag gctctgcctt tttggcccca aaattacatt acagcccatc 480
ttttgcttgt attccttata ctgctgatgc ttattatagt gcggttgggg tcttgacagg 540
atatcctcca catgccattg tccatcccca gcaaaatgat acaacgaaca ctccgggtat 600
gttacctgtg gaacctgcag aagaaccaat atatgttaat gcaaaacaat accatgcaat 660
ccttaggagg aggcaaacac gtgctaaatt ggaggcccag aacaagatgg tgaaaaatcg 720
gaagccatat cttcatgagt cccgacatcg tcatgccatg aaacgggctc gtggatcagg 780
aggacggttc ctcaacacaa agcagctcca ggagcagaac cagcagtatc aggcatcgag 840
tggttcattg tgctcaaaga tcattgccaa cagcataatc tcccaaagtg gccccacctg 900
cacgccctct tctggcactg caggtgcttc aacagccggc caggaccgca gctgcttgcc 960
ctcagttggc ttccgcccca cgacaaactt cagtgaccaa ggtcgaggag gcttgaagct 1020
ggccgtgatc ggcatgcagc agcgtgtttc caccataagg tgaagagaag tgggcacaac 1080
accattccca ggcacactgc ctgtggcaac tcatccttgg ctcttggaac tttgaatatg 1140
caatcgacat gtagcttgag atcctcagaa taaaccaaac cttcagttat atgcaagcct 1200
tttttgaggt tgctgttgct gtacctgaga actgtggtta ggttatgagt ttgttcctca 1260
aaactgaccc atacatgaca tgctaccttg tgctgagttt ctgagacaaa gccatcgaaa 1320
catgatcttg tggttcagta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 1376
28
300
PRT
Zea mays
28
Met Pro Val Ile Leu Arg Glu Met Glu Asp His Ser Val His Pro Met
1 5 10 15
Ser Lys Ser Asn His Gly Ser Leu Ser Gly Asn Gly Tyr Glu Met Lys
20 25 30
His Ser Gly His Lys Val Cys Asp Arg Asp Ser Ser Ser Glu Ser Asp
35 40 45
Arg Ser His Gln Glu Ala Ser Ala Ala Ser Glu Ser Ser Pro Asn Glu
50 55 60
His Thr Ser Thr Gln Ser Asp Asn Asp Glu Asp His Gly Lys Asp Asn
65 70 75 80
Gln Asp Thr Met Lys Pro Val Leu Ser Leu Gly Lys Glu Gly Ser Ala
85 90 95
Phe Leu Ala Pro Lys Leu His Tyr Ser Pro Ser Phe Ala Cys Ile Pro
100 105 110
Tyr Thr Ala Asp Ala Tyr Tyr Ser Ala Val Gly Val Leu Thr Gly Tyr
115 120 125
Pro Pro His Ala Ile Val His Pro Gln Gln Asn Asp Thr Thr Asn Thr
130 135 140
Pro Gly Met Leu Pro Val Glu Pro Ala Glu Glu Pro Ile Tyr Val Asn
145 150 155 160
Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys
165 170 175
Leu Glu Ala Gln Asn Lys Met Val Lys Asn Arg Lys Pro Tyr Leu His
180 185 190
Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly
195 200 205
Arg Phe Leu Asn Thr Lys Gln Leu Gln Glu Gln Asn Gln Gln Tyr Gln
210 215 220
Ala Ser Ser Gly Ser Leu Cys Ser Lys Ile Ile Ala Asn Ser Ile Ile
225 230 235 240
Ser Gln Ser Gly Pro Thr Cys Thr Pro Ser Ser Gly Thr Ala Gly Ala
245 250 255
Ser Thr Ala Gly Gln Asp Arg Ser Cys Leu Pro Ser Val Gly Phe Arg
260 265 270
Pro Thr Thr Asn Phe Ser Asp Gln Gly Arg Gly Gly Leu Lys Leu Ala
275 280 285
Val Ile Gly Met Gln Gln Arg Val Ser Thr Ile Arg
290 295 300
29
1492
DNA
Zea mays
29
gcacgagctc acttgcttcg acgtatttct caatctatct atacggttca agggaccgaa 60
gaaggtagag agagaaactt gaaggggaga ggaaggagat acaggttcat gttcatttag 120
gtgtcagttc atctgatttc tcagaagcaa aatgttgttt ggagctcagt gacaccatct 180
tgtaatgcat gtgcctttta cgggaaatgg aggatcattc tgtccatcca aagtctaagt 240
ctaaccatgg ttccttgtca ggaaatggtt atgagatgaa aaatccaggc catgaagttt 300
gtgataggga ttcatcatca gagtctgatc gatctcaccc agaagcatca gcagtgagtg 360
aaagcagtct agatgaacac acatcaactc aatcagacaa tgatgaagat catgggaagg 420
ataatcagga cacattgaag ccagtattgt ccttggggaa ggaagggtct gcctttttgg 480
ccccaaaaat agattacaac ccgtcttttc cttatattcc ttatactgct gacgcttact 540
atggtggcgt tggggtcttg acaggatatg ctccgcatgc cattgtccat ccccagcaaa 600
atgatacaac aaatagtccg gttatgttgc ctgcggaacc tgcagaagaa gaaccaatat 660
atgtcaatgc aaaacaatac catgcaatcc ttaggaggag gcagacacgt gctaaactgg 720
aggcgcagaa caagatggtg aaaggtcgga agccatacct tcatgagtct cgacaccgtc 780
atgccatgaa gcgggcccgt ggctcaggag ggcggttcct caacacaaag cagcagctcc 840
aggagcagaa ccagcggtac caggcgtcga gtggttcaat gtgctcaaag accattggca 900
acagcgtaat ctcccaaagt ggccccattt gcacgccctc ttctgacgct gcaggtgctt 960
cagcagccag ccaggaccgc ggctgcttgc cctcggttgg cttccgcccc acagccaact 1020
tcagtgagca aggtggaggc ggctcgaagc tggtcatgaa cggcatgcag cagcgtgttt 1080
ccaccataag gtgaagagaa gtgggcacga caccattccc aggcgcgcac tgcctgtggc 1140
aactcatcct tggcttttga aactatggat atgcaatgga catgtagctt cgagttcctc 1200
agaataacca aacgtgaaga atatgcaaag tccttttgag atttgctgta gctgaaagaa 1260
ctgtggttag gttgagtttc ttcctggaga ctgatccata catgacatgc tacctcgtgc 1320
tgagtttctg aggtgaagcc atcgaaacat gaccgtgtgg ttcagtaaaa aaaaaaaaaa 1380
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1440
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 1492
30
301
PRT
Zea mays
30
Met Cys Leu Leu Arg Glu Met Glu Asp His Ser Val His Pro Lys Ser
1 5 10 15
Lys Ser Asn His Gly Ser Leu Ser Gly Asn Gly Tyr Glu Met Lys Asn
20 25 30
Pro Gly His Glu Val Cys Asp Arg Asp Ser Ser Ser Glu Ser Asp Arg
35 40 45
Ser His Pro Glu Ala Ser Ala Val Ser Glu Ser Ser Leu Asp Glu His
50 55 60
Thr Ser Thr Gln Ser Asp Asn Asp Glu Asp His Gly Lys Asp Asn Gln
65 70 75 80
Asp Thr Leu Lys Pro Val Leu Ser Leu Gly Lys Glu Gly Ser Ala Phe
85 90 95
Leu Ala Pro Lys Ile Asp Tyr Asn Pro Ser Phe Pro Tyr Ile Pro Tyr
100 105 110
Thr Ala Asp Ala Tyr Tyr Gly Gly Val Gly Val Leu Thr Gly Tyr Ala
115 120 125
Pro His Ala Ile Val His Pro Gln Gln Asn Asp Thr Thr Asn Ser Pro
130 135 140
Val Met Leu Pro Ala Glu Pro Ala Glu Glu Glu Pro Ile Tyr Val Asn
145 150 155 160
Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys
165 170 175
Leu Glu Ala Gln Asn Lys Met Val Lys Gly Arg Lys Pro Tyr Leu His
180 185 190
Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly
195 200 205
Arg Phe Leu Asn Thr Lys Gln Gln Leu Gln Glu Gln Asn Gln Arg Tyr
210 215 220
Gln Ala Ser Ser Gly Ser Met Cys Ser Lys Thr Ile Gly Asn Ser Val
225 230 235 240
Ile Ser Gln Ser Gly Pro Ile Cys Thr Pro Ser Ser Asp Ala Ala Gly
245 250 255
Ala Ser Ala Ala Ser Gln Asp Arg Gly Cys Leu Pro Ser Val Gly Phe
260 265 270
Arg Pro Thr Ala Asn Phe Ser Glu Gln Gly Gly Gly Gly Ser Lys Leu
275 280 285
Val Met Asn Gly Met Gln Gln Arg Val Ser Thr Ile Arg
290 295 300
31
725
DNA
Zea mays
unsure
(546)
n = A, C, G, or T
31
gcagcaaaca ctagggtacc attgccagtt gggcctgcag cagaggaacc catatttgtc 60
aatgcaaagc aatacaatgc tatcctccgg aggaggcaaa aacgcgcaaa actggaggcc 120
caaaataaac tggtgaaagg tcggaagcca tatctccatg aatctcggca tcgtcatgca 180
atgaagcgag tccgtggacc agggcgtttc ctcaacaaaa aggagctcca ggagcagcag 240
ctgaaggcac tgccttcact tcagactcca acaggtgggg tcagcaaaat ggcctttggc 300
aggaacctat gccctgaaag cagcacatct cactcgcctt cgacgagctc tacaatctcg 360
agtgcttcaa actggagtgg cacgctagct catcaagagc acgttagctt cgcatctgct 420
aataaattcc tccccagcat gaacttccac gcggagaatg gagtgaaaag atggccatca 480
atggcgtccg ccaccacacc cctgtcctga gtgaacaacc ttcaactgtg ggggtgctgt 540
gctggnacca tcantgggcg cgctccgtgt gcccgtggca attcatcttg gcttatgatg 600
tatcttatag ttaatttgct ttcactttca tatggnactt gtctcagatt aaactcgtga 660
tatttattgc nactgggatg actggaaata atctcangtt tcttaccaaa aaaaaaaaaa 720
aaaaa 725
32
169
PRT
Zea mays
32
Ala Ala Asn Thr Arg Val Pro Leu Pro Val Gly Pro Ala Ala Glu Glu
1 5 10 15
Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg
20 25 30
Gln Lys Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Val Lys Gly Arg
35 40 45
Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys Arg Val
50 55 60
Arg Gly Pro Gly Arg Phe Leu Asn Lys Lys Glu Leu Gln Glu Gln Gln
65 70 75 80
Leu Lys Ala Leu Pro Ser Leu Gln Thr Pro Thr Gly Gly Val Ser Lys
85 90 95
Met Ala Phe Gly Arg Asn Leu Cys Pro Glu Ser Ser Thr Ser His Ser
100 105 110
Pro Ser Thr Ser Ser Thr Ile Ser Ser Ala Ser Asn Trp Ser Gly Thr
115 120 125
Leu Ala His Gln Glu His Val Ser Phe Ala Ser Ala Asn Lys Phe Leu
130 135 140
Pro Ser Met Asn Phe His Ala Glu Asn Gly Val Lys Arg Trp Pro Ser
145 150 155 160
Met Ala Ser Ala Thr Thr Pro Leu Ser
165
33
831
DNA
Zea mays
33
ccacgcgtcc gcatatatgt gaatcccaaa caatatcacg ggatacttcg cagaagacag 60
ttacgtgcca agctagaggc tcagaacaag ctagtcagag cccgaaagtc ttaccttcat 120
gagtctaggc atcttcatgc aatgaagagg gcacgaggtt ccggtggacg attcctcaac 180
actaagcagc tccagcagtc tcacacagcc ctcaccaggt ccaccaccac aagtggcaca 240
agctcctcag gctcaactca tctgcggctt ggtggtggcg cagccgcagc tggagatcga 300
tctgtgctgg cacccaaaac aatggcctca caagacagta gcaagaaggc cgtttcttca 360
gccctcgcct tcactgcgac tccaatgctg cgcagagatg acggcttctt gcagcaccca 420
agccatcttt tcagtttttc tggtcatttt gggcaggcaa gcgcgcaagc tggcgtccat 480
aatggaagtc agcatagggt tccagttatg agatgaccgg tttgcgaacc atagctggtg 540
atccaggcgt ctagggtcaa cttcgctgtg gtgtcttagt ctctcaggca attcatcctt 600
ggcttaattt ctggcttttt attagaaggt accaaaatgt gttccatacc gttgtggcca 660
cagagcccat aaaccagggg gtttgatggt tggcactcct acccaaacta ttgttgcagt 720
ggtgtttgtt agaataaacc ttgactatta ttctgtacaa tttgccttta tcttgtactg 780
ccaattattg tgtagtggtc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa g 831
34
98
PRT
Zea mays
34
Ile Tyr Val Asn Pro Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln
1 5 10 15
Leu Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Val Arg Ala Arg Lys
20 25 30
Ser Tyr Leu His Glu Ser Arg His Leu His Ala Met Lys Arg Ala Arg
35 40 45
Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Gln Gln Ser His
50 55 60
Thr Ala Leu Thr Arg Ser Thr Thr Thr Ser Gly Thr Ser Ser Ser Gly
65 70 75 80
Ser Thr His Leu Arg Leu Gly Gly Gly Ala Ala Ala Ala Gly Asp Arg
85 90 95
Ser Val
35
1307
DNA
Zea mays
35
ccacgcgtcc gctgtctgtg tgcgagcgca agagaaaggg agtcagagag agagagagag 60
ggaggagacc ttgcagagga gcgaagcaag caaggtggga aagaggcagc agcaagggcg 120
gcgggctgcc ggaaggggaa catgctccct cctcatctca cagtacgaac tgaaaaacaa 180
gagtaaagaa tttccgtgag atgagacaga atggcgcggt gatgattcag tttggccatc 240
agatgcctga ttacgactcc ccggctaccc agtcaaccag tgagacgagc catcaagaag 300
cgtctggaat gagcgaaggg agcctcaacg agcataataa tgaccattca ggcaaccttg 360
atgggtactc gaagagtgac gaaaacaaga tgatgtcagc gttatccctg ggcaatccgg 420
aaacagctta cgcacataat ccgaagcctg accgtactca gtccttcgcc atatcatacc 480
catatgccga tccatactac ggtggcgcgg tggcagcagc ttatggcccg catgctatca 540
tgcaccctca gctggttggc atggttccgt cctctcgagt gccactgccg atcgagccag 600
ccgctgaaga gcccatctat gtcaacgcga agcagtacca cgctattctc cggaggagac 660
agctccgtgc aaagctagag gcggaaaaca agctcgtgaa aagccgcaag ccgtacctcc 720
acgagtctcg gcacctgcac gcgatgaaga gagctcgggg aacaggcggg cggttcctga 780
acacgaagca gcagccggag tcccccggca gcggcggctc ctcggacgcg caacgcgtgc 840
ccgcgaccgc gagcggcggc ctgttcacga agcatgagca cagcctgccg cccggcggtc 900
gccaccacta tcacgcgaga gggggcggtg agtagggagc cccgacactg gcaactcatc 960
cttggcttat cagcgattcg actcggctct ccctcgtctg aaactgaact ctctgcaact 1020
actgtaactg taactaaact gggtgtgccc ggattggcgg tcgttctgtt ctactactag 1080
tacctgctac gcgtcgttgg gttgggtctg gactagagag cgtgctggtt ctttgatgaa 1140
cttggctgga cttgagggtg ttgactagcg cgaagctgag ttccatgtaa aacttttgct 1200
tcaagaccga tgactggcgg cataataagt agcagtaata cccaaaaaaa aaaaaaaaaa 1260
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaag 1307
36
244
PRT
Zea mays
36
Met Arg Gln Asn Gly Ala Val Met Ile Gln Phe Gly His Gln Met Pro
1 5 10 15
Asp Tyr Asp Ser Pro Ala Thr Gln Ser Thr Ser Glu Thr Ser His Gln
20 25 30
Glu Ala Ser Gly Met Ser Glu Gly Ser Leu Asn Glu His Asn Asn Asp
35 40 45
His Ser Gly Asn Leu Asp Gly Tyr Ser Lys Ser Asp Glu Asn Lys Met
50 55 60
Met Ser Ala Leu Ser Leu Gly Asn Pro Glu Thr Ala Tyr Ala His Asn
65 70 75 80
Pro Lys Pro Asp Arg Thr Gln Ser Phe Ala Ile Ser Tyr Pro Tyr Ala
85 90 95
Asp Pro Tyr Tyr Gly Gly Ala Val Ala Ala Ala Tyr Gly Pro His Ala
100 105 110
Ile Met His Pro Gln Leu Val Gly Met Val Pro Ser Ser Arg Val Pro
115 120 125
Leu Pro Ile Glu Pro Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys
130 135 140
Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
145 150 155 160
Ala Glu Asn Lys Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser
165 170 175
Arg His Leu His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe
180 185 190
Leu Asn Thr Lys Gln Gln Pro Glu Ser Pro Gly Ser Gly Gly Ser Ser
195 200 205
Asp Ala Gln Arg Val Pro Ala Thr Ala Ser Gly Gly Leu Phe Thr Lys
210 215 220
His Glu His Ser Leu Pro Pro Gly Gly Arg His His Tyr His Ala Arg
225 230 235 240
Gly Gly Gly Glu
37
816
DNA
Zea mays
37
ccacgcgtcc gcgcagaaca agatggtgaa aggccggaag ccataccttc atgagtctcg 60
acaccgtcat gccatgaagc gggcccgtgg ctcaggaggg cggttcctca acacaaagca 120
gcagccccag gagcagaacc agcagtacca ggcgtcgagt ggttcaatgt gctcaaagac 180
cattggcaac agcgtaatct cccaaagtgg ccccatttgc acgccctctt ctgacgctgc 240
aggtgcttca gcagccagcc aggaccgcgg ctgcttgccc tcggtgggct tccgccccac 300
agccaacttc agtgagcaag gtggaggcgg ctcgaagctg gtcgtgaacg gcatgcagca 360
gcgtgtttcc accataaggt gaagagaagt gggcacgaca ccattcccag gcgcgcactg 420
cctgtggcaa ctcatccttg gcttttgaaa ctatggatat gcaatggaca tgtagcttcg 480
agttcctcag aataaccaaa cgtgaagaat atgcaaagtc cttttgagat ttgctgtagc 540
tgaaagaact gtggttaggt tatgagtttc ttcctggaga ctgatccata catgacatgc 600
tacctcgtgc tgagtttctg aggtgaagcc atcgaaacat gaccgtgtgg ttcagtaccc 660
ttgctgcctt cagtgtctga taagctagct ctccagtttg cagtttctct gaattccagc 720
atgtctagtc tctgcttatc ttttgcatgt aacgtgatgg tgacttagca tacacatcta 780
ttcatccatc tatgttctca aaaaaaaaaa aaaaag 816
38
78
PRT
Zea mays
38
His Ala Ser Ala Gln Asn Lys Met Val Lys Gly Arg Lys Pro Tyr Leu
1 5 10 15
His Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly
20 25 30
Gly Arg Phe Leu Asn Thr Lys Gln Gln Pro Gln Glu Gln Asn Gln Gln
35 40 45
Tyr Gln Ala Ser Ser Gly Ser Met Cys Ser Lys Thr Ile Gly Asn Ser
50 55 60
Val Ile Ser Gln Ser Gly Pro Ile Cys Thr Pro Ser Ser Asp
65 70 75
39
1630
DNA
Argemone mexicana
39
gcacgagtgc agacaagagt agattttatg aaatcgatgg ctctaaaatc tctaaaaagt 60
gagtgttcta gggtttattc ttttactgtt ctcaataaca attggatagg agattgattg 120
tttttgaagt aatttgaacc atgcactcga ttcctgggaa tgtgaatgca acagaatcgg 180
acgtgcaacg tactccgcaa tcaactattt gttctcaacc ttggtggtgt ggtactgtgt 240
ataacactgg ttcgtcagct gagttgggag aaagcacaat aaaatcgtct tcaatggaac 300
agccagacgg tggaatgggt attgatacca gagaatcaca tggtgatggt ggtcctaatg 360
agggggatgg tattacgaga aagatgcaca ccaccatggc ctcccaatct gggccagatg 420
gaaactatgg acatgaacat gggaatctgc agcatgctgc atctgcaatg ccccaaacta 480
gtggtgaata cgtcataccg cgtccacagt ttgagcttgt tggtcactca gttgcatgtg 540
caacgtaccc gtattctgat atgtattata ctggaatgat ggctgctttg ggaactcagg 600
ctcaggtaca tcctcattta tttggtgtac aacacaccag aatgccttta cctcttgaaa 660
tggctgaaga gcctgtctat gtaaatgcga agcaatatca tggaattctg agacgaaggc 720
agtcgcgtgc aaaggctgag ctagaaagga aactgattaa atctagaaag ccgtaccttc 780
atgaatctcg gcaccaacat gctatgagaa gggcaagggg ttgtggaggc cgttttctca 840
acacaaaaaa actcgaaaac gggtcatcta agcatacaac tgagaacagc atggcttctg 900
attgtaatgg taaccggaac tccccaagtg gtcaacaaga aatagaaggt tccaacgtgc 960
aggaatcaca ttcctacttt aacagcaatg ataaaagctg ctaccaacat aatcagggtc 1020
tgcagttatc aagtttccat ccattatctg gtgagagagg agaggaagga gactgttcag 1080
gcctgcagcg aggaagcatc tcggtgaacc aggcccagaa cagggccctc accatccagt 1140
gaacctctga gtaggggaat agggtttctc catcgtcagt atcccgtttg ctgttactgc 1200
tctgggactt caaataccat gtaagcaacg gaaagcagca atggcgctga agggatggac 1260
gcaaaccaga aacggattcc ccccaaggta attggtgttt ctcaggcaat tcattcttgg 1320
cttggttctt gtgtttgatg gggaaagagg agtgtaggtt ctatttggtt ctgtggtgtc 1380
cttacaactt ctctactctt tccctcttgt ttttttttta tcccttgttg tacaaaggaa 1440
atgatagtgg ctgttttaga atctaagtag tgagaagaaa ccaaaccaaa cccttttttc 1500
ttcaaaattt cgtgaaacat tgttttaact ctgtagacat caaaattttc taggcatgta 1560
aaatattcgt cttttttttt ttccatgaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1620
aaaaaaaaaa 1630
40
333
PRT
Argemone mexicana
40
Met His Ser Ile Pro Gly Asn Val Asn Ala Thr Glu Ser Asp Val Gln
1 5 10 15
Arg Thr Pro Gln Ser Thr Ile Cys Ser Gln Pro Trp Trp Cys Gly Thr
20 25 30
Val Tyr Asn Thr Gly Ser Ser Ala Glu Leu Gly Glu Ser Thr Ile Lys
35 40 45
Ser Ser Ser Met Glu Gln Pro Asp Gly Gly Met Gly Ile Asp Thr Arg
50 55 60
Glu Ser His Gly Asp Gly Gly Pro Asn Glu Gly Asp Gly Ile Thr Arg
65 70 75 80
Lys Met His Thr Thr Met Ala Ser Gln Ser Gly Pro Asp Gly Asn Tyr
85 90 95
Gly His Glu His Gly Asn Leu Gln His Ala Ala Ser Ala Met Pro Gln
100 105 110
Thr Ser Gly Glu Tyr Val Ile Pro Arg Pro Gln Phe Glu Leu Val Gly
115 120 125
His Ser Val Ala Cys Ala Thr Tyr Pro Tyr Ser Asp Met Tyr Tyr Thr
130 135 140
Gly Met Met Ala Ala Leu Gly Thr Gln Ala Gln Val His Pro His Leu
145 150 155 160
Phe Gly Val Gln His Thr Arg Met Pro Leu Pro Leu Glu Met Ala Glu
165 170 175
Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg
180 185 190
Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Arg Lys Leu Ile Lys Ser
195 200 205
Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg
210 215 220
Ala Arg Gly Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Glu Asn
225 230 235 240
Gly Ser Ser Lys His Thr Thr Glu Asn Ser Met Ala Ser Asp Cys Asn
245 250 255
Gly Asn Arg Asn Ser Pro Ser Gly Gln Gln Glu Ile Glu Gly Ser Asn
260 265 270
Val Gln Glu Ser His Ser Tyr Phe Asn Ser Asn Asp Lys Ser Cys Tyr
275 280 285
Gln His Asn Gln Gly Leu Gln Leu Ser Ser Phe His Pro Leu Ser Gly
290 295 300
Glu Arg Gly Glu Glu Gly Asp Cys Ser Gly Leu Gln Arg Gly Ser Ile
305 310 315 320
Ser Val Asn Gln Ala Gln Asn Arg Ala Leu Thr Ile Gln
325 330
41
1565
DNA
Argemone mexicana
41
caagaaagaa aagagagaag aaagaaaatt ttttgaaggt gggtttgaac agaggagaca 60
tgaccagatc tatcccaaca tctcttctcc ttatttctct cactttacca aatcccaaag 120
taaattcact ccagaagcgc gtaatatagg ttttcaaaaa cagttctgag gattttagat 180
tgttttcatc ttggtttgga atttacatag tgaagttaag tgaacaagaa tgcaagacaa 240
gtcaatttca catagtgttg ttagttgtcc aatttggtgg acttctactg gatcccaagt 300
tccacagagt tgtttatcaa agagtttaag cgtaaccttc gactcttctc gtcaagattg 360
cggtagtttg aagcagctag gttttcaact tcaagatcag gattcatcct cgactcaatc 420
aactggtcag tcgcatcatg aagtgggaaa tatgtctgga agcaacccta ctgggcaatg 480
catttcagct cagtgcgaaa aagttactta cgggaaacaa ggagatgttc aaacgaaatc 540
aattctatca cttggagctc cagaagttgt tctccctcaa caagttgatt ataaccacca 600
ctcagtggct cgtataccct atcattacgt tgatccgtat tacggtggca taatggcgtc 660
ttatggacca caggctatta ttcacccaca aatgatgggt ataacacctg cacgagtccc 720
attgcctctt gatcttgcag aaaatgagcc catgtatgtt aatgcaaaac agtaccgagc 780
aattcttaga cggaggcagt cccgtgctaa gcttgaggct caaaataaac ttatcaaaga 840
tcgcaagcct tatctacatg aatctcggca tcttcatgca ttgaagaggg ctaggggatc 900
tggtggacgt tttctcaaca cgaagcagct gcaagagttg aaacaaaaca actctaatgg 960
ccaaaatacc tccgagtcag cttatctaca gttgggagga aatctatctg aatcagaatt 1020
tggcaacggt ggcggtgctt ccaccacatc ctgctctgac atcactacag cctcaaacag 1080
cgaccacatt ttccgtcaac agaatctcag gtttgcgggt tacactcaca tgggtgggac 1140
catgcaagat ggaggtggag ggggcattat gagtaacggg tctcaccacc gtgttcccgt 1200
tacacagtaa aaaacatggg gagaaaaaca actttgtcag ccttttcgat tttggtgtga 1260
agaatggtgt gtactctcag ggtggaactg gagaactggc tggcttgtgt tgtttaccca 1320
tgggcaaatc atccttggct ttgttacctt ttatttatca ctatactttt tatatgatgt 1380
ttcttgctat atatgttttg ttgattttaa cttccataga tggacaatga tgaatttctg 1440
atactggatt gtccttgaaa ctcttcgctt ttattatata ttttgcgaaa aaaaaaaaaa 1500
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1560
aaaaa 1565
42
326
PRT
Argemone mexicana
42
Met Gln Asp Lys Ser Ile Ser His Ser Val Val Ser Cys Pro Ile Trp
1 5 10 15
Trp Thr Ser Thr Gly Ser Gln Val Pro Gln Ser Cys Leu Ser Lys Ser
20 25 30
Leu Ser Val Thr Phe Asp Ser Ser Arg Gln Asp Cys Gly Ser Leu Lys
35 40 45
Gln Leu Gly Phe Gln Leu Gln Asp Gln Asp Ser Ser Ser Thr Gln Ser
50 55 60
Thr Gly Gln Ser His His Glu Val Gly Asn Met Ser Gly Ser Asn Pro
65 70 75 80
Thr Gly Gln Cys Ile Ser Ala Gln Cys Glu Lys Val Thr Tyr Gly Lys
85 90 95
Gln Gly Asp Val Gln Thr Lys Ser Ile Leu Ser Leu Gly Ala Pro Glu
100 105 110
Val Val Leu Pro Gln Gln Val Asp Tyr Asn His His Ser Val Ala Arg
115 120 125
Ile Pro Tyr His Tyr Val Asp Pro Tyr Tyr Gly Gly Ile Met Ala Ser
130 135 140
Tyr Gly Pro Gln Ala Ile Ile His Pro Gln Met Met Gly Ile Thr Pro
145 150 155 160
Ala Arg Val Pro Leu Pro Leu Asp Leu Ala Glu Asn Glu Pro Met Tyr
165 170 175
Val Asn Ala Lys Gln Tyr Arg Ala Ile Leu Arg Arg Arg Gln Ser Arg
180 185 190
Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys Asp Arg Lys Pro Tyr
195 200 205
Leu His Glu Ser Arg His Leu His Ala Leu Lys Arg Ala Arg Gly Ser
210 215 220
Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Gln Glu Leu Lys Gln Asn
225 230 235 240
Asn Ser Asn Gly Gln Asn Thr Ser Glu Ser Ala Tyr Leu Gln Leu Gly
245 250 255
Gly Asn Leu Ser Glu Ser Glu Phe Gly Asn Gly Gly Gly Ala Ser Thr
260 265 270
Thr Ser Cys Ser Asp Ile Thr Thr Ala Ser Asn Ser Asp His Ile Phe
275 280 285
Arg Gln Gln Asn Leu Arg Phe Ala Gly Tyr Thr His Met Gly Gly Thr
290 295 300
Met Gln Asp Gly Gly Gly Gly Gly Ile Met Ser Asn Gly Ser His His
305 310 315 320
Arg Val Pro Val Thr Gln
325
43
1187
DNA
Oryza sativa
43
gcacgaggca gaggagagaa gcaaggtgag aagtgaggag gcagcaaggg aggaggtttg 60
ccggagaggg gacatgctcc ctcctcatct cacagaaaat ggcacagtaa tgattcagtt 120
tggtcataaa atgcctgact acgagtcatc agctacccaa tcaactagtg gatctcctcg 180
tgaagtgtct ggaatgagcg aaggaagcct caatgagcag aatgatcaat ctggtaatct 240
tgatggttac acgaagagtg atgaaggtaa gatgatgtca gctttatctc tgggcaaatc 300
agaaactgtg tatgcacatt cggaacctga ccgtagccaa ccctttggca tatcatatcc 360
atatgctgat tcgttctatg gtggtgctgt agcgacttat ggcacacatg ctattatgca 420
tccccagatt gtgggcgtga tgtcatcctc ccgagtcccg ctaccaatag aaccagccac 480
cgaagagcct atttatgtaa atgcaaagca ataccatgcg attctccgaa ggagacagct 540
ccgtgcaaag ttagaggctg aaaacaagct ggtgaaaaac cgcaagccgt acctccatga 600
atcccggcat caacacgcga tgaagagagc tcggggaaca ggggggagat tcctcaacac 660
aaagcagcag cctgaagctt cagatggtgg caccccaagg ctcgtctctg caaacggcgt 720
tgtgttctca aagcacgagc acagcttgtc gtccagtgat ctccatcatc gtcgtgtgaa 780
agagggcgct tgagatcctc gccgtttctg tcatggcaaa tcatccttgg cttatgtgtg 840
gtgcccagca aaaaaaaatc tgactgaacc tgtgtgtaaa ctgatgggta tgggtgggtt 900
ttgtgcaact gtaactaggg tgcttgacat ctgtgtctgt tgttcctctg cctccttagt 960
ttggagacgg tgcagctgca gctggtacca gtaatctgat catgctagac ttgtgacaag 1020
gacaaaacta gcaccccgtt atgtttcctg gcttctgaat ttggtggtca ttcagtaagc 1080
aagcactcga cgtcagcggg agggggttgc ttcgattgat ctagttcttt cgcgataaac 1140
ttatttaatt ttgaacaaag gttggtttca aaaaaaaaaa aaaaaaa 1187
44
239
PRT
Oryza sativa
44
Met Leu Pro Pro His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe
1 5 10 15
Gly His Lys Met Pro Asp Tyr Glu Ser Ser Ala Thr Gln Ser Thr Ser
20 25 30
Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu Asn Glu
35 40 45
Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu
50 55 60
Gly Lys Met Met Ser Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr
65 70 75 80
Ala His Ser Glu Pro Asp Arg Ser Gln Pro Phe Gly Ile Ser Tyr Pro
85 90 95
Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr His
100 105 110
Ala Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val
115 120 125
Pro Leu Pro Ile Glu Pro Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala
130 135 140
Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu
145 150 155 160
Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu
165 170 175
Ser Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg
180 185 190
Phe Leu Asn Thr Lys Gln Gln Pro Glu Ala Ser Asp Gly Gly Thr Pro
195 200 205
Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys His Glu His Ser
210 215 220
Leu Ser Ser Ser Asp Leu His His Arg Arg Val Lys Glu Gly Ala
225 230 235
45
1442
DNA
Oryza sativa
45
gcacgagtac agcgctccgc attagggctc gcctctcgtt ggctagagcg cgagagccag 60
tagccgcagc tgcagcaagc agcagcagca gcgaagagcc tgagccccag aggaggcgtg 120
caccgcctcc gattggccgg cctctcggag agagagagag agagagagat cgatcgagtc 180
ctattggccg ccgcctccgc gccctggctg ctcactggtg agcgagcatg gagtcgaggc 240
cggggggaac caacctcgtg gagccgaggg ggcagggcgc gctgccgtcc ggcataccga 300
tccagcagcc gtggtggacg acctccgccg gggtcggggc ggtgtcgccc gccgtcgtgg 360
cgccggggag cggtgcgggg atcagcctgt cgggcaggga tggcggcggc gacgacgcgg 420
cagaggagag cagcgatgac tcacgaagat caggggagac caaagatgga agcactgatc 480
aagaaaagca tcatgcaaca tcgcagatga ctgctttggc atcagactat ttaacaccat 540
tttcacagct ggaactaaac caaccaattg cttcggcagc ataccagtac cctgactctt 600
actatatggg catggttggt ccctatggac ctcaagctat gtccgcacag actcatttcc 660
agctacctgg attaactcac tctcgtatgc cgttgcctct tgaaatatct gaggagcctg 720
tttatgtaaa tgctaagcaa tatcatggaa ttttaagacg gaggcagtca cgtgcgaagg 780
ctgaacttga gaaaaaagtt gttaaatcaa gaaagcccta tcttcatgag tctcgtcatc 840
aacatgctat gcgaagggca agaggaacgg gtggacgctt cctgaacaca aagaaaaatg 900
aagatggtgc tcccagtgag aaagccgaac caaacaaagg agagcagaac tccgggtatc 960
gccggatccc tcctgactta cagctcctac agaaggaaac atgaagtagc ggctcgaaac 1020
ctagaacagt ggcttctgtc caccggcatt cactcttgag gtgattcttg ctccagaatt 1080
gtgctccatc tttcaaatga tcttcatcga gcaaagtaat tatatgtaca ttcctctgaa 1140
tgatctatgc accaattgtt gatcctggca gggtaataat ctggatgtat tgagtccatc 1200
acagtgcgaa tgtcacgggt agatctgctg ttttcaggca attcattctt ggctttctat 1260
cccacccgtt gttgttgcaa gttaagctag cagtacttgt ctcagtgtcc gtgagacgtt 1320
tgtgtaagat taggttaaac tagaagttgt aatgctgtat taagtgtttg tatttctaat 1380
atgaaccgta acaaggccag agcagaactc gttatacata caaaaaaaaa aaaaaaaaaa 1440
aa 1442
46
258
PRT
Oryza sativa
46
Met Glu Ser Arg Pro Gly Gly Thr Asn Leu Val Glu Pro Arg Gly Gln
1 5 10 15
Gly Ala Leu Pro Ser Gly Ile Pro Ile Gln Gln Pro Trp Trp Thr Thr
20 25 30
Ser Ala Gly Val Gly Ala Val Ser Pro Ala Val Val Ala Pro Gly Ser
35 40 45
Gly Ala Gly Ile Ser Leu Ser Gly Arg Asp Gly Gly Gly Asp Asp Ala
50 55 60
Ala Glu Glu Ser Ser Asp Asp Ser Arg Arg Ser Gly Glu Thr Lys Asp
65 70 75 80
Gly Ser Thr Asp Gln Glu Lys His His Ala Thr Ser Gln Met Thr Ala
85 90 95
Leu Ala Ser Asp Tyr Leu Thr Pro Phe Ser Gln Leu Glu Leu Asn Gln
100 105 110
Pro Ile Ala Ser Ala Ala Tyr Gln Tyr Pro Asp Ser Tyr Tyr Met Gly
115 120 125
Met Val Gly Pro Tyr Gly Pro Gln Ala Met Ser Ala Gln Thr His Phe
130 135 140
Gln Leu Pro Gly Leu Thr His Ser Arg Met Pro Leu Pro Leu Glu Ile
145 150 155 160
Ser Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu
165 170 175
Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val
180 185 190
Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met
195 200 205
Arg Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Lys Asn
210 215 220
Glu Asp Gly Ala Pro Ser Glu Lys Ala Glu Pro Asn Lys Gly Glu Gln
225 230 235 240
Asn Ser Gly Tyr Arg Arg Ile Pro Pro Asp Leu Gln Leu Leu Gln Lys
245 250 255
Glu Thr
47
423
DNA
Oryza sativa
unsure
(223)
n = A, C, G, or T
47
cattggttct aatcttgaca gagtttaagg ttggcacttt ctgtcagaag ttaagttagg 60
acttccacaa aattatacca tctctgggtg ttcttatagg tgtttctcac tatcaggaat 120
gtacagttct tgcagctgtc aagttctttg tacctatgtt tctgtatctt ctaaagattt 180
tgattcgtct gcactgtgca gccatatctc catgagtcac ggnatcaaca tgccctgaaa 240
agggctaggg gagctggagg ccgatttctt aattcaaaat cggatgacaa ggaaagagca 300
ttctgattcc aagttccaag agataaacan gatggagttg cacccccgtg ataatgggca 360
aacgtctanc tctccgtctt caaaggggng gatcatcagc tnaacaaaat aaagaagtca 420
aaa 423
48
34
PRT
Oryza sativa
UNSURE
(9)
Xaa = any amino acid
48
Gln Pro Tyr Leu His Glu Ser Arg Xaa Gln His Ala Leu Lys Arg Ala
1 5 10 15
Arg Gly Ala Gly Gly Arg Phe Leu Asn Ser Lys Ser Asp Asp Lys Glu
20 25 30
Arg Ala
49
479
DNA
Oryza sativa
49
ctcttctcat ctcatctccc tctcctctcc tctcgccgtc gccgtcgccg tcgccgccgc 60
tcgccgccgg cggggataga gttcgccggg atcgcctcgc cgggagagtt ccctcaccat 120
cccgcacctc cgctcgcctg gcctcttcct cccggaagtg tggtgtgctg caagctcctg 180
tctctcctac aaggtttcaa aaccaaaata tgcctgaagc acacggaaag ctggggtgat 240
taacgtctgt ttcttttgac tacaatcatc ctgattctgc ttctgtctgc aaaaacaacc 300
aagccatgac gtctgtagtt catgatgttt caggcaacca tggagctgat gagcggcaaa 360
aacagcaaag gcaaggtgaa cctgaggacc aagcaagaag cctcagttac tagtacagat 420
agccatacaa tggtaagcaa caccttcaac agattatgcg acaacctatg cccatcacg 479
50
35
PRT
Oryza sativa
50
Met Thr Ser Val Val His Asp Val Ser Gly Asn His Gly Ala Asp Glu
1 5 10 15
Arg Gln Lys Gln Gln Arg Gln Gly Glu Pro Glu Asp Gln Ala Arg Ser
20 25 30
Leu Ser Tyr
35
51
1107
DNA
Oryza sativa
51
gcacgagcaa ttatccttgt attgaccaat gctatggtct tatgaccacc tacgcgatga 60
aatcaatgag tggcgggcga atgctactgc cgctgaacgc gccagccgat gcgccgatct 120
atgtcaacgc gaagcagtac gaaggcatcc tccgccgtcg ccgtgcccgc gccaaggccc 180
agagggagaa caggctggtc aaaggcagga agccctacct ccacgagtcg cgccaccgcc 240
acgccatgcg ccgggccaga ggctccggcg gccgcttcct caacaccaag aaagaagcca 300
ccgccgccgg atgcggcggc agcagcaaga cgcccctcgc gtccctcgtc agccccgccg 360
acgtagccca tcgtccaggc tccggcggcc gcgcgtccag cctctccggc tccgacgtgt 420
cgtcgccggg aggcgtcatg tacgaccacc accgccacga cgacgccgac gcggcggacc 480
actacaacag catcgaccac cacctccgca cgccgttctt caccccgctc ccgatcatca 540
tggacagcgg cggcggcggc ggcgaccacg cctcacactc cgccgccgcc gtcgccgccc 600
ccttcaggtg ggcgacggcg gccggcgacg gctgctgcga gctcctcaag gcgtgacagc 660
cttgaggcgg ggatctccag gcgtgcccag agctgctgct gatcgatcac catcagcttt 720
ggctgcctgt aggcaaatca ttcttggctc tttacttgca ttggggttct tgcaagcaac 780
tctcctcgtc acctaccaaa actgtccctg aaacttctct agtgctgggg tctcgatcag 840
ggatgatgat gtgatggagg agaggcttac ccatatgcct gtaaattatg gttagtgttc 900
tgattaagca actagtagta cttggtaatt actggctatg aattagtagt atggactctg 960
gtgtcaggtt gctctttgtc tgaataaact ggagtcgttt gaagctttgc aaaaaaaaaa 1020
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1080
aaaaaaaaaa aaaaaaaaaa aaaaaaa 1107
52
217
PRT
Oryza sativa
52
Thr Ser Asn Tyr Pro Cys Ile Asp Gln Cys Tyr Gly Leu Met Thr Thr
1 5 10 15
Tyr Ala Met Lys Ser Met Ser Gly Gly Arg Met Leu Leu Pro Leu Asn
20 25 30
Ala Pro Ala Asp Ala Pro Ile Tyr Val Asn Ala Lys Gln Tyr Glu Gly
35 40 45
Ile Leu Arg Arg Arg Arg Ala Arg Ala Lys Ala Gln Arg Glu Asn Arg
50 55 60
Leu Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His
65 70 75 80
Ala Met Arg Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys
85 90 95
Lys Glu Ala Thr Ala Ala Gly Cys Gly Gly Ser Ser Lys Thr Pro Leu
100 105 110
Ala Ser Leu Val Ser Pro Ala Asp Val Ala His Arg Pro Gly Ser Gly
115 120 125
Gly Arg Ala Ser Ser Leu Ser Gly Ser Asp Val Ser Ser Pro Gly Gly
130 135 140
Val Met Tyr Asp His His Arg His Asp Asp Ala Asp Ala Ala Asp His
145 150 155 160
Tyr Asn Ser Ile Asp His His Leu Arg Thr Pro Phe Phe Thr Pro Leu
165 170 175
Pro Ile Ile Met Asp Ser Gly Gly Gly Gly Gly Asp His Ala Ser His
180 185 190
Ser Ala Ala Ala Val Ala Ala Pro Phe Arg Trp Ala Thr Ala Ala Gly
195 200 205
Asp Gly Cys Cys Glu Leu Leu Lys Ala
210 215
53
977
DNA
Oryza sativa
53
gcacgaggca aactctagga tgccattgcc tgttgatcct tctgtagaag agcccatatt 60
tgtcaatgca aagcaataca atgcgatcct tagaagaagg caaacgcgtg caaaattgga 120
ggcccaaaat aaggcggtga aaggtcggaa gccttacctc catgaatctc gacatcatca 180
tgctatgaag cgagcccgtg gatcaggtgg tcggttcctt accaaaaagg agctgctgga 240
acagcagcag cagcagcagc agcagaagcc accaccggca tcagctcagt ctccaacagg 300
tagagccaga acgagcggcg gtgccgttgt ccttggcaag aacctgtgcc cagagaacag 360
cacatcctgc tcgccatcga caccgacagg ctccgagatc tccagcatct catttggggg 420
cggcatgctg gctcaccaag agcacatcag cttcgcatcc gctgatcgcc accccacaat 480
gaaccagaac caccgtgtcc ccgtcatgag gtgaaaacct cgggatcgcg ggacacgggc 540
ggttctggtt taccctcact ggcgcactcc ggtgtgcccg tggcaattca tccttggctt 600
atgaagtatc tacctgataa tagtctgctg tcagtttata tgcaatgcaa cctctgtcag 660
ataaactctt atagtttgtt ttattgtaag ctatgactga acgaactgtc gagcagatgg 720
ctaatttgta tgttgtgggt acagaaatcc tgaagctttt gatgtaccta attgcctttt 780
gcttatactc ttggtgtata cccattacca agttgcctta aaaaccctcc aattatgtaa 840
tcagtcatgg ttttatagaa ccttgccaca tgtaatcaat cacctgtttt tgtaaattga 900
tctataaacg ctataggctg ctgtgttatc tgcatttaaa aaaaaaaaaa aaaaaaaaaa 960
aaaaaaaaaa aaaaaaa 977
54
168
PRT
Oryza sativa
54
Ala Asn Ser Arg Met Pro Leu Pro Val Asp Pro Ser Val Glu Glu Pro
1 5 10 15
Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln
20 25 30
Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala Val Lys Gly Arg Lys
35 40 45
Pro Tyr Leu His Glu Ser Arg His His His Ala Met Lys Arg Ala Arg
50 55 60
Gly Ser Gly Gly Arg Phe Leu Thr Lys Lys Glu Leu Leu Glu Gln Gln
65 70 75 80
Gln Gln Gln Gln Gln Gln Lys Pro Pro Pro Ala Ser Ala Gln Ser Pro
85 90 95
Thr Gly Arg Ala Arg Thr Ser Gly Gly Ala Val Val Leu Gly Lys Asn
100 105 110
Leu Cys Pro Glu Asn Ser Thr Ser Cys Ser Pro Ser Thr Pro Thr Gly
115 120 125
Ser Glu Ile Ser Ser Ile Ser Phe Gly Gly Gly Met Leu Ala His Gln
130 135 140
Glu His Ile Ser Phe Ala Ser Ala Asp Arg His Pro Thr Met Asn Gln
145 150 155 160
Asn His Arg Val Pro Val Met Arg
165
55
465
DNA
Oryza sativa
unsure
(280)
n = A, C, G, or T
55
cttacagcag ccttaccttc acgaatctcg gcatcgccat gcaatgaaga gggctagggg 60
cactggtggg cgattcctga ataccaagca gctccagctg cagcaacagt ctcacactac 120
ctccaccaag accaccacag acagccaaaa ttcttcaggt tcaagtcatc tacggctagg 180
tggtggcgca atcggagatc aaactccatt tccgttcaaa gcaatggatt cacaagctaa 240
catcaagaga gctgcagctt ctgcttccac cttcactgtn acttctgcgg gacaaaaaga 300
cgacgccttc ttcgaccgcc atggncaaca tctcaataac ttctccggnc attttggnca 360
agcaagcnca caaaggggng tcggnaagca tgcataaccg gtcaaaagca agagggttcc 420
tgctnatgnn gatganatga aagagcagct tggaaatcna acant 465
56
131
PRT
Oryza sativa
UNSURE
(123)
Xaa = any amino acid
56
Leu Gln Gln Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys
1 5 10 15
Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Gln
20 25 30
Leu Gln Gln Gln Ser His Thr Thr Ser Thr Lys Thr Thr Thr Asp Ser
35 40 45
Gln Asn Ser Ser Gly Ser Ser His Leu Arg Leu Gly Gly Gly Ala Ile
50 55 60
Gly Asp Gln Thr Pro Phe Pro Phe Lys Ala Met Asp Ser Gln Ala Asn
65 70 75 80
Ile Lys Arg Ala Ala Ala Ser Ala Ser Thr Phe Thr Val Thr Ser Ala
85 90 95
Gly Gln Lys Asp Asp Ala Phe Phe Asp Arg His Gly Gln His Leu Asn
100 105 110
Asn Phe Ser Gly His Phe Gly Gln Ala Ser Xaa Gln Arg Gly Val Gly
115 120 125
Lys His Ala
130
57
1482
DNA
Glycine max
57
tttctgttct tctctgggga tctgaagaca tgcagtccaa gtctgaaact gcaaatcgac 60
tgagatcaga tcctcattcc tttcaacctg gcagtgttta ttctgagcct tggtggcgtg 120
gtattgggta caatcctgtg gcccaaacaa tggctggggc aaatgcatcc aattcatcgt 180
ctcttgaatg ccctaatggt gattctgaat ccaatgaaga aggtcaatct ttgtccaata 240
gcgggatgaa tgaggaagat gatgatgcca ctaaggattc acagcctgct gttcctaatg 300
gaacaggaaa ttatgggcaa gaacagcaag ggatgcagca tactgcatca tctgcaccct 360
ccatgcgtga agaatgcctt actcagacac cacagctgga acttgtcggt cattcaattg 420
catgtgctac aaatccttat caggatccgt attatggggg catgatggca gcttatggtc 480
accaacagtt gggatatgct ccttttatag gaatgcctca tgccagaatg cctttgcccc 540
ttgagatggc tcaagaacct gtgtatgtga atgccaaaca gtaccaagga attctgaggc 600
gaagacaggc tcgtgctaaa gcagagcttg aaaggaagct cataaaatct agaaagccat 660
atcttcatga atctaggcat cagcatgcta tgagaagggc aaggggtact ggaggacgat 720
ttgcaaagaa aactgacggt gagggctcaa accactcagg caaggaaaag gataatggta 780
ctgattctgt cctatcatca caatcaatta gttcatctgg ttctgaacct ttacattctg 840
actctgccga aacctggaat tctcctaaca tgcaacaaga tgcaagagca tcaaaagtgc 900
acaacaggtt caaagcaccc tgttaccaaa atggcagtgg ctcctaccat aatcataatg 960
gattgcaatc ttcagtgtac cattcatcct caggtgaaag actggaggaa agggattgtt 1020
cgggtcagca actgaaccac aattgatggg gggttagagg ccgaggttgg tttgtatcca 1080
agtgacatat ttggtgaata ccttggttat ctgtaaacac tcttggcaat atatatgcca 1140
agcggcaaat cattcttggc tttgttcttg tgtttgtggt gttaatgata ctatgggggg 1200
ggtggggggg gggggaatga ttggtatttg agatttctgt tgaagtcagt caatcaatcc 1260
ttcgttcttt tctcattttt gcattttgta aagttttata gtggttagga tggtcacttc 1320
agaagattat ggagtatggt gagaaacaaa ctcttgatgt gccaacactc gtttgactgg 1380
tttatctttg tgtagttcaa ccggttgtta atgttaacat aagacatcat aggataatga 1440
acatgctgtt agttacatta catcaaaaaa aaaaaaaaaa aa 1482
58
338
PRT
Glycine max
58
Met Gln Ser Lys Ser Glu Thr Ala Asn Arg Leu Arg Ser Asp Pro His
1 5 10 15
Ser Phe Gln Pro Gly Ser Val Tyr Ser Glu Pro Trp Trp Arg Gly Ile
20 25 30
Gly Tyr Asn Pro Val Ala Gln Thr Met Ala Gly Ala Asn Ala Ser Asn
35 40 45
Ser Ser Ser Leu Glu Cys Pro Asn Gly Asp Ser Glu Ser Asn Glu Glu
50 55 60
Gly Gln Ser Leu Ser Asn Ser Gly Met Asn Glu Glu Asp Asp Asp Ala
65 70 75 80
Thr Lys Asp Ser Gln Pro Ala Val Pro Asn Gly Thr Gly Asn Tyr Gly
85 90 95
Gln Glu Gln Gln Gly Met Gln His Thr Ala Ser Ser Ala Pro Ser Met
100 105 110
Arg Glu Glu Cys Leu Thr Gln Thr Pro Gln Leu Glu Leu Val Gly His
115 120 125
Ser Ile Ala Cys Ala Thr Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly
130 135 140
Met Met Ala Ala Tyr Gly His Gln Gln Leu Gly Tyr Ala Pro Phe Ile
145 150 155 160
Gly Met Pro His Ala Arg Met Pro Leu Pro Leu Glu Met Ala Gln Glu
165 170 175
Pro Val Tyr Val Asn Ala Lys Gln Tyr Gln Gly Ile Leu Arg Arg Arg
180 185 190
Gln Ala Arg Ala Lys Ala Glu Leu Glu Arg Lys Leu Ile Lys Ser Arg
195 200 205
Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala
210 215 220
Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asp Gly Glu Gly Ser
225 230 235 240
Asn His Ser Gly Lys Glu Lys Asp Asn Gly Thr Asp Ser Val Leu Ser
245 250 255
Ser Gln Ser Ile Ser Ser Ser Gly Ser Glu Pro Leu His Ser Asp Ser
260 265 270
Ala Glu Thr Trp Asn Ser Pro Asn Met Gln Gln Asp Ala Arg Ala Ser
275 280 285
Lys Val His Asn Arg Phe Lys Ala Pro Cys Tyr Gln Asn Gly Ser Gly
290 295 300
Ser Tyr His Asn His Asn Gly Leu Gln Ser Ser Val Tyr His Ser Ser
305 310 315 320
Ser Gly Glu Arg Leu Glu Glu Arg Asp Cys Ser Gly Gln Gln Leu Asn
325 330 335
His Asn
59
1385
DNA
Glycine max
59
gcacgagggg attttgagtg gaggggaaaa gttgtgctaa gatgccgggg aaagctgaca 60
ctgatgattg gcgagtagag cggggtgagc agattcagtt tcagtcttcc atttactctc 120
atcatcagcc ttggtggtgt ggagtggggg aaaatgcctc taaatcatct tcagctgatc 180
agttaaatgg ttcaatcgtg aatggtatca cgcggtctga gaccaatgat aagtcaggtg 240
aaggtgttgc caaagaatac caaaacatca aacatgccgt gttgtcaacc ccatttacca 300
tggacaaaca tcttgctcca aatccccaga tggaacttgt tggtcattca gttgttttaa 360
catctcctta ttcagatgca cagcatggtc aaatcttgac tacttacggg caacaagtta 420
tgataaaccc tcaattgtac ggaatgtatc atgctagaat gcctttgcca cctgaaatgg 480
aagaggagcc tgtttatgtc aatgcaaagc agtatcatgg tattttgagg cgaagacagt 540
cacgtgctaa ggctgagctt gaaaagaaag taatcaaaaa caggaagcca tacctccatg 600
aatcccgtca ccttcatgcc atgagaaggg ctagaggcaa tggtggtcgc tttctcaaca 660
aaaagaagct cgaaaattac aattctgatg ccacttcaga cattgggcaa aatactggtg 720
caaacccctc aacaaactca cctaacactc aacatttgtt caccaacaat gagaatctag 780
gctcatcaaa tgcgtcacaa gccacggttc aggacatgca cagagtggag agtttcaata 840
ttggttacca taatggaaat ggtcttgcag aactgtacca ttcacaagca aatggaaaaa 900
aggagggaaa ctgctttggt aaagagaggg accctaataa tggggctttc aaatgacact 960
tcgcccagcc atacagcaac agttaggtga agatgaaggg tttttatctc atccaacttg 1020
tgatgctgta ttgaaggcaa ttcattcttg gcttagttaa gtggtgagac cagtgacatg 1080
gagtacactc tgccttgttt ggtctctccc cttgcatttg tttctcttta caagtccata 1140
tgtaaaaatg gataacggaa agaaaaagaa aaatcacttt tgtttgagaa cttttttaag 1200
tttgttttta actgtgtgaa ggtttcataa aattgtggac tgacttgtgt gacatatgct 1260
ccacaaaacc ttaaaacttt cgtctatttt gtccaaaaaa aaaaaaaaaa aaaaaaaaaa 1320
aaaaaaaaaa aaagggaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1380
aaaaa 1385
60
304
PRT
Glycine max
60
Met Pro Gly Lys Ala Asp Thr Asp Asp Trp Arg Val Glu Arg Gly Glu
1 5 10 15
Gln Ile Gln Phe Gln Ser Ser Ile Tyr Ser His His Gln Pro Trp Trp
20 25 30
Cys Gly Val Gly Glu Asn Ala Ser Lys Ser Ser Ser Ala Asp Gln Leu
35 40 45
Asn Gly Ser Ile Val Asn Gly Ile Thr Arg Ser Glu Thr Asn Asp Lys
50 55 60
Ser Gly Glu Gly Val Ala Lys Glu Tyr Gln Asn Ile Lys His Ala Val
65 70 75 80
Leu Ser Thr Pro Phe Thr Met Asp Lys His Leu Ala Pro Asn Pro Gln
85 90 95
Met Glu Leu Val Gly His Ser Val Val Leu Thr Ser Pro Tyr Ser Asp
100 105 110
Ala Gln His Gly Gln Ile Leu Thr Thr Tyr Gly Gln Gln Val Met Ile
115 120 125
Asn Pro Gln Leu Tyr Gly Met Tyr His Ala Arg Met Pro Leu Pro Pro
130 135 140
Glu Met Glu Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly
145 150 155 160
Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys
165 170 175
Val Ile Lys Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His
180 185 190
Ala Met Arg Arg Ala Arg Gly Asn Gly Gly Arg Phe Leu Asn Lys Lys
195 200 205
Lys Leu Glu Asn Tyr Asn Ser Asp Ala Thr Ser Asp Ile Gly Gln Asn
210 215 220
Thr Gly Ala Asn Pro Ser Thr Asn Ser Pro Asn Thr Gln His Leu Phe
225 230 235 240
Thr Asn Asn Glu Asn Leu Gly Ser Ser Asn Ala Ser Gln Ala Thr Val
245 250 255
Gln Asp Met His Arg Val Glu Ser Phe Asn Ile Gly Tyr His Asn Gly
260 265 270
Asn Gly Leu Ala Glu Leu Tyr His Ser Gln Ala Asn Gly Lys Lys Glu
275 280 285
Gly Asn Cys Phe Gly Lys Glu Arg Asp Pro Asn Asn Gly Ala Phe Lys
290 295 300
61
1401
DNA
Glycine max
61
gaagtcttta tgtgacctgg gtggaatgat tctgtgtctg catgtgtgaa ttctggcaag 60
ggaactaggg atctgaagat aagatatgca atctaaatct gaaactgcaa atcaactgag 120
gtctgatcca cattccttta cacctaacaa tgcttattct gaaccctggt ggcgaggtat 180
tcagtacaat cctgtccccc aagcaatgtt aggagtgaat gcatctaatt catcttcact 240
tgaacgccct aatggtgatt cggaatccag tgaagaggat gatgatgcca ctaaagaatc 300
acaacccact gctcctaatc aatcaggaaa ttatggacag gaccaccaag cgatgcaaca 360
ttcttcatca tctgcacctt tggtacgtga tgattgcctt acacaggctc cacaagtgga 420
acttgttggc cactcaattg gatacactcc ttttatagga atgccccatg ccagaatggc 480
tttgcccctt gagatggctc aagagcctgt ttatgtgaat gccaaacaat accaaggaat 540
tctgagacga agacaggctc gtgctaaagc agagcttgaa aagaaattaa taaaagtcag 600
aaagccatat cttcatgaat cccggcatca gcatgctata agaagagcac gaggtaatgg 660
agggcgtttt gcaaagaaaa ctgaagttga ggcttcaaac cacatgaaca aggaaaagga 720
tatgggtact ggccaggtcc cattgtcacg gtcaattagt tcatctggtt ttggatcact 780
accctctgac tctgctgaga cctggaattc tcctagtgtg caacaagatg caagaggatc 840
tcaagtgcat gagagatttg aagaacgcaa ctatgcaaat gttttgcagt catcatctac 900
tttttgtttg cactcgggtg aaagagtgga ggaaggggac tgttcaggtc aacaacgggg 960
aagcatcttg tcagagcaca cctcacagag gcgtcttgct attcagtaaa ccactgcatg 1020
tgttgatgct gaggttggta tatataattg agtgaactag taggttgagt accttggcta 1080
tctatctgta aacattggca atttgcatgc atgtcaagcg gcaaatcatt cttggctggg 1140
tttcagctgt tcatgatatg gggagaagaa tgattgattg ggccatcata cttgtgttgt 1200
tgaagtctac cagtccttca ttatatcctc tttttcattt tttctgtttt tgtacagaga 1260
tagtagttag caaagtcaag ccaacggatt agaagacttg atgaaacaaa ctactgactc 1320
actttcctct ggcggcttta ttttatgtta ctcaccggtt attaatgctt aatatgagac 1380
atcatatgag agatttgctg c 1401
62
307
PRT
Glycine max
62
Met Gln Ser Lys Ser Glu Thr Ala Asn Gln Leu Arg Ser Asp Pro His
1 5 10 15
Ser Phe Thr Pro Asn Asn Ala Tyr Ser Glu Pro Trp Trp Arg Gly Ile
20 25 30
Gln Tyr Asn Pro Val Pro Gln Ala Met Leu Gly Val Asn Ala Ser Asn
35 40 45
Ser Ser Ser Leu Glu Arg Pro Asn Gly Asp Ser Glu Ser Ser Glu Glu
50 55 60
Asp Asp Asp Ala Thr Lys Glu Ser Gln Pro Thr Ala Pro Asn Gln Ser
65 70 75 80
Gly Asn Tyr Gly Gln Asp His Gln Ala Met Gln His Ser Ser Ser Ser
85 90 95
Ala Pro Leu Val Arg Asp Asp Cys Leu Thr Gln Ala Pro Gln Val Glu
100 105 110
Leu Val Gly His Ser Ile Gly Tyr Thr Pro Phe Ile Gly Met Pro His
115 120 125
Ala Arg Met Ala Leu Pro Leu Glu Met Ala Gln Glu Pro Val Tyr Val
130 135 140
Asn Ala Lys Gln Tyr Gln Gly Ile Leu Arg Arg Arg Gln Ala Arg Ala
145 150 155 160
Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Val Arg Lys Pro Tyr Leu
165 170 175
His Glu Ser Arg His Gln His Ala Ile Arg Arg Ala Arg Gly Asn Gly
180 185 190
Gly Arg Phe Ala Lys Lys Thr Glu Val Glu Ala Ser Asn His Met Asn
195 200 205
Lys Glu Lys Asp Met Gly Thr Gly Gln Val Pro Leu Ser Arg Ser Ile
210 215 220
Ser Ser Ser Gly Phe Gly Ser Leu Pro Ser Asp Ser Ala Glu Thr Trp
225 230 235 240
Asn Ser Pro Ser Val Gln Gln Asp Ala Arg Gly Ser Gln Val His Glu
245 250 255
Arg Phe Glu Glu Arg Asn Tyr Ala Asn Val Leu Gln Ser Ser Ser Thr
260 265 270
Phe Cys Leu His Ser Gly Glu Arg Val Glu Glu Gly Asp Cys Ser Gly
275 280 285
Gln Gln Arg Gly Ser Ile Leu Ser Glu His Thr Ser Gln Arg Arg Leu
290 295 300
Ala Ile Gln
305
63
1241
DNA
Glycine max
63
gcacgaggtc ctaagttgta agaaacactc tcttctcctt tctcactatt gttctgttac 60
tgttttttgc agcaacactt cagttcaatt aacgaactac accactttct ttctcttctt 120
cgactgctct gtaaccgaaa acctcccttt cccagtttcg aatcttttgt ttctgccttt 180
ggttactgtt tttccgagcc atgctattca ttattgtcct tcgaatcgga ttgattggga 240
cactgtattg catgtaaatc aggaaatcat gacttctact catgacctct cagataatga 300
agctgatgac cagcagcagt cggaatcaca aatggagcct ttatctgcaa atggaatttc 360
ttatgcaggt attgctactc agaatgttca gtatgcaaca ccttcacagc ttggaactgg 420
gcatgctgtg gtaccgccca cttacccata tccagatcca tactacagaa gtatctttgc 480
tccctatgat gcacaaactt atcccccaca accctatggt ggaaatccaa tggtccacct 540
tcagttaatg ggaattcaac aagcaggtgt tcctttgcca actgatacag ttgaggagcc 600
tgtgtttgtc aatgcaaaac agtatcatgg tatattaaga cgcagacagt cccgtgctaa 660
agctgaatca gaaaaaaagg ctgcaaggaa tcggaagcca tacttgcatg aatctcgaca 720
tttgcatgca ctgagaagag caagaggatg tggaggtcgg tttttgaatt caaagaaaga 780
tgagaatcaa caggatgagg ttgcatcaac tgacgaatca cagtccacta tcaatctcaa 840
ttctgataaa aatgagcttg caccatcaga tagaacatcc taaaactaca gaaatggtga 900
tgctgtagat tgcagggatc tgttgtgtat atctatattg ggagatgaat ctccaaccaa 960
cagtatcctc agatatctcc ctattattca ttctgtcgta caacgccata ggtataagta 1020
taggttgtgt agtaggtatg ttaggaggtt gcaaaataaa acaagtaaaa tgtaaattga 1080
agtgattcaa ctaagtctat ccccaatgtg gtcctttctt gcctttttag gtatttttat 1140
tgtgtgggct tttctttgta ttatttggtg cctctgaggg aaagagaaga gattatccga 1200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 1241
64
204
PRT
Glycine max
64
Met Thr Ser Thr His Asp Leu Ser Asp Asn Glu Ala Asp Asp Gln Gln
1 5 10 15
Gln Ser Glu Ser Gln Met Glu Pro Leu Ser Ala Asn Gly Ile Ser Tyr
20 25 30
Ala Gly Ile Ala Thr Gln Asn Val Gln Tyr Ala Thr Pro Ser Gln Leu
35 40 45
Gly Thr Gly His Ala Val Val Pro Pro Thr Tyr Pro Tyr Pro Asp Pro
50 55 60
Tyr Tyr Arg Ser Ile Phe Ala Pro Tyr Asp Ala Gln Thr Tyr Pro Pro
65 70 75 80
Gln Pro Tyr Gly Gly Asn Pro Met Val His Leu Gln Leu Met Gly Ile
85 90 95
Gln Gln Ala Gly Val Pro Leu Pro Thr Asp Thr Val Glu Glu Pro Val
100 105 110
Phe Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser
115 120 125
Arg Ala Lys Ala Glu Ser Glu Lys Lys Ala Ala Arg Asn Arg Lys Pro
130 135 140
Tyr Leu His Glu Ser Arg His Leu His Ala Leu Arg Arg Ala Arg Gly
145 150 155 160
Cys Gly Gly Arg Phe Leu Asn Ser Lys Lys Asp Glu Asn Gln Gln Asp
165 170 175
Glu Val Ala Ser Thr Asp Glu Ser Gln Ser Thr Ile Asn Leu Asn Ser
180 185 190
Asp Lys Asn Glu Leu Ala Pro Ser Asp Arg Thr Ser
195 200
65
1716
DNA
Glycine max
65
gcacgaggta cgtaccgaca tgactccaac ctgatggggt taaacactgc ttctgcgtag 60
gattcgatgc cgctactcct tcttcagttt ctacaactga gtttcatatc tcctttctat 120
tgatgtttat gctgaagact gaataaaagt ctgagaaagc tgcttactac aaaccaacaa 180
gattaactaa gaaatcatct tttgggacga tgcaaactgt ttatcttaaa gagcacgaag 240
gaaatgcgca caattttgtg ggcacgttgt cttctgcagc ttcagcaccc tggtggagtg 300
cttttggatc tcaatctgtt catcagggag agtcttgtgg ccaagtgaaa cccttttcat 360
tggagctgcc aaactgcata gaccaacttg ctgccactaa gccactagca agaggagctg 420
accaagtgtt gggtaaaggg cacataactc agtttacaat ctttccagat gattgtaaaa 480
tgtcagatga tgcgcaaaag cttcagacaa ccatgtcact gcagtcatcg cttactgatc 540
cacagtctcg ttttgagata gggtttagtc tgcccacgat atgtgcaaaa tatccttata 600
cggatcaatt ttatggactc ttctcagctt atgcacctca aatttcggga cgtataatgc 660
tgccacttaa catgacatct gatgatgaac caatttacgt aaatgctaag cagtaccatg 720
gaatcattag acgtcggcag tcccgtgcca aagctgtact tgatcacaaa ttgactaaac 780
gtcgcaagcc ctatatgcac gaatcacgcc atctccatgc aatgcggcga ccaagaggat 840
gtgggggtcg cttcttgaac actaagaatt ctgttgacgg aaatggtaaa attggaaatg 900
aagtgcataa aactgttggt gaacaattgc agtctagtgg ctctcagagt tctgaattcc 960
ttcaatctga ggttggaact tttaattcat caaaagagac taatggaagc agtccaaata 1020
tttctggttc agaggtgact agcatgtatt cgcggggagg tcttgacagc ttttctctca 1080
atcatcttgg atctgctgtc cactcttttg cagacatgat agatggtggg cgcggtatga 1140
tcatacccac caaatgggtt gcagcagcag gtaactgctg caaccttaaa gtttgatttg 1200
caaagaatca agggtgggct tgctgtagca ttgcaccagg cccatcctcg atgaggccag 1260
atgaagaagc ttcgtttcag ttgcgtgtgc tgactgtgac aagtttcgct cggtaagatc 1320
gtcctcacat ctggtctagg caatccatcc ttggctcata ctttggcaat ccatccttgg 1380
ctcattgtaa ctgaaggcaa ctcatccttg gcttgatgta cttgcagtaa tttgtctttc 1440
tgcacaggaa tgttgttggc atggtacaaa ctaatgactt gatatcctga tgcagaagac 1500
aactatgttt ctgtctttgt gtgaaaatga aagcatgaaa ctctagttat gtgtgcttcg 1560
aataatgtct aaacgtggtg ttgtattttg tatttctgac ttcgaggaac aatgtattat 1620
agaaccttgt tctgtggtct ttgttagaaa aaataaagca ttggtgtgtt tttctccaaa 1680
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaag 1716
66
328
PRT
Glycine max
66
Met Gln Thr Val Tyr Leu Lys Glu His Glu Gly Asn Ala His Asn Phe
1 5 10 15
Val Gly Thr Leu Ser Ser Ala Ala Ser Ala Pro Trp Trp Ser Ala Phe
20 25 30
Gly Ser Gln Ser Val His Gln Gly Glu Ser Cys Gly Gln Val Lys Pro
35 40 45
Phe Ser Leu Glu Leu Pro Asn Cys Ile Asp Gln Leu Ala Ala Thr Lys
50 55 60
Pro Leu Ala Arg Gly Ala Asp Gln Val Leu Gly Lys Gly His Ile Thr
65 70 75 80
Gln Phe Thr Ile Phe Pro Asp Asp Cys Lys Met Ser Asp Asp Ala Gln
85 90 95
Lys Leu Gln Thr Thr Met Ser Leu Gln Ser Ser Leu Thr Asp Pro Gln
100 105 110
Ser Arg Phe Glu Ile Gly Phe Ser Leu Pro Thr Ile Cys Ala Lys Tyr
115 120 125
Pro Tyr Thr Asp Gln Phe Tyr Gly Leu Phe Ser Ala Tyr Ala Pro Gln
130 135 140
Ile Ser Gly Arg Ile Met Leu Pro Leu Asn Met Thr Ser Asp Asp Glu
145 150 155 160
Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Ile Arg Arg Arg
165 170 175
Gln Ser Arg Ala Lys Ala Val Leu Asp His Lys Leu Thr Lys Arg Arg
180 185 190
Lys Pro Tyr Met His Glu Ser Arg His Leu His Ala Met Arg Arg Pro
195 200 205
Arg Gly Cys Gly Gly Arg Phe Leu Asn Thr Lys Asn Ser Val Asp Gly
210 215 220
Asn Gly Lys Ile Gly Asn Glu Val His Lys Thr Val Gly Glu Gln Leu
225 230 235 240
Gln Ser Ser Gly Ser Gln Ser Ser Glu Phe Leu Gln Ser Glu Val Gly
245 250 255
Thr Phe Asn Ser Ser Lys Glu Thr Asn Gly Ser Ser Pro Asn Ile Ser
260 265 270
Gly Ser Glu Val Thr Ser Met Tyr Ser Arg Gly Gly Leu Asp Ser Phe
275 280 285
Ser Leu Asn His Leu Gly Ser Ala Val His Ser Phe Ala Asp Met Ile
290 295 300
Asp Gly Gly Arg Gly Met Ile Ile Pro Thr Lys Trp Val Ala Ala Ala
305 310 315 320
Gly Asn Cys Cys Asn Leu Lys Val
325
67
1103
DNA
Glycine max
67
gcacgaggaa atgaagaatt agagggagtg agaggaggaa gaagaagaag aagattccag 60
aatccagagt gagaaacatt aggcttatca gaggagacat gcccgagttg aaccgacaat 120
tctattacta ctctttgctt ctttcttcat gcctcatcaa atcccaaagg atataattga 180
aggttttggg aactaaggct gcaatattgt atacattcta ctcaaggaat ggctcatact 240
tcttatcctt gtggtgatcc ttattttggt agttcaatag ttgcttatgg aacacaggct 300
attactcaac aaatggtgcc ccagatgctg ggattagcat ccaccagaat tgcattacca 360
gttgagcttg cagaagatgg gcccatttat gtcaatgcca aacaatacca tggtatactg 420
agaaggcgac agtcacgagc aaagcttaag gctcaaaaca aactcatcaa aagtcgtaag 480
ccatatcttc atgagtctcg gcaccgccac gcattgaaaa gggttagggg aactgggggg 540
cgctttctta gtgccaaaca gcttcaacag tttaatgcag aacttgtcac cgatgcccat 600
tcaggcccgg gccctgtcaa tgtttatcaa aagaaagatg catctgaggc agaaagtcat 660
ccctcaagaa ctggaaaaaa tgcatctatc acattcacag caatctctgg cttgacaagt 720
atgtccggta acagtgtcag tttcaggcgg cctgagcaca acttcttggg gaactctcct 780
aatataggtg gatcgtcgca atgcagtggg ggactcacct ttggtggtgg agctcggcaa 840
tgtacttcag ttggccggtg agaggtggaa ccaatcaaaa tcaagttcac tggtctggca 900
aatcatcctt ggcttagtca ctttactttc tgtgtttcat gtgttgttac ggaaatgttg 960
tcttttggaa gactctgcat tagcactcag acttttgcta gtgctttccc atgtattttg 1020
aaagttgctc ttgtttctgt tgttgaactg gaccagaaag tttgtgcttg aaaatttaac 1080
tttttaaaaa aaaaaaaaaa aaa 1103
68
210
PRT
Glycine max
68
Met Ala His Thr Ser Tyr Pro Cys Gly Asp Pro Tyr Phe Gly Ser Ser
1 5 10 15
Ile Val Ala Tyr Gly Thr Gln Ala Ile Thr Gln Gln Met Val Pro Gln
20 25 30
Met Leu Gly Leu Ala Ser Thr Arg Ile Ala Leu Pro Val Glu Leu Ala
35 40 45
Glu Asp Gly Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu
50 55 60
Arg Arg Arg Gln Ser Arg Ala Lys Leu Lys Ala Gln Asn Lys Leu Ile
65 70 75 80
Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Leu
85 90 95
Lys Arg Val Arg Gly Thr Gly Gly Arg Phe Leu Ser Ala Lys Gln Leu
100 105 110
Gln Gln Phe Asn Ala Glu Leu Val Thr Asp Ala His Ser Gly Pro Gly
115 120 125
Pro Val Asn Val Tyr Gln Lys Lys Asp Ala Ser Glu Ala Glu Ser His
130 135 140
Pro Ser Arg Thr Gly Lys Asn Ala Ser Ile Thr Phe Thr Ala Ile Ser
145 150 155 160
Gly Leu Thr Ser Met Ser Gly Asn Ser Val Ser Phe Arg Arg Pro Glu
165 170 175
His Asn Phe Leu Gly Asn Ser Pro Asn Ile Gly Gly Ser Ser Gln Cys
180 185 190
Ser Gly Gly Leu Thr Phe Gly Gly Gly Ala Arg Gln Cys Thr Ser Val
195 200 205
Gly Arg
210
69
1128
DNA
Glycine max
69
gcacgagggg tttgggtttc aagagaggag acatgcttaa cttcaaccca acacttcaag 60
tacttgcttc ttcataccct taccagatcc caaaggtcac gatctaattt taagtgatta 120
gtctgatgag cattttgaag gttacatgaa gcaatttctc tttttgaatc ttcctgacac 180
cgagatcaat tgttcacaag ttgattgcaa tcactcaatg gctcattctt cttatcccta 240
cggcgatcca attcttgctt atggaccaca agctattagt catccccaaa tggtacccca 300
gatgctggga ctagcatcca ccagagtggc attaccactt gatcttgctg aagatggacc 360
gatttatgtc aacgcgaaac aataccatgg tatactgaga aggcgacagt cacgagcaaa 420
acttgaggct cagaacaaac ttatcaaaag tcgtaagcca tatcttcatg agtctcggca 480
ccgccatgct ttgaataggg ttaggggatc tgggggtcga tttctgagta ccaaacagct 540
tgcacagtct aatgcagaat ttgtcaccgg tgcacattct ggttctgacc ctaccaacat 600
atatcagaaa gaacatccat tagaggtgga aagtcattcc tcaaaagatg gagataatgc 660
atcattcata acaacctact ccgaccggcc atgtttatct ggcaacaacc tcaattttcg 720
gcagcaggag tgcatgtttc tggggaattc tgcaaacatg agtggagcac cacagtgcag 780
tgggggactc acctttggcg gagcaaagca acgcacttca gttgtccggt gagagaagaa 840
actgatcgaa accgacttca ccggtcaggc aaatcatcct tggcttagtc acttttgtct 900
gtgtcttaat gtgttcgtac taaatgatca ttttgagaga ctcttcagtc tgcattagca 960
ctaataagac ctttccaatt gctttggcat gtattttaaa gttgctattg tactggattc 1020
tgaactggat tggaatagtc tgtgcatgga actagtatgt ttgtgttagt tactgttgaa 1080
tttccttctt taaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 1128
70
228
PRT
Glycine max
70
Met Lys Gln Phe Leu Phe Leu Asn Leu Pro Asp Thr Glu Ile Asn Cys
1 5 10 15
Ser Gln Val Asp Cys Asn His Ser Met Ala His Ser Ser Tyr Pro Tyr
20 25 30
Gly Asp Pro Ile Leu Ala Tyr Gly Pro Gln Ala Ile Ser His Pro Gln
35 40 45
Met Val Pro Gln Met Leu Gly Leu Ala Ser Thr Arg Val Ala Leu Pro
50 55 60
Leu Asp Leu Ala Glu Asp Gly Pro Ile Tyr Val Asn Ala Lys Gln Tyr
65 70 75 80
His Gly Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Leu Glu Ala Gln
85 90 95
Asn Lys Leu Ile Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His
100 105 110
Arg His Ala Leu Asn Arg Val Arg Gly Ser Gly Gly Arg Phe Leu Ser
115 120 125
Thr Lys Gln Leu Ala Gln Ser Asn Ala Glu Phe Val Thr Gly Ala His
130 135 140
Ser Gly Ser Asp Pro Thr Asn Ile Tyr Gln Lys Glu His Pro Leu Glu
145 150 155 160
Val Glu Ser His Ser Ser Lys Asp Gly Asp Asn Ala Ser Phe Ile Thr
165 170 175
Thr Tyr Ser Asp Arg Pro Cys Leu Ser Gly Asn Asn Leu Asn Phe Arg
180 185 190
Gln Gln Glu Cys Met Phe Leu Gly Asn Ser Ala Asn Met Ser Gly Ala
195 200 205
Pro Gln Cys Ser Gly Gly Leu Thr Phe Gly Gly Ala Lys Gln Arg Thr
210 215 220
Ser Val Val Arg
225
71
1286
DNA
Helianthus sp.
71
gcacgagctt ctagattttc tctccgattc gtcgccccaa attttagggt ttttactttt 60
cgtcctctat actcgtagat cttggtgtaa cagtattgca taagtttcat gtcctcttct 120
gccatgcgag cgaattcatc tgattcgtct cctccagaac agtcgttaga cagggaatca 180
cagtctgatg aagttcttag tgaggaagaa gatgatgcaa gcaaagaaac acaaaatgct 240
tcgtcttttc gttcagataa aagttatcag cagcagggag taccaaatat ccttccaaat 300
aatggcgaaa ccgtagggca ggtcccacaa ctagaacttg tcggtcacac tattgcctgt 360
gctccaaatc cttattgtga tccatattat ggtggaatga tggcagctta tggtcagcct 420
tttgttcatc ctcagtttct tgagcaagca aggatgcctt tgccacttga aatggcgcaa 480
gagcctgttt acgtgaatgc caaacaatac catgcgatat taaggcgaag gcaatcccgt 540
gcaaaagcag agcttgagaa gaaacttata aaagacagaa agccttatct tcatgaatca 600
cggcatcagc atgctttgag aagggtaagg ggcaccggtg gtcgttttgc aaagaaaact 660
gacgttaata agaacacaac aggttcgggt tcaggttctg ccatgtcatc atcccagtcg 720
gtgaattcaa accgggtgca ctcagaatct gccgagagct tggacacacc aaggggtgga 780
ttggtaaatt cacacaatac tcgcacgtat cttgataacg gaggttcttt aggccagcag 840
tggataaaca tttcatctaa ccaatcttca cagagggctg ttgccatgaa gtgatgtcga 900
gtgtttaaca ccctttgtgt ctatccgtgg cttctaagct ggccggcaaa tcattcttgg 960
ctcatgttaa tatgagggac aaacaggtaa atgtaccttt tggtgtcctc tttggtttta 1020
ctttcaggat ttctttcttc ggaactgatg ttatgtacaa agtttgcttt tggggataga 1080
agaattggtt gggttgggtt tgtgtgttct tttctgaatg tttggtatat ttggaggtga 1140
agcatggagt ttaagatgtg cttatgtcta tcgtctaatt gtaggggcat atagtgctcc 1200
acagcctcca gcacatgtgt aatgtcgtgg ctgttgaaaa ttggagcttc atatttactg 1260
ttttgcaaaa aaaaaaaaaa aaaaaa 1286
72
261
PRT
Helianthus sp.
72
Met Ser Ser Ser Ala Met Arg Ala Asn Ser Ser Asp Ser Ser Pro Pro
1 5 10 15
Glu Gln Ser Leu Asp Arg Glu Ser Gln Ser Asp Glu Val Leu Ser Glu
20 25 30
Glu Glu Asp Asp Ala Ser Lys Glu Thr Gln Asn Ala Ser Ser Phe Arg
35 40 45
Ser Asp Lys Ser Tyr Gln Gln Gln Gly Val Pro Asn Ile Leu Pro Asn
50 55 60
Asn Gly Glu Thr Val Gly Gln Val Pro Gln Leu Glu Leu Val Gly His
65 70 75 80
Thr Ile Ala Cys Ala Pro Asn Pro Tyr Cys Asp Pro Tyr Tyr Gly Gly
85 90 95
Met Met Ala Ala Tyr Gly Gln Pro Phe Val His Pro Gln Phe Leu Glu
100 105 110
Gln Ala Arg Met Pro Leu Pro Leu Glu Met Ala Gln Glu Pro Val Tyr
115 120 125
Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Ser Arg
130 135 140
Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Asp Arg Lys Pro Tyr
145 150 155 160
Leu His Glu Ser Arg His Gln His Ala Leu Arg Arg Val Arg Gly Thr
165 170 175
Gly Gly Arg Phe Ala Lys Lys Thr Asp Val Asn Lys Asn Thr Thr Gly
180 185 190
Ser Gly Ser Gly Ser Ala Met Ser Ser Ser Gln Ser Val Asn Ser Asn
195 200 205
Arg Val His Ser Glu Ser Ala Glu Ser Leu Asp Thr Pro Arg Gly Gly
210 215 220
Leu Val Asn Ser His Asn Thr Arg Thr Tyr Leu Asp Asn Gly Gly Ser
225 230 235 240
Leu Gly Gln Gln Trp Ile Asn Ile Ser Ser Asn Gln Ser Ser Gln Arg
245 250 255
Ala Val Ala Met Lys
260
73
1306
DNA
Triticum aestivum
73
ggagaaacgg aaacagagac agagggagag gagacttgca gaggagagga gagaagaggc 60
ggaacaaggg aggagggagg ggtcgccgga agggggacat gctccctccg catctcacat 120
ctcgcagctt gaactgagag caagagcaga agcccatgag atgagacgca agcaaaatat 180
gcaagaaaat ggcacaatca tgattcagtt tggtcagcaa gtgcctaact gcgagtcctc 240
agctagcgat tctcctcaag aagtgtccgg aatgagcgaa gggagcttta atgagcagaa 300
tgatcaatct ggtaatcgcg atggctatac gaagagtagt gatgaaggca agatgatgtc 360
ggctttgtct ctgggcaatt cagaaatggc atacacaccg ccaaaacctg accgcactca 420
tccctttgcc atatcatacc catatgctga tccttactat ggtggtgcag tggcagccta 480
tggcgcacat gctattatgc acccccagat ggtgggcatg gtaccatcct ctcgagtgcc 540
actaccgatt gaaccagctg ccgccgaaga gcccatttat gtgaatgcga agcaatacca 600
tgccattctc cgaaggagac agctccgcgc aaaattagag gctgaaaata agctggtcaa 660
aagccgtaag ccgtacctgc atgagtcccg gcaccagcac gcgatgaagc gggctcgggg 720
aacaggcggg cggttcctca acgcaaagga gaagtctgaa gcttcaggcg gcggcaatgc 780
atcagcgagg tctggccacg ccggcgttcc cccggatggc ggcatgttct cgaagcacga 840
ccacacctta ccatccggtg acttccatta ccgcgcgaga gggggcgcct agggtgggca 900
cgcagttgcc ccctggcaaa tcatccttgg cttatgtgtg tggcgaatga ccgtcaactc 960
ggtccagtga tattgtaaaa ctgaatttag agtctgtgca attgtgttac ttgggggttt 1020
ggtagacagc ccttgtgttt ggggagggga cgatgcagct gcagctgcag ccggttctct 1080
tgttgtggta ggtttgtgtg gcatggcagg tgctgctaag ctggagcctg cttgaactgt 1140
tttcctgtca ctttgttgtt tggggtaata atgaccatct tgtatgatat tagtactgac 1200
ttggagtaag taataaccat tcccggcgtg atgcatttgc gcccgtggtg gtgtttctgt 1260
tgaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 1306
74
243
PRT
Triticum aestivum
74
Met Arg Arg Lys Gln Asn Met Gln Glu Asn Gly Thr Ile Met Ile Gln
1 5 10 15
Phe Gly Gln Gln Val Pro Asn Cys Glu Ser Ser Ala Ser Asp Ser Pro
20 25 30
Gln Glu Val Ser Gly Met Ser Glu Gly Ser Phe Asn Glu Gln Asn Asp
35 40 45
Gln Ser Gly Asn Arg Asp Gly Tyr Thr Lys Ser Ser Asp Glu Gly Lys
50 55 60
Met Met Ser Ala Leu Ser Leu Gly Asn Ser Glu Met Ala Tyr Thr Pro
65 70 75 80
Pro Lys Pro Asp Arg Thr His Pro Phe Ala Ile Ser Tyr Pro Tyr Ala
85 90 95
Asp Pro Tyr Tyr Gly Gly Ala Val Ala Ala Tyr Gly Ala His Ala Ile
100 105 110
Met His Pro Gln Met Val Gly Met Val Pro Ser Ser Arg Val Pro Leu
115 120 125
Pro Ile Glu Pro Ala Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys
130 135 140
Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
145 150 155 160
Ala Glu Asn Lys Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser
165 170 175
Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe
180 185 190
Leu Asn Ala Lys Glu Lys Ser Glu Ala Ser Gly Gly Gly Asn Ala Ser
195 200 205
Ala Arg Ser Gly His Ala Gly Val Pro Pro Asp Gly Gly Met Phe Ser
210 215 220
Lys His Asp His Thr Leu Pro Ser Gly Asp Phe His Tyr Arg Ala Arg
225 230 235 240
Gly Gly Ala
75
1077
DNA
Triticum aestivum
75
gcacgaggtt ggaaagtaac aaaccatgac ttctgtcacc gacggtgttt caggtgatca 60
tagagctgat gagcagcaga agcaagctgc tgctcaaggg aaccaggaag aggccccagc 120
tactagtata ggtagtcagg caatggtggc aacaccttcc acagattatg tcacacccta 180
tggccaccag gaagcttgcc atgcaatggg tcaaattgct tacccaactg tcgatccatt 240
ctatggaagc ctttatgcag cctacggtgg acaacctatg atgcatccac caatggtcgg 300
aatgcatgca gccgcaatac cgttgcctac tgatgcaatt gaagagcctg tgtatgtgaa 360
tgcaaagcaa tataatgcca tattaaggcg gcgccaatct cgggctaaag cagagtcaga 420
aaggaagctt atcaagggcc gcaagccata tctccatgag tcgcggcatc aacatgcctt 480
gaaaagggcc aggggagccg gaggccggtt tcttaacgca aagtcagacg acaatgaaga 540
gcattctgat tccagctcca aagataagca gaatggcgtt gcaccccgca gcagtggcca 600
atcctcccaa tctcccaaag gcgcgacttc ggctgataag tcagcaaacc atgaatgaga 660
tgctagaagg tccgccggac gcgacgatcc atgccaacag ttttgtacag tatatatatg 720
ctagtgagcg agagagagtc gcgccggcgg gtgccatagg atatatccgc tctgctctat 780
agtagtgata gacttatcga cagatttttt tgcagcattg gtccgtgttt gctcggtttg 840
gtttctacat tctgtacaat gagtagtttt ttttgtggtt tttgtgttcc ggggttagcc 900
gcgggtttgg tcaggaggct tttgtagctt ataaaagaag tataattagt gctacattgt 960
tttctttggt gtggatttgg tctcttagct gtgctgcatc ctcattcgtg gtgcagaaaa 1020
taatatctgg gtatacataa taatagctct gcctgcagct ttctttgcca aaaaaaa 1077
76
210
PRT
Triticum aestivum
76
Met Thr Ser Val Thr Asp Gly Val Ser Gly Asp His Arg Ala Asp Glu
1 5 10 15
Gln Gln Lys Gln Ala Ala Ala Gln Gly Asn Gln Glu Glu Ala Pro Ala
20 25 30
Thr Ser Ile Gly Ser Gln Ala Met Val Ala Thr Pro Ser Thr Asp Tyr
35 40 45
Val Thr Pro Tyr Gly His Gln Glu Ala Cys His Ala Met Gly Gln Ile
50 55 60
Ala Tyr Pro Thr Val Asp Pro Phe Tyr Gly Ser Leu Tyr Ala Ala Tyr
65 70 75 80
Gly Gly Gln Pro Met Met His Pro Pro Met Val Gly Met His Ala Ala
85 90 95
Ala Ile Pro Leu Pro Thr Asp Ala Ile Glu Glu Pro Val Tyr Val Asn
100 105 110
Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys
115 120 125
Ala Glu Ser Glu Arg Lys Leu Ile Lys Gly Arg Lys Pro Tyr Leu His
130 135 140
Glu Ser Arg His Gln His Ala Leu Lys Arg Ala Arg Gly Ala Gly Gly
145 150 155 160
Arg Phe Leu Asn Ala Lys Ser Asp Asp Asn Glu Glu His Ser Asp Ser
165 170 175
Ser Ser Lys Asp Lys Gln Asn Gly Val Ala Pro Arg Ser Ser Gly Gln
180 185 190
Ser Ser Gln Ser Pro Lys Gly Ala Thr Ser Ala Asp Lys Ser Ala Asn
195 200 205
His Glu
210
77
1378
DNA
Triticum aestivum
77
gcacgaggag attcccctct ccgcggcgca gacgaccacc cgccggccgc ccctgccgtc 60
gctctgctag gcagcgatga tgagcttcaa gggccacgac ggattcgggc aggcctccaa 120
tggtggtggt ggtggtggag cctccgtgcc atggtggacg gtgtcccaga tgctgtacgg 180
ggagccgggg gccgccttgt cgtcgtcgcc ggaggcggag cctcgccggg acgcccagtt 240
ccaggtcgtg cccagagctc agggcatcct ggatccactg ccggcgccca agagcggggc 300
tcctgaggtc ctcaagttct cggtgttcca agggaatttg gagtcgggag gcaacaaagg 360
agagaagccc atggagcact ccgccaccat cgcactgcag tcgccgctcc cggaatacaa 420
cagtcgcttc gaatttggcc cgggtccttc catgatgtct tctggttatc cttcagccga 480
gcagtgctat ggcctgctta ccacttacgc gatgaaatct acgcctggtg gccgattgct 540
cttgccactg aatgcaacag ctgacgcgcc gatttacgtg aatgcgaagc agtatgaagg 600
catccttcgc cgccgccgtg ctcgtgccaa ggtggagcga gagaatcagc tggtgaaagg 660
aagaaagccg tatcttcacg aatcacgcca ccgccacgcg atgcgccggg cgaggggcac 720
gggagggcgc ttcctcaaca ccaagaagga ggggaatggc aaggacgctg gaggaggagg 780
caagagggca gagtgcgccc cgcccacgcg cttcgccacg tctccgagct ccgtcatccc 840
gagcaacccg cactcccgga gcagcatctc gagcctctcc ggctcggagg tgtcgagcat 900
gtacgaccac gacgacgtgg accactacaa cagcatcgag cacctccgga cgcccttctt 960
caccccgctg ccgatcatca tggacggcga gcacggggca tccgccccct tcaagtgggc 1020
cacggccgcc gacggctgct gtgagctcct caaggcgtga cttgaggggg gtacacgcag 1080
gcacccagat caagagccgg ccatggccgg ctctggctcc gtctggttgt ctgcaggcaa 1140
atcattcttg gctctactgc attggggtgt ccttccacgt cgcattacct cttccctgag 1200
aactccggtg ctggttctca gggatcttgt gatgatgggg ctccccatat gcctgtaaaa 1260
tagtatcgga agcactagca gtgtactacg ggtatgaact ctgtggtact atcaggtatc 1320
tgtgtcagaa ctcagaataa gtatcaaact tcagggtcta aaaaaaaaaa aaaaaaaa 1378
78
327
PRT
Triticum aestivum
78
Met Met Ser Phe Lys Gly His Asp Gly Phe Gly Gln Ala Ser Asn Gly
1 5 10 15
Gly Gly Gly Gly Gly Ala Ser Val Pro Trp Trp Thr Val Ser Gln Met
20 25 30
Leu Tyr Gly Glu Pro Gly Ala Ala Leu Ser Ser Ser Pro Glu Ala Glu
35 40 45
Pro Arg Arg Asp Ala Gln Phe Gln Val Val Pro Arg Ala Gln Gly Ile
50 55 60
Leu Asp Pro Leu Pro Ala Pro Lys Ser Gly Ala Pro Glu Val Leu Lys
65 70 75 80
Phe Ser Val Phe Gln Gly Asn Leu Glu Ser Gly Gly Asn Lys Gly Glu
85 90 95
Lys Pro Met Glu His Ser Ala Thr Ile Ala Leu Gln Ser Pro Leu Pro
100 105 110
Glu Tyr Asn Ser Arg Phe Glu Phe Gly Pro Gly Pro Ser Met Met Ser
115 120 125
Ser Gly Tyr Pro Ser Ala Glu Gln Cys Tyr Gly Leu Leu Thr Thr Tyr
130 135 140
Ala Met Lys Ser Thr Pro Gly Gly Arg Leu Leu Leu Pro Leu Asn Ala
145 150 155 160
Thr Ala Asp Ala Pro Ile Tyr Val Asn Ala Lys Gln Tyr Glu Gly Ile
165 170 175
Leu Arg Arg Arg Arg Ala Arg Ala Lys Val Glu Arg Glu Asn Gln Leu
180 185 190
Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala
195 200 205
Met Arg Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Lys
210 215 220
Glu Gly Asn Gly Lys Asp Ala Gly Gly Gly Gly Lys Arg Ala Glu Cys
225 230 235 240
Ala Pro Pro Thr Arg Phe Ala Thr Ser Pro Ser Ser Val Ile Pro Ser
245 250 255
Asn Pro His Ser Arg Ser Ser Ile Ser Ser Leu Ser Gly Ser Glu Val
260 265 270
Ser Ser Met Tyr Asp His Asp Asp Val Asp His Tyr Asn Ser Ile Glu
275 280 285
His Leu Arg Thr Pro Phe Phe Thr Pro Leu Pro Ile Ile Met Asp Gly
290 295 300
Glu His Gly Ala Ser Ala Pro Phe Lys Trp Ala Thr Ala Ala Asp Gly
305 310 315 320
Cys Cys Glu Leu Leu Lys Ala
325
79
1192
DNA
Triticum aestivum
79
gcacgaggga gtgacgcggt cgaggagggg cgtgcggggg gcagacagag agggagcgca 60
aagggacggc ggaggcaagc tagcttcccg ggggcggacg caccgagaga gggcggcggg 120
agggaggagg cgcgtgggag ccatgcttct cccctcttct tcgtcttcct cctacgatcc 180
caaaggtgac tcctttggga aatcggttga cgatcatatg aggtcaactt tgacttttgg 240
tgataagcat tctgtatatg caggtcaaaa cactgactat ggccacccaa tggcttgcat 300
ttcatacccg ttcaacgatt ctggttctgg agtttgggcg gcctatgggt cacgggctat 360
gttccagccc ctcatggcgg gcggaggggc atctgcaacg gcaagagttc cattgcccgt 420
cgaactagca gcggatgagc ccatatttgt caatcccaaa caatataatg ggattctccg 480
gcgaaggcag ctgcgcgcta agttagaggc ccagaataaa ctcaccaaaa acagaaagcc 540
ctacctccac gagtcgcgcc atcttcacgc gatgaagcgg gcaagaggtt ccgggggacg 600
tttcctcaat tccaaacagc tgaagcagca gcagcagtct ggcagtgcct gcaccaaggc 660
cattgcggat ggcgcgaatt ccctgggttc gacccatcta cggctaggca gcggcgcagc 720
cggagaccga accaactcgg tgtccaaggc gatgtcctcc caagagaaca gcaagagagt 780
cgccgccccg gctcccgcct tcaccatgat tcaagcggcg cgcaaagacg acgacttctt 840
ccaccatcac gcccaccatc tcagcttctc cggtcatttt ggccagtcaa gcgaccgata 900
tacgtaataa ggggtcctcc gcgccccggt gtggtcaggc aactcatcct tggctttatt 960
tctggcgtgt taggacttca gagatagttt atctcacagt gctttgcagc ccatagttct 1020
cggcttgatg ttcggtatgc aaatgttggt gtactggtgc gttggaacaa aagtttgatg 1080
tgttcacatg acgattggtc gcggaactca tcttgtgttc tgctcgaccc taaaaaaaaa 1140
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa ac 1192
80
254
PRT
Triticum aestivum
80
Met Leu Leu Pro Ser Ser Ser Ser Ser Ser Tyr Asp Pro Lys Gly Asp
1 5 10 15
Ser Phe Gly Lys Ser Val Asp Asp His Met Arg Ser Thr Leu Thr Phe
20 25 30
Gly Asp Lys His Ser Val Tyr Ala Gly Gln Asn Thr Asp Tyr Gly His
35 40 45
Pro Met Ala Cys Ile Ser Tyr Pro Phe Asn Asp Ser Gly Ser Gly Val
50 55 60
Trp Ala Ala Tyr Gly Ser Arg Ala Met Phe Gln Pro Leu Met Ala Gly
65 70 75 80
Gly Gly Ala Ser Ala Thr Ala Arg Val Pro Leu Pro Val Glu Leu Ala
85 90 95
Ala Asp Glu Pro Ile Phe Val Asn Pro Lys Gln Tyr Asn Gly Ile Leu
100 105 110
Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Thr
115 120 125
Lys Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Met
130 135 140
Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Ser Lys Gln Leu
145 150 155 160
Lys Gln Gln Gln Gln Ser Gly Ser Ala Cys Thr Lys Ala Ile Ala Asp
165 170 175
Gly Ala Asn Ser Leu Gly Ser Thr His Leu Arg Leu Gly Ser Gly Ala
180 185 190
Ala Gly Asp Arg Thr Asn Ser Val Ser Lys Ala Met Ser Ser Gln Glu
195 200 205
Asn Ser Lys Arg Val Ala Ala Pro Ala Pro Ala Phe Thr Met Ile Gln
210 215 220
Ala Ala Arg Lys Asp Asp Asp Phe Phe His His His Ala His His Leu
225 230 235 240
Ser Phe Ser Gly His Phe Gly Gln Ser Ser Asp Arg Tyr Thr
245 250
81
1260
DNA
Triticum aestivum
81
gcacgagaag attatctctg taaactataa gttctgacag gtcttttgct ttattagtgg 60
ctcttctctc tgatgatgtt cacatcgccg aagccccatt tacagtgagg tgaattgatg 120
cgattatatc ttcatgctaa cagtaacacc ctttttgttt cagacaatga caatgatcat 180
gggaagcccg atcagcacat ggtaaagccg cttttatctt tggggaaccc agagactgtt 240
gctcccccac caatgcttga ttgtagccaa tcatttgcat atattcctta tactgctgat 300
gcttatgctg ggatctttcc aggatatgcc tcgcacgcta ttgttcatcc ccaattgaat 360
gctgcaacaa actctcgtgt gccgctccct gttgagcctg cagcagaaga gccaatgttt 420
gttaatgcaa agcagtacca tgcaattctt aggaggaggc agatacgtgc taaattggag 480
gcccaaaata agctggtgaa agcccggaag ccataccttc atgaatctcg gcaccgccat 540
gccatgaagc gagctcgtgg aacaggaggg cggttcctca acacaaagca actcgaggag 600
cagaagcaga agcaggcttc aggtggtgca agctgtacaa aggtccttgg caagaataca 660
ctccttcaga gtagccccgc cttcgcacct tcggcatcag ctccctccaa catgtcaagc 720
ttttcaacaa ccggcatgtt ggctaatcaa gagcgcacct gcttcccctc ggttggcttc 780
cgtcccacgg ttagcttcag tgcactgaat ggcaacggga agctggcccc aaacggcatg 840
caccagcgcg cttccatgat gaggtaaagc aaagcaccct ctggtgcgct gccggtggca 900
attcatcctt ggcttatgaa gatgttccgg aaatgtggtt gcaatatcag ctggaccaag 960
acattgttat gagtcctttt gagtttcatc tagttgaaag cactggtgtg ctgatgcaga 1020
ctgaaatctt catcacattt cttttgtgtg tacttattca aataaggcac accttgatta 1080
tcccagagac cggagttggg catggttgcg aaaccatagg cctatacttc cttacctgtt 1140
gtgaatgtat ctggtaatgt acttaagaga tggttgagcc tcgagctttg atgaatgctg 1200
ttgcagttca tcaactttgc aacctggttt gcctgatttc aaaaaaaaaa aaaaaaaaaa 1260
82
249
PRT
Triticum aestivum
82
Met Arg Leu Tyr Leu His Ala Asn Ser Asn Thr Leu Phe Val Ser Asp
1 5 10 15
Asn Asp Asn Asp His Gly Lys Pro Asp Gln His Met Val Lys Pro Leu
20 25 30
Leu Ser Leu Gly Asn Pro Glu Thr Val Ala Pro Pro Pro Met Leu Asp
35 40 45
Cys Ser Gln Ser Phe Ala Tyr Ile Pro Tyr Thr Ala Asp Ala Tyr Ala
50 55 60
Gly Ile Phe Pro Gly Tyr Ala Ser His Ala Ile Val His Pro Gln Leu
65 70 75 80
Asn Ala Ala Thr Asn Ser Arg Val Pro Leu Pro Val Glu Pro Ala Ala
85 90 95
Glu Glu Pro Met Phe Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg
100 105 110
Arg Arg Gln Ile Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Val Lys
115 120 125
Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys
130 135 140
Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Glu
145 150 155 160
Glu Gln Lys Gln Lys Gln Ala Ser Gly Gly Ala Ser Cys Thr Lys Val
165 170 175
Leu Gly Lys Asn Thr Leu Leu Gln Ser Ser Pro Ala Phe Ala Pro Ser
180 185 190
Ala Ser Ala Pro Ser Asn Met Ser Ser Phe Ser Thr Thr Gly Met Leu
195 200 205
Ala Asn Gln Glu Arg Thr Cys Phe Pro Ser Val Gly Phe Arg Pro Thr
210 215 220
Val Ser Phe Ser Ala Leu Asn Gly Asn Gly Lys Leu Ala Pro Asn Gly
225 230 235 240
Met His Gln Arg Ala Ser Met Met Arg
245
83
887
DNA
Canna edulis
83
gcacgagatt cactcccagt tcttctcccc ggttttccgc ctctctccgc aggttttcga 60
cgtctggttt gccctaaatc agctgaatgg atcagccgcc tggccacccc gccgtccctc 120
cggtgatggg cgtcgccgct ggagtgcctt atgcaactgc cgctgccgcc ggaccctatc 180
aggcctacca gaacctctac caccagcagc aacagcagca gcagcaacaa ctccagatgt 240
tctgggccga ccagtaccgt gagatcgagc aaactaccga cttccggaac cacagcctgc 300
cgctcgcgcg gatcaagaag atcatgaagg ccgacgagga cgtgcgtatg atcgctgccg 360
aggcgcctgt ggtgttcgcc cgcgcctgcg agatgttcat cctggaactc acccaccggt 420
cgtgggctca cgccgaggag aacaagcgcc ggacactgca gaagaacgat atagccgcgg 480
ccatcagccg caccgacgtg ttcgattttc tcattgatat cgtgccaagg gaggagggga 540
aggaagatgt tgcccacgcc ctcggacccc cagctggtgg tgaccccctc gcttactatt 600
atgtccagaa gtagaagctg ctgctgtgtg agtctttaat taaatgtctc catgttctca 660
atttcataaa tgccttagtg tgattataaa catagggcat ggggtttggt ttgttacctg 720
aagtgcactg aatttaatct ctagtgaact tgctttgcat agctggtgat gtgttcttgt 780
tagtaagttt atattgtttg ggtattgtcc atctaactac atgtatgctt atggcaagca 840
tcattacatt gatatggatg ggcatttacg ctgctctcat tcgcgcc 887
84
175
PRT
Canna edulis
84
Met Asp Gln Pro Pro Gly His Pro Ala Val Pro Pro Val Met Gly Val
1 5 10 15
Ala Ala Gly Val Pro Tyr Ala Thr Ala Ala Ala Ala Gly Pro Tyr Gln
20 25 30
Ala Tyr Gln Asn Leu Tyr His Gln Gln Gln Gln Gln Gln Gln Gln Gln
35 40 45
Leu Gln Met Phe Trp Ala Asp Gln Tyr Arg Glu Ile Glu Gln Thr Thr
50 55 60
Asp Phe Arg Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
65 70 75 80
Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val
85 90 95
Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Ser
100 105 110
Trp Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
115 120 125
Ile Ala Ala Ala Ile Ser Arg Thr Asp Val Phe Asp Phe Leu Ile Asp
130 135 140
Ile Val Pro Arg Glu Glu Gly Lys Glu Asp Val Ala His Ala Leu Gly
145 150 155 160
Pro Pro Ala Gly Gly Asp Pro Leu Ala Tyr Tyr Tyr Val Gln Lys
165 170 175
85
988
DNA
Vitis sp.
85
caaaaaaaaa atcccaaaac aagcagagac accctcctcc ctcgaatcaa attacaaaga 60
aatggagaac aaccagcagg cccaatcctc cccataccca ccacagcaac cctttcacca 120
tcttctgcag cagcaacagc agcagcttca gatgttttgg tcctaccaac gccaagagat 180
cgagcaggtg aacgacttca agaaccacca actgcctctg gcccgcatca agaagattat 240
gaaggcggat gaggatgtcc ggatgatctc ggcggaggcc ccaatcctct tcgccaaggc 300
ctgcgagctc ttcattctgg agctgacgat aaggtcgtgg ttgcacgcgg aggagaacaa 360
gaggaggaca ctgcagaaga atgatatcgc cgcggcgatt actaggacgg atatatttga 420
ttttttggtg gatattgtgc cgagggatga gatcaaggac gaggggggct tggggatggt 480
agggtcgacg gccagtgggg tgccgtacta ttatccgccg atggggcagc ccgcgccggg 540
agtaatgatg ggaaggccgg cggttccggg ggtggatccg ggggtgtacg tgcagccgcc 600
gtcgcaggca tggcagtcgg tgtggcagac ggcagaggac gggtcgtacg ggagcggagg 660
gagcagtgga caggggaatc ttgatggcca aggttaagca aacgcccatt gtggatgttg 720
tggtgcttcc cggcatgatg gaaactatcg agctcgtgga cagaacttgg attttccttg 780
gctatgaatt gctctgttat tatttgtgaa aactagttgg tttttaatgt aatggcttca 840
attagaaact tgttaaaaac cgtgatttgg accagtgcag tgatatgact caactaatcc 900
tatgtgcagt tctaaatgta aggtccatgt ttttcatttt aactgaatga ttctagttat 960
ctgattaaaa aaaaaaaaaa aaaaaaaa 988
86
211
PRT
Vitis sp.
86
Met Glu Asn Asn Gln Gln Ala Gln Ser Ser Pro Tyr Pro Pro Gln Gln
1 5 10 15
Pro Phe His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe
20 25 30
Trp Ser Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn
35 40 45
His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
50 55 60
Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala
65 70 75 80
Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala
85 90 95
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala
100 105 110
Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg
115 120 125
Asp Glu Ile Lys Asp Glu Gly Gly Leu Gly Met Val Gly Ser Thr Ala
130 135 140
Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro Gly
145 150 155 160
Val Met Met Gly Arg Pro Ala Val Pro Gly Val Asp Pro Gly Val Tyr
165 170 175
Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Thr Ala Glu
180 185 190
Asp Gly Ser Tyr Gly Ser Gly Gly Ser Ser Gly Gln Gly Asn Leu Asp
195 200 205
Gly Gln Gly
210
87
1572
DNA
Zea mays
87
ccacgcgtcc gcataagaaa aaaaatgaag cttgccattt cgctcagggc cctgcagcgg 60
cggcagctgg cgggagagag gcttgggact gggccgcccg gccgcgagga ataaactcac 120
tcctgtcttc atacgtatcc atagccggca ggcggcagta cctgtatgtg gttttagcta 180
tacgcgacct cagttcgggc gcaagctaca accccgacca ggcgagaaga agcatcgata 240
gtgtgacgag ctaacccacc accagcaacg taatccaaat ccatggacaa ccagccgctg 300
ccctactcca caggccagcc ccctgccccc ggaggagccc cggtggcggg catgcctggc 360
gcggccggcc tcccacccgt gccgcaccac cacctgctcc agcagcagca ggcccagctg 420
caggcgttct gggcgtacca gcgccaggag gcggagcgcg cgtccgcgtc ggacttcaag 480
aaccaccagc tgcctctggc ccggatcaag aagatcatga aggccgacga ggacgtgcgc 540
atgatctccg ccgaggcgcc cgtgctgttc gccaaggcct gcgagctctt catcctcgag 600
ctcactatcc gctcctggct ccacgccgag gagaacaagc gccgcaccct gcagcgcaac 660
gacgtcgccg cggccatcgc gcgcaccgac gtcttcgatt tcctcgtcga catcgtgccc 720
cgcgaggagg ccaaggagga gcccggcagc gccctcggct tcgcggcgcc tggtaccggc 780
gtcgtcgggg ctggcgcccc gggcggggcg ccagccgccg ggatgcccta ctactatccg 840
ccgatggggc agccggcgcc gatgatgccg gcctggcatg ttccggcctg ggacccggcc 900
tggcagcaag gggcagcgga tgtcgatcag agcggcagct tcagcgagga aggacaaggg 960
tttggagcag gccatggcgg cgccgctagc ttccctcctg cgcctccgac ctccgagtga 1020
tcgatcggcg cgtctcttgg tcctggcctc ctggcttagc tacatgtgca tgatgtcaat 1080
cgttcaatgt gccatgctgt gtatactcta cagcaaacgt ggtaatggag ctgctatgca 1140
tacagaacga ataaggcgtg acgtgtgaga ccgtaagagt acgtagtact aatatgtaga 1200
tgcacgtgac gtgccaatta atcaaagatt aacatgcagt taattaatta gtcctcctac 1260
cgaggtgcct catctatatt ttttttccat ttatatatcg agttcacaca atccataaga 1320
atacaaactt cggcaaggtt taggatttgg ggaacttgag gcttggggag ttagggttcc 1380
atggctaccg gtcgtgatga cacatggggc atcaaggtag attaagggtc tgtttgtttg 1440
aacttttaga gtttttttga aaagttgttg ttgaactttt gatactgaga agccaattca 1500
acgatgttat tagttcctga aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1560
aaaaaaaaaa ag 1572
88
245
PRT
Zea mays
88
Met Asp Asn Gln Pro Leu Pro Tyr Ser Thr Gly Gln Pro Pro Ala Pro
1 5 10 15
Gly Gly Ala Pro Val Ala Gly Met Pro Gly Ala Ala Gly Leu Pro Pro
20 25 30
Val Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala
35 40 45
Phe Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp
50 55 60
Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
65 70 75 80
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe
85 90 95
Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp
100 105 110
Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val
115 120 125
Ala Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile
130 135 140
Val Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe
145 150 155 160
Ala Ala Pro Gly Thr Gly Val Val Gly Ala Gly Ala Pro Gly Gly Ala
165 170 175
Pro Ala Ala Gly Met Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala
180 185 190
Pro Met Met Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln
195 200 205
Gln Gly Ala Ala Asp Val Asp Gln Ser Gly Ser Phe Ser Glu Glu Gly
210 215 220
Gln Gly Phe Gly Ala Gly His Gly Gly Ala Ala Ser Phe Pro Pro Ala
225 230 235 240
Pro Pro Thr Ser Glu
245
89
1164
DNA
Zea mays
89
gcacgagtct ccccccattc tccaatccgt gccctagtcg agccagccgc gaggaaggag 60
gcgtctcgcc tagcgcccgc ccgtcggccg accttctgct gcaccttcga actctggaaa 120
gatcatagat ttttgggcaa tagcaagtgg acatggaacc atcctctcag cctcagcctg 180
cgatgggtgt cgccgccggt gggtcacaag tgtatcctgc gtctgcctac ccgcctgcag 240
caacagtagc tcctcctgct gttgcatctg ctggtttaca gtcagtgcaa ccattcccag 300
ccaaccctgc ccatatgagt gctcagcacc agattgtcta ccaacaagct caacagttcc 360
accaacagct ccagcagcag caacagcagc agcttcagca gttctgggtc gaacgcatga 420
ctgaaatcga ggcaacagct gatttcagga accacaactt gccacttgcg aggataaaga 480
agatcatgaa ggccgacgaa gatgtccgca tgatctcagc cgaagctccc gtggtcttcg 540
caaaagcttg cgagatattc atactggagc tgacgctgag gtcgtggatg cacaccgagg 600
agaacaagcg ccgcaccttg cagaagaacg acattgccgc agccatcacc aggaccgaca 660
tttacgactt cttggtcgac attgttccca gggatgagat gaaggacgac ggaatcgggc 720
ttcctaggcc cgggctgcca cccatgggag ccccagctga cgcatatcca tactactaca 780
tgccacagca gcaggtgcct ggtcctggga tggtttatgg cgcccagcaa ggccacccgg 840
tgacgtatct gtggcaggat cctcaggaac agcaggagca agctcctgaa gagcagcagt 900
ctctgcatga aagggactga ggatgtcgct caagctatca cctgattttt cagagctctc 960
attttaggtt ctctaaactg caggttttcg ttggctaata tcgttgggta tcaaactgaa 1020
acaggtaggg tgtagcatca tggtagtttg atttctgctg tggtgttagt tggagggata 1080
atgattagcg gctagtggat taaagttacc cataccgttt cctttcgttc caaaaaaaaa 1140
aaaaaaaaaa aaaaaaaaaa aaaa 1164
90
255
PRT
Zea mays
90
Met Glu Pro Ser Ser Gln Pro Gln Pro Ala Met Gly Val Ala Ala Gly
1 5 10 15
Gly Ser Gln Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala Ala Thr Val
20 25 30
Ala Pro Pro Ala Val Ala Ser Ala Gly Leu Gln Ser Val Gln Pro Phe
35 40 45
Pro Ala Asn Pro Ala His Met Ser Ala Gln His Gln Ile Val Tyr Gln
50 55 60
Gln Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Gln Gln
65 70 75 80
Leu Gln Gln Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala Thr Ala
85 90 95
Asp Phe Arg Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
100 105 110
Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val
115 120 125
Phe Ala Lys Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser
130 135 140
Trp Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
145 150 155 160
Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp
165 170 175
Ile Val Pro Arg Asp Glu Met Lys Asp Asp Gly Ile Gly Leu Pro Arg
180 185 190
Pro Gly Leu Pro Pro Met Gly Ala Pro Ala Asp Ala Tyr Pro Tyr Tyr
195 200 205
Tyr Met Pro Gln Gln Gln Val Pro Gly Pro Gly Met Val Tyr Gly Ala
210 215 220
Gln Gln Gly His Pro Val Thr Tyr Leu Trp Gln Asp Pro Gln Glu Gln
225 230 235 240
Gln Glu Gln Ala Pro Glu Glu Gln Gln Ser Leu His Glu Arg Asp
245 250 255
91
1270
DNA
Zea mays
91
gcacgaggac gagacagaga gagaaggcca agaggcttcc tctccccatt cctcccttcc 60
gtgccctagc cgagccagcc gcgaggaagg aggcatcccg ccgtctcgcc tggcgcccgc 120
ccgtcggccg accttctgcc gcagcttcca attgtaaaaa gatcatagat ttttgtgcaa 180
gagcgagtgg atatggaacc atcccctcag cctatgggtg tcgctgccgg tgggtcacaa 240
gtgtatcctg cctctgccta tccgcctgca gcaacagtag ctcctgcttc tgttgtatct 300
gctggtttac agtcagggca gccattccca gccaatcctg gtcatatgag tgctcagcac 360
cagattgtct accaacaagc tcaacaattc caccaacagc tccagcagca acaacaacag 420
cagcttcagc agttctgggt tgaacgcatg actgaaattg aggcgacgac tgatttcaag 480
aaccacaact tgccacttgc gaggataaag aagatcatga aggccgatga agatgttcgc 540
atgatctcag ctgaagctcc tgtagtcttt gcaaaagctt gtgagatatt catactggag 600
ctgacactta ggtcgtggat gcacactgag gagaacaagc gccgcacctt gcaaaagaat 660
gacattgcag cagcgatcac taggactgac atttatgact tcttggtcga cattgttccc 720
agggatgaga tgaaggagga cggaattggg cttcctaggg ctggtctgcc acccatggga 780
gccccagctg atgcatatcc atactactac atgccacagc agcaggtgcc tggttctgga 840
atggtttatg gtgcccagca agggcaccca gtgacttatt tgtggcagga gcctcagcaa 900
cagcaggagc aagctcctga agagcagcaa tctgcatgaa agtggctgag aatattgctc 960
agaagctatc acctgattca gagttctcat tttaggttgt ccaaactgca ggttttctta 1020
gtaatatcgt tggttatcaa actgaaacag gcgattctaa gtagggtgta gcatcatggt 1080
agtttcattt ctgcttgtga tgttagttga aaggataatg attagtggct agtggattaa 1140
agttaccata ccatttcctt ctattccgaa agtttgcctc catgaggcct ctgatatgac 1200
gtgctagttg ttaatgcttc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1260
aaaaaaaaaa 1270
92
248
PRT
Zea mays
92
Met Glu Pro Ser Pro Gln Pro Met Gly Val Ala Ala Gly Gly Ser Gln
1 5 10 15
Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala Ala Thr Val Ala Pro Ala
20 25 30
Ser Val Val Ser Ala Gly Leu Gln Ser Gly Gln Pro Phe Pro Ala Asn
35 40 45
Pro Gly His Met Ser Ala Gln His Gln Ile Val Tyr Gln Gln Ala Gln
50 55 60
Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln
65 70 75 80
Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala Thr Thr Asp Phe Lys
85 90 95
Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
100 105 110
Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys
115 120 125
Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His
130 135 140
Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
145 150 155 160
Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp Ile Val Pro
165 170 175
Arg Asp Glu Met Lys Glu Asp Gly Ile Gly Leu Pro Arg Ala Gly Leu
180 185 190
Pro Pro Met Gly Ala Pro Ala Asp Ala Tyr Pro Tyr Tyr Tyr Met Pro
195 200 205
Gln Gln Gln Val Pro Gly Ser Gly Met Val Tyr Gly Ala Gln Gln Gly
210 215 220
His Pro Val Thr Tyr Leu Trp Gln Glu Pro Gln Gln Gln Gln Glu Gln
225 230 235 240
Ala Pro Glu Glu Gln Gln Ser Ala
245
93
511
DNA
Zea mays
unsure
(442)
n = A, C, G, or T
93
gactcaactc agtgctcagc accagatggt gtaccagcag gctcagcaat ttcatcaaca 60
acttcagcaa cagcaggaac aacagctcag ggagttctgg actacccaga tggatgagat 120
caagcaagca aatgacttca agatccacac cttgccactt gcaaggataa agaagataat 180
gaaggctgat gaggatgtgc ggatgatctc tgcagaagct cctgttgtgt ttgcgaaggc 240
atgcgaggta ttcatattag agctgacatt gaggtcatgg atgcacacag aggagaacaa 300
gcgccggacc ttgcagaaga acgacattgc agctgccatc accaggactg atatatatga 360
cttcttggtg gacataatcc cgagggatga aatgaaagag gaagggcttc ggacataatc 420
ccatagttgg cctgccgcct gntatggggg cntccagctt gatcatgggt cttnatccat 480
tattactatg tggccantta acangtgcca a 511
94
135
PRT
Zea mays
94
Thr Gln Leu Ser Ala Gln His Gln Met Val Tyr Gln Gln Ala Gln Gln
1 5 10 15
Phe His Gln Gln Leu Gln Gln Gln Gln Glu Gln Gln Leu Arg Glu Phe
20 25 30
Trp Thr Thr Gln Met Asp Glu Ile Lys Gln Ala Asn Asp Phe Lys Ile
35 40 45
His Thr Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
50 55 60
Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys Ala
65 70 75 80
Cys Glu Val Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His Thr
85 90 95
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Cys Ser Cys
100 105 110
His His Pro Gly Leu Ile Tyr Met Thr Ser Leu Val Asp Ile Ile Pro
115 120 125
Arg Asp Glu Met Lys Glu Glu
130 135
95
499
DNA
Zea mays
unsure
(278)
n = A, C, G, or T
95
ctttctcccc tgttgttgtt gatccaaaaa gccacctccc cccaacccaa tcccgtcgtc 60
actctctcac tccactgcct ccggaacacc ctagcaatgg atcccaactc cagcatccct 120
cccccggtga tgggcgcggc ggtggcgtac cctccggcgg ccggcgccgc gtactccgcc 180
gggccgtacg cgcacgcgca cgcggcgttg ggcgcgctgt acccgcctcc cccggcgccg 240
ggtcccccct cctcgcacca gggcggcgcg gcggcggngc agctgcagct gttctgggcg 300
gagcagtacc gcgagatcga ggcgacgacg gacttcaaga accacaacct gccgctgggc 360
cgcatcanga agatcatgaa ggcggacgan ngactgcgca tgatcgccgc cgaggcgccg 420
gtggtgttcg cccgcgcctg cgagatgttc ancctggagc tgaccaancg cggntgggcn 480
cacgcngagg aaaaaaaac 499
96
134
PRT
Zea mays
UNSURE
(61)
Xaa = any amino acid
96
Met Asp Pro Asn Ser Ser Ile Pro Pro Pro Val Met Gly Ala Ala Val
1 5 10 15
Ala Tyr Pro Pro Ala Ala Gly Ala Ala Tyr Ser Ala Gly Pro Tyr Ala
20 25 30
His Ala His Ala Ala Leu Gly Ala Leu Tyr Pro Pro Pro Pro Ala Pro
35 40 45
Gly Pro Pro Ser Ser His Gln Gly Gly Ala Ala Ala Xaa Gln Leu Gln
50 55 60
Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp Phe
65 70 75 80
Lys Asn His Asn Leu Pro Leu Gly Arg Ile Xaa Lys Ile Met Lys Ala
85 90 95
Asp Xaa Xaa Leu Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala
100 105 110
Arg Ala Cys Glu Met Phe Xaa Leu Glu Leu Thr Xaa Arg Gly Trp Ala
115 120 125
His Ala Glu Glu Lys Lys
130
97
1060
DNA
Zea mays
97
gcacgagaag caccttcctc ttcctcttcc tccgcccccc aatccccctc gtctcacaac 60
cctagctgcc cccgaatcca tggatcccaa caaatccagc accccgccgc cgcctccagt 120
catgggtgcc cccgttgcct accctccgcc ggcgtaccct cccggtgtgg ccgccggcgc 180
cggcgcctac ccgccgcagc tctacgcgcc gccggctgct gccgcggccc agcaggcggc 240
ggccgcgcag cagcagcagc tgcagatatt ctgggcggag cagtaccgcg agatcgaggc 300
cactaccgac ttcaagaatc acaacctccc gctcgcccgc atcaagaaga tcatgaaagc 360
cgacgaggac gtccgcatga tcgccgccga ggctcccgtg gtgttcgccc gggcctgcga 420
gatgttcatc ctcgagctca cccatcgcgg ctgggcgcac gccgaagaga acaagcgccg 480
cacgctccag aaatccgaca ttgccgctgc catcgcccgc accgaggtat tcgacttcct 540
tgtggacatc gttccgcgcg acgacggtaa agacgctgat gcggcggccg ccgcagctgc 600
cgcggctgcc gggatcccgc gccccgccgc cggagtacca gccaccgacc ctctcgccta 660
ctactacgtg cctcagcagt aatgtatcat catcacgtta ttgttccgtc tatgtgcctg 720
agcaataatg tatcatcatt gccttattgt tccggggcag ttgtgttatt tgtgtctgtt 780
tagttgctgc tgctgttacc gcgtaatagc atatgtgtta tctgtgtctg tttagttgct 840
gctgctgttg ccgcgtaata aaacttggtc gtttacgggg ctccctcaag attaagaatt 900
gagttgtttg atggtagaat cctggtaagg ttgttgtaac tggggggcgc ctttgtttgg 960
gctggtagtg tatgcctagg cctcacttat ctgatgctgt aatgcgacaa gtattatgtg 1020
gttgtctggt aattattgtg caaaaaaaaa aaaaaaaaaa 1060
98
200
PRT
Zea mays
98
Met Asp Pro Asn Lys Ser Ser Thr Pro Pro Pro Pro Pro Val Met Gly
1 5 10 15
Ala Pro Val Ala Tyr Pro Pro Pro Ala Tyr Pro Pro Gly Val Ala Ala
20 25 30
Gly Ala Gly Ala Tyr Pro Pro Gln Leu Tyr Ala Pro Pro Ala Ala Ala
35 40 45
Ala Ala Gln Gln Ala Ala Ala Ala Gln Gln Gln Gln Leu Gln Ile Phe
50 55 60
Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp Phe Lys Asn
65 70 75 80
His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
85 90 95
Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala
100 105 110
Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala
115 120 125
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala
130 135 140
Ile Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile Val Pro Arg
145 150 155 160
Asp Asp Gly Lys Asp Ala Asp Ala Ala Ala Ala Ala Ala Ala Ala Ala
165 170 175
Ala Gly Ile Pro Arg Pro Ala Ala Gly Val Pro Ala Thr Asp Pro Leu
180 185 190
Ala Tyr Tyr Tyr Val Pro Gln Gln
195 200
99
901
DNA
Zea mays
99
gcacgagtga ccgccggaac accctaggca atggagccca aatccaccac ccctcccccg 60
ccccccgtga tgggcgcgcc catcgcgtat cctcccccgc ccggcgccgc gtaccccgcc 120
gggccgtacg tgcacgcgcc ggcggccgcg ctctaccctc ctcctcccct gccgccggcg 180
cccccctcct cgcagcaggg cgccgcggcg gcgcaccagc agcagctatt ctgggcggag 240
caataccgcg agatcgaggc caccaccgac ttcaagaacc acaacctgcc gctcgcccgc 300
atcaagaaga tcatgaaggc cgacgaggac gtgcgcatga tcgccgccga ggcgcccgtc 360
gtcttctccc gcgcctgcga gatgttcatc ctcgagctca cccaccgcgg ctgggcacac 420
gccgaggaga acaagcgccg cacgctgcag aagtccgaca tcgccgccgc cgtcgcgcgc 480
accgaggtct tcgacttcct cgtcgacatc gtgccgcggg acgaggccaa ggacgccgac 540
tccgccgcca tgggagcagc cgggatcccg caccccgccg ccggcctgcc cgccgccgat 600
cccatgggct actactacgt ccagccgcag taacgaattt gcttccttat catggtttcg 660
cttccatgca gcctttgcgg gtttttagta aactattatt attactgaga gtgccctgtt 720
gttacccatg ctctgttgtt gccacccaat aactcgatga cctgatgatc atctgatgtg 780
cctcccgttc cgtaacaagt gattccattt ctgattaaaa aaaaaaaaaa aaaaaaaaaa 840
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaccaa aaaaaaaaaa aaaaaaaaaa 900
a 901
100
200
PRT
Zea mays
100
Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro Pro Val Met Gly Ala
1 5 10 15
Pro Ile Ala Tyr Pro Pro Pro Pro Gly Ala Ala Tyr Pro Ala Gly Pro
20 25 30
Tyr Val His Ala Pro Ala Ala Ala Leu Tyr Pro Pro Pro Pro Leu Pro
35 40 45
Pro Ala Pro Pro Ser Ser Gln Gln Gly Ala Ala Ala Ala His Gln Gln
50 55 60
Gln Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp
65 70 75 80
Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
85 90 95
Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe
100 105 110
Ser Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp
115 120 125
Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile
130 135 140
Ala Ala Ala Val Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile
145 150 155 160
Val Pro Arg Asp Glu Ala Lys Asp Ala Asp Ser Ala Ala Met Gly Ala
165 170 175
Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro Ala Ala Asp Pro Met
180 185 190
Gly Tyr Tyr Tyr Val Gln Pro Gln
195 200
101
1118
DNA
Oryza sativa
101
cacacacagc tacaaatcga ctgtaattaa ggtacgtata tataggtgac aatggacaac 60
cagcagctac cctacgccgg tcagccggcg gccgcaggcg ccggagcccc ggtgccgggc 120
gtgcctggcg cgggcgggcc gccggcggtg ccgcaccacc acctgctcca gcagcagcag 180
gcgcagctgc aggcgttctg ggcgtaccag cggcaggagg cggagcgcgc gtcggcgtcg 240
gacttcaaga accaccagct gccgctggcg cggatcaaga agatcatgaa ggcggacgag 300
gacgtgcgca tgatctcggc ggaggcgccc gtgctgttcg ccaaggcgtg cgagctcttc 360
atcctggagc tcaccatccg ctcgtggctg cacgccgagg agaacaagcg ccgcaccctg 420
cagcgcaacg acgtcgccgc cgccatcgcg cgcaccgacg tgttcgactt cctcgtcgac 480
atcgtgccgc gggaggaggc caaggaggag cccggcagcg cgctcgggtt cgcggcggga 540
gggcccgccg gcgccgttgg agcggccggc cccgccgcgg ggctgccgta ctactacccg 600
ccgatggggc agccggcgcc gatgatgccg gcgtggcatg ttccggcgtg ggacccggcg 660
tggcagcaag gagcagcgcc ggatgtggac cagggcgccg ccggcagctt cagcgaggaa 720
gggcagcaag gttttgcagg ccatggcggt gcggcagcta gcttccctcc tgcacctcca 780
agctccgaat agtgatgatc catatggttc catgcatgca tcgctgaggt gctagctagc 840
tactatagct gctcaaatca aatgctcaat gtgtcggtaa ttaattaatg tggtacgtat 900
taacttaacc gatgtacgta atggacgctc aagctaatta agggatgtac aatttactaa 960
ttaatttaat ttgtaatata tagccgatta actagcaagg tgacccagta ctatttgtaa 1020
tttcttttcc cgttatgcta ctaattgtgg acgcacaaac cattaccgga acagaaatta 1080
ctactgatga attactataa aaaaaaaaaa aaaaaaaa 1118
102
246
PRT
Oryza sativa
102
Met Asp Asn Gln Gln Leu Pro Tyr Ala Gly Gln Pro Ala Ala Ala Gly
1 5 10 15
Ala Gly Ala Pro Val Pro Gly Val Pro Gly Ala Gly Gly Pro Pro Ala
20 25 30
Val Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala
35 40 45
Phe Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp
50 55 60
Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
65 70 75 80
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe
85 90 95
Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp
100 105 110
Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val
115 120 125
Ala Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile
130 135 140
Val Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe
145 150 155 160
Ala Ala Gly Gly Pro Ala Gly Ala Val Gly Ala Ala Gly Pro Ala Ala
165 170 175
Gly Leu Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro Met Met
180 185 190
Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln Gln Gly Ala
195 200 205
Ala Pro Asp Val Asp Gln Gly Ala Ala Gly Ser Phe Ser Glu Glu Gly
210 215 220
Gln Gln Gly Phe Ala Gly His Gly Gly Ala Ala Ala Ser Phe Pro Pro
225 230 235 240
Ala Pro Pro Ser Ser Glu
245
103
1343
DNA
Oryza sativa
103
tctgacccaa gggcgaccgc gtctccctct ctctctctct ctccgccgcc gacgccgagg 60
gctccacgag agggaggtgg gcggcgcggc ccttcgccgg agggagcgct ctccgccgcc 120
gccgctcccg ctcccgccgg cgcgggagat ccgggcgtcg tctctcgggc ctttggcttt 180
ggacggacaa gagctgacat ggaaccatcc tcacagcctc agcctgtgat gggtgttgcc 240
actggtgggt cacaagcata tcctcctcct gctgctgcat atccacctca agccatggtt 300
cctggagctc ctgctgttgt tcctcctggc tcacagccat cagcaccatt ccccactaat 360
ccagctcaac tcagtgctca gcaccagcta gtctaccaac aagcccagca atttcatcag 420
cagctgcagc aacagcaaca gcagcaactc cgtgagttct gggctaacca aatggaagag 480
attgagcaaa caaccgactt caagaaccac agcttgccac tcgcaaggat aaagaagata 540
atgaaggctg atgaggatgt ccggatgatc tcggcagaag cccccgttgt cttcgcaaag 600
gcatgcgagg tattcatatt agagttaaca ttgaggtcgt ggatgcacac ggaggagaac 660
aagcgccgga ccttgcagaa gaatgacatt gcagctgcca tcaccaggac tgatatctat 720
gacttcttgg tggacatagt tcccagggat gaaatgaaag aagaagggct tgggcttccg 780
agggttggcc taccgcctaa tgtggggggc gcagcagaca catatccata ttactacgtg 840
ccagcgcagc aggggcctgg atcaggaatg atgtacggtg gacagcaagg tcacccggtg 900
acgtatgtgt ggcagcagcc tcaagagcaa caggaagagg cccctgaaga gcagcactct 960
ctgccagaaa gtagctaaag atgatacagt gaagttgtga cattgatata cattgtcctg 1020
tgaacttagg gcctctaaaa ctcagtgctc ttgtcaaaac tattcccatg attgttggct 1080
gaaacgggta atctgattag gtcttaggct ttcctaatgt tagttctgct ctgctatggc 1140
agcagtagaa aaaaaaaaga ttgtgatttg gtaggtgatt tgcaactaat gtagtaactg 1200
taccttacct ttcatcagtt tctaatccaa tactcaaaag tgctggcatg tggagaccct 1260
tgtatgaatt gagtgtttgt tcatgtcatg catcagtctg ttgcctcatt tatcagtcat 1320
catgcctcct gctttgcaaa aaa 1343
104
259
PRT
Oryza sativa
104
Met Glu Pro Ser Ser Gln Pro Gln Pro Val Met Gly Val Ala Thr Gly
1 5 10 15
Gly Ser Gln Ala Tyr Pro Pro Pro Ala Ala Ala Tyr Pro Pro Gln Ala
20 25 30
Met Val Pro Gly Ala Pro Ala Val Val Pro Pro Gly Ser Gln Pro Ser
35 40 45
Ala Pro Phe Pro Thr Asn Pro Ala Gln Leu Ser Ala Gln His Gln Leu
50 55 60
Val Tyr Gln Gln Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln
65 70 75 80
Gln Gln Gln Leu Arg Glu Phe Trp Ala Asn Gln Met Glu Glu Ile Glu
85 90 95
Gln Thr Thr Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys
100 105 110
Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala
115 120 125
Pro Val Val Phe Ala Lys Ala Cys Glu Val Phe Ile Leu Glu Leu Thr
130 135 140
Leu Arg Ser Trp Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln
145 150 155 160
Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe
165 170 175
Leu Val Asp Ile Val Pro Arg Asp Glu Met Lys Glu Glu Gly Leu Gly
180 185 190
Leu Pro Arg Val Gly Leu Pro Pro Asn Val Gly Gly Ala Ala Asp Thr
195 200 205
Tyr Pro Tyr Tyr Tyr Val Pro Ala Gln Gln Gly Pro Gly Ser Gly Met
210 215 220
Met Tyr Gly Gly Gln Gln Gly His Pro Val Thr Tyr Val Trp Gln Gln
225 230 235 240
Pro Gln Glu Gln Gln Glu Glu Ala Pro Glu Glu Gln His Ser Leu Pro
245 250 255
Glu Ser Ser
105
1085
DNA
Oryza sativa
105
gcacgagaag gaatctacgt tgcatgcata agacgtgttg gaaatatcat aagttttggg 60
acaagcaaga gaggacatgg agccatcatc acaacctcag ccggcaattg gtgttgttgc 120
tggtggatca caagtgtacc ctgcataccg gcctgcagca acagtgccta cagctcctgc 180
tgtcattcct gccggttcac agccagcacc gtcgttccct gccaaccctg atcaactgag 240
tgctcagcac cagctcgtct atcagcaagc ccagcaattt caccagcagc ttcagcagca 300
gcaacagcgt caactccagc agttttgggc tgaacgtctg gtcgatattg aacaaactac 360
tgacttcaag aaccacagct tgccacttgc taggataaag aagatcatga aggcagatga 420
ggacgttcgc atgatctccg cagaggctcc tgtgatcttt gcgaaagcat gtgagatatt 480
catactggag ctgaccctga gatcatggat gcacacggag gagaacaagc gccgtacctt 540
gcagaagaat gacatagcag ctgccatcac caggacggat atgtacgatt tcttggtaga 600
tatagttccc agggatgact tgaaggagga gggagttggg ctccctaggg ctggattgcc 660
gcccttgggt gtccctgctg actcatatcc gtatggctac tatgtgccac agcagcaggt 720
cccaggtgca ggaatagcgt atggtggtca gcaaggtcat ccggggtatc tgtggcagga 780
tcctcaggaa cagcaggaag agcctcctgc agagcagcaa agtgattaag aagagtaaat 840
gatccctgtg aattgtcaag aagcttacca cctgattcag aattttactt ttagccaggt 900
tgtcgtctat tctgaattta tgaataggat taggattctc tcatggtagt tgcatttctg 960
ctgtagtgga aaaggattta tgacatgaga gtatgagact aatgggtttc agttactata 1020
ccgtttcctg tcaatccaaa agttggcctt tgcgaggcca ttgatataaa aaaaaaaaaa 1080
aaaaa 1085
106
250
PRT
Oryza sativa
106
Met Glu Pro Ser Ser Gln Pro Gln Pro Ala Ile Gly Val Val Ala Gly
1 5 10 15
Gly Ser Gln Val Tyr Pro Ala Tyr Arg Pro Ala Ala Thr Val Pro Thr
20 25 30
Ala Pro Ala Val Ile Pro Ala Gly Ser Gln Pro Ala Pro Ser Phe Pro
35 40 45
Ala Asn Pro Asp Gln Leu Ser Ala Gln His Gln Leu Val Tyr Gln Gln
50 55 60
Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Arg Gln Leu
65 70 75 80
Gln Gln Phe Trp Ala Glu Arg Leu Val Asp Ile Glu Gln Thr Thr Asp
85 90 95
Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
100 105 110
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe
115 120 125
Ala Lys Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp
130 135 140
Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile
145 150 155 160
Ala Ala Ala Ile Thr Arg Thr Asp Met Tyr Asp Phe Leu Val Asp Ile
165 170 175
Val Pro Arg Asp Asp Leu Lys Glu Glu Gly Val Gly Leu Pro Arg Ala
180 185 190
Gly Leu Pro Pro Leu Gly Val Pro Ala Asp Ser Tyr Pro Tyr Gly Tyr
195 200 205
Tyr Val Pro Gln Gln Gln Val Pro Gly Ala Gly Ile Ala Tyr Gly Gly
210 215 220
Gln Gln Gly His Pro Gly Tyr Leu Trp Gln Asp Pro Gln Glu Gln Gln
225 230 235 240
Glu Glu Pro Pro Ala Glu Gln Gln Ser Asp
245 250
107
893
DNA
Oryza sativa
107
gcacgagaaa gagagagctt ttccatcccc aaatcccctc ctcctcctca aaccctagct 60
aagctccgct cgcagcagcc atggatccca ccaaatccag cacgccgccg ccggtgatgg 120
gcgcgcccgt cggcttcccg cctggcgcgt accctccgcc tccccccggc ggcgcagcag 180
cagctgcaga tgttctgggc ggagcagtac cgcgagatcg aggccaccac cgacttcaag 240
aaccacaacc tccccctggc ccgcatcaag aagatcatga aggccgacga ggacgtccgc 300
atgatcgccg ccgaggcccc cgtcgtgttc gcccgcgcct gcgagatgtt catcctcgag 360
ctcacccacc gcggctgggc gcacgccgag gagaacaagc gccgtacgct gcagaagtcc 420
gacattgccg ccgccatcgc gcgcaccgag gtgttcgact tcctcgtcga catcgtgccc 480
cgcgacgacg ccaaggacgc cgacgccgcc gcggccgcgg cggcggccgg catcccccgc 540
cccgccgccg gtgtgccggc caccgatccg ctcgcctact actatgtgcc ccagcagtaa 600
tgtatctgat taaccccttt caagcctttt ctaagcgaag gatgtgttgt tgtttgttgt 660
tgctgttgct gttcttgttg ttgttgttgc cgcgtaataa gatatgttga taatttatgg 720
cttcccctga gcttaaagaa tttgagcttt tggttctaga atctgggtaa aattgttgta 780
atggggaaga ctgtatgact gtatttgtag tgcatgtctt aacttgtcgg atagtgtaat 840
ccgataatta ttatgcggtt agctggttac ctctcaaaaa aaaaaaaaaa aaa 893
108
172
PRT
Oryza sativa
108
Met Asp Pro Thr Lys Ser Ser Thr Pro Pro Pro Val Met Gly Ala Pro
1 5 10 15
Val Gly Phe Pro Pro Gly Ala Tyr Pro Pro Pro Pro Pro Ala Ala Gln
20 25 30
Gln Gln Leu Gln Met Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala
35 40 45
Thr Thr Asp Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys
50 55 60
Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro
65 70 75 80
Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His
85 90 95
Arg Gly Trp Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys
100 105 110
Ser Asp Ile Ala Ala Ala Ile Ala Arg Thr Glu Val Phe Asp Phe Leu
115 120 125
Val Asp Ile Val Pro Arg Asp Asp Ala Lys Asp Ala Asp Ala Ala Ala
130 135 140
Ala Ala Ala Ala Ala Gly Ile Pro Arg Pro Ala Ala Gly Val Pro Ala
145 150 155 160
Thr Asp Pro Leu Ala Tyr Tyr Tyr Val Pro Gln Gln
165 170
109
1054
DNA
Glycine max
109
gcacgagggg tctctctgtc tctctcggat catcaaaatc agaaagaatt gggggaatgg 60
agaacaacca gcaacaaggc gctcaagccc aatcgggacc gtaccccggc ggcgccggtg 120
gaagtgcagg tgcaggtgca ggtgcaggcg cggccccgtt ccagcacctg ctccagcagc 180
agcagcagca gctgcagatg ttctggtcgt accagcggca agagatcgag cacgtgaacg 240
acttcaagaa ccaccagctc cccttggccc gcatcaagaa gatcatgaag gccgacgagg 300
acgtccgcat gatctccgcc gaggccccca tcctcttcgc caaggcctgc gagctcttca 360
tcctcgagct caccatccgc tcctggctcc acgccgacga gaacaagcgc cgcaccctcc 420
agaagaacga catcgccgcc gccatcactc gcaccgacat tttcgacttc ctcgtcgaca 480
tcgtcccccg cgacgagatc aaggacgacg ccgcgctcgt cggggcaacg gccagtgggg 540
tgccttacta ctacccgccc attggccagc ctgccgggat gatgattggc cgccccgccg 600
tcgatcccgc caccggagtt tatgtccagc cgccctccca ggcctggcag tccgtctggc 660
agtccgccgc cgaggacacg ccctacggca ccggtgccca ggggaacctt gatggccaga 720
gctgagcgac aaccatgccg aaacggactg tcaggagtta tgaagattct gaacttgctt 780
ggaattttga ttgcttgcaa tttggaaatg gttttgttaa ctaaattttt atgggatgac 840
actatgaacc tgttaactcg atgaacagca tgatttaact acttctgtac aaaaatttaa 900
aactaaacaa tgatccttct gtgtgaactt gtttgatcat ctgctaatac tatttatttc 960
ctcgtaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1020
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1054
110
222
PRT
Glycine max
110
Met Glu Asn Asn Gln Gln Gln Gly Ala Gln Ala Gln Ser Gly Pro Tyr
1 5 10 15
Pro Gly Gly Ala Gly Gly Ser Ala Gly Ala Gly Ala Gly Ala Gly Ala
20 25 30
Ala Pro Phe Gln His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met
35 40 45
Phe Trp Ser Tyr Gln Arg Gln Glu Ile Glu His Val Asn Asp Phe Lys
50 55 60
Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
65 70 75 80
Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys
85 90 95
Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His
100 105 110
Ala Asp Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
115 120 125
Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro
130 135 140
Arg Asp Glu Ile Lys Asp Asp Ala Ala Leu Val Gly Ala Thr Ala Ser
145 150 155 160
Gly Val Pro Tyr Tyr Tyr Pro Pro Ile Gly Gln Pro Ala Gly Met Met
165 170 175
Ile Gly Arg Pro Ala Val Asp Pro Ala Thr Gly Val Tyr Val Gln Pro
180 185 190
Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Ser Ala Ala Glu Asp Thr
195 200 205
Pro Tyr Gly Thr Gly Ala Gln Gly Asn Leu Asp Gly Gln Ser
210 215 220
111
1036
DNA
Glycine max
111
gcacgagccc acacacactc tttctctctc tctctttccc tgatcatcaa aatcagaaaa 60
aattggggga atggagacca acaaccagca acaacaacaa caaggagctc aagcccaatc 120
gggaccctac cccgtcgccg gcgccggcgg cagtgcaggt gcaggtgcag gcgctcctcc 180
ccctttccag caccttctcc agcagcagca gcagcagctc cagatgttct ggtcttacca 240
gcgtcaagaa atcgagcacg tgaacgactt taagaatcac cagctccctc ttgcccgcat 300
caagaagatc atgaaggccg acgaggatgt ccgcatgatc tccgccgagg cccccatcct 360
cttcgccaag gcctgcgagc tcttcatcct cgagctcacc atccgctcct ggctccacgc 420
cgaggagaac aagcgccgca ccctccagaa gaacgacatc gccgccgcca tcacccgcac 480
cgacattttc gacttcctcg ttgatattgt cccccgcgac gagatcaagg acgacgctgc 540
tcttgtgggg gccaccgcca gtggggtgcc ttactactac ccgcccattg gacagcctgc 600
cgggatgatg attggccgcc ccgccgtcga tcccgccacc ggggtttatg tccagccgcc 660
ctcccaggca tggcagtccg tctggcagtc cgctgccgag gacgcttcct atggcaccgg 720
cggggccggt gcccagcgga gccttgatgg ccagagttga gtgacatcga tgccgatgat 780
ggacagtcag gagttatgaa gattctgaac ttgctgcaat ttagaaatgg ttttgtttac 840
taaattttta tgggatgaca ctgtgaacct gttaactcga tgaacagcat gatttaacta 900
cttttgtaca aaaatttaaa actaaacact gatccttctg tgtgaaacat gtatgatcat 960
ctgccaatac tgtttatttc ctcataagtc atgataccac tcgtatactt tgctaaaaaa 1020
aaaaaaaaaa aaaaaa 1036
112
229
PRT
Glycine max
112
Met Glu Thr Asn Asn Gln Gln Gln Gln Gln Gln Gly Ala Gln Ala Gln
1 5 10 15
Ser Gly Pro Tyr Pro Val Ala Gly Ala Gly Gly Ser Ala Gly Ala Gly
20 25 30
Ala Gly Ala Pro Pro Pro Phe Gln His Leu Leu Gln Gln Gln Gln Gln
35 40 45
Gln Leu Gln Met Phe Trp Ser Tyr Gln Arg Gln Glu Ile Glu His Val
50 55 60
Asn Asp Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile
65 70 75 80
Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile
85 90 95
Leu Phe Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg
100 105 110
Ser Trp Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn
115 120 125
Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val
130 135 140
Asp Ile Val Pro Arg Asp Glu Ile Lys Asp Asp Ala Ala Leu Val Gly
145 150 155 160
Ala Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Ile Gly Gln Pro
165 170 175
Ala Gly Met Met Ile Gly Arg Pro Ala Val Asp Pro Ala Thr Gly Val
180 185 190
Tyr Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Ser Ala
195 200 205
Ala Glu Asp Ala Ser Tyr Gly Thr Gly Gly Ala Gly Ala Gln Arg Ser
210 215 220
Leu Asp Gly Gln Ser
225
113
514
DNA
Glycine max
unsure
(424)
n = A, C, G, or T
113
tagggttttc tcctccccca ttgacccacc gtccatcgca aaggaagtcg cgcccaattt 60
ccatggtttg tagattaaat cttaaagcag taagtcatca tggataaatc agagcagact 120
cagcagcaac atcagcatgg gatgggcgtt gccacaggtg ctagccaaat ggcctattct 180
tctcactacc cgactgctcc catggtggct tctggcacgc ctgctgtagc tgttccttcc 240
ccaactcagg ctccagctgc cttctctagt tctgctcacc agcttgcata ccagcaagca 300
cagcatttcc accaccaaca gcagcaacac caacaacagc agcttcaaat gttctggtca 360
aaccaaatgc aagaaattga gcaaacaatt gactttaaaa accacagtct tcctcttgct 420
cggntaaaan agataatgaa agctgatgaa gatgtccgga tganttctgc aagaagctcc 480
aagtcaatat ttgcaaaagc atgtgnaatg gtca 514
114
126
PRT
Glycine max
UNSURE
(109)
Xaa = any amino acid
114
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln His Gln His Gly Met Gly
1 5 10 15
Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr Pro Thr
20 25 30
Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro Ser Pro
35 40 45
Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu Ala Tyr
50 55 60
Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln Gln Gln
65 70 75 80
Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu Gln Thr
85 90 95
Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Xaa Lys Xaa Ile
100 105 110
Met Lys Ala Asp Glu Asp Val Arg Met Xaa Ser Ala Arg Ser
115 120 125
115
1363
DNA
Glycine max
115
ttcggcacga gttgaaacca aaccaaacca aaccaaacca aacctctctt tctcagtttc 60
tctctcttag ggttttctcc tcccccattg acccaccgtc catcgcaaag gaagtcgcgc 120
ccaatttcca tggaactgta aagagattat agtttgtaga ttaaatctta aagcagtaag 180
tcatcatgga taaatcagag cagactcagc agcaacatca gcatgggatg ggcgttgcca 240
caggtgctag ccaaatggcc tattcttctc actacccgac tgctcccatg gtggcttctg 300
gcacgcctgc tgtagctgtt ccttccccaa ctcaggctcc agctgccttc tctagttctg 360
ctcaccagct tgcataccag caagcacagc atttccacca ccaacagcag caacaccaac 420
aacagcagct tcaaatgttc tggtcaaacc aaatgcaaga aattgagcaa acaattgact 480
ttaaaaacca cagtcttcct cttgctcgga taaaaaagat aatgaaagct gatgaagatg 540
tccggatgat ttctgcagaa gctccagtca tatttgcaaa agcatgtgaa atgttcatat 600
tagagttgac gttgagatct tggatccaca cagaagagaa caagaggaga actctacaaa 660
agaatgatat agcagctgct atttcgagaa acgatgtttt tgatttcttg gttgatatta 720
tcccaagaga tgagttgaaa gaggaaggac ttggaataac caaggctact attccattgg 780
tgaattctcc agctgatatg ccatattact atgtccctcc acagcatcct gttgtaggac 840
ctcctgggat gatcatgggc aagcccgttg gtgctgagca agcaacgctg tattctacac 900
agcagcctcg acctcccatg gcgttcatgc catggcccca tacacaaccc cagcaacagc 960
agccacccca acatcaacaa acagactcat gatgaccatg caattcaatt aggtcggaaa 1020
gtagcatgca ccttatgatt attacaaatt tacttaatgc ctttaagtca gctgtagttt 1080
agtgttttgc attgaaaaat gccaaagatt gtttgaggtt tcttgcactc atttatgatt 1140
gtatgagctc ttatgctgag ttacttttgg ttgtgtttat ttgaggtact ggtgtggtag 1200
ttaaattagt ttgtagctgt ccataagtaa acagcgtagc tgcttaatta ggaggtctga 1260
aatgatgaaa tagtttgtat tgttattgca gaaggtaggt tttattcagt atttcattct 1320
attgcaatgg ctgaatttaa tgctcaaaaa aaaaaaaaaa aaa 1363
116
268
PRT
Glycine max
116
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln His Gln His Gly Met Gly
1 5 10 15
Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr Pro Thr
20 25 30
Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro Ser Pro
35 40 45
Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu Ala Tyr
50 55 60
Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln Gln Gln
65 70 75 80
Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu Gln Thr
85 90 95
Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile
100 105 110
Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val
115 120 125
Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg
130 135 140
Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn
145 150 155 160
Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe Leu Val
165 170 175
Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly Ile Thr
180 185 190
Lys Ala Thr Ile Pro Leu Val Asn Ser Pro Ala Asp Met Pro Tyr Tyr
195 200 205
Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met Ile Met
210 215 220
Gly Lys Pro Val Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr Gln Gln
225 230 235 240
Pro Arg Pro Pro Met Ala Phe Met Pro Trp Pro His Thr Gln Pro Gln
245 250 255
Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265
117
1505
DNA
Glycine max
117
gcacgagctc caccgtccat tgcaaagtct tgcgcccaat ttccatggaa ctgtaaagag 60
aggatagtta gaagattaaa tcttaaagca gtaagtcatc atggataaat cagagcagac 120
tcaacagcag cagcagcaac aacagcatgt gatgggagtt gccgcagggg ctagccaaat 180
ggcctattct tctcactacc cgactgcttc catggtggct tctggcacgc ccgctgtaac 240
tgctccttcc ccaactcagg ctccagctgc cttctctagt tctgctcacc agcttgcata 300
ccagcaagca cagcatttcc accaccaaca gcagcaacac caacaacagc agcttcaaat 360
gttctggtca aaccaaatgc aagaaattga gcaaacaatt gactttaaaa accatagcct 420
tcctcttgct cggataaaaa agataatgaa agctgatgaa gatgtccgga tgatttcagc 480
agaagctccg gtcatatttg caaaagcttg tgaaatgttc atattagagt tgacgttgcg 540
atcttggatc cacacagaag agaacaagag gagaactcta caaaagaatg atatagcagc 600
tgctatttcg agaaacgatg tttttgattt cttggttgat attattccaa gagatgagtt 660
gaaagaggaa ggacttggaa taaccaaggc tactattccg ttagtgggtt ctccagctga 720
tatgccatat tactatgtcc ctccacagca tcctgttgta ggaccacctg ggatgatcat 780
gggcaagccc attggcgctg agcaagcaac actatattct acacagcagc ctcgacctcc 840
tgtggcgttc atgccatggc ctcatacaca acccctgcaa cagcagccac cccaacatca 900
acaaacagac tcatgatgac tatgcaattc aattaggttg gaaagtagcc tgcacctttt 960
gattattaca aatttactta atgcctttca gccagctgta gtttagtgtt gtgcattgaa 1020
aaaaagcaaa agattgtttt gaggtttctt gcactcattt atgattgtat gagctcttgt 1080
gatgagttac ttttggttgt gtttactatt ggtgtagtgg ttaaattatt tggcagctgt 1140
ccataaccag agagcgtagc tgcttaatta ggaggtttga tatgatgaaa tagtttgtat 1200
tgttattgca gaaggtaggt ttaattcagt attccattct actgcaatgg ctgaatttat 1260
tgctcatctg catagtacta gttgatgttt tttcctgtga ctcgttatgt gttagagtgc 1320
gaagaagaat gagtgtgcca tatttattct tcccctgttc ttgcgccaca ctctcggaaa 1380
aacaaatgtt tccgatcatt tcaattattt ccaggaacat caatatagtg gttgatgttt 1440
aatgctgtca ctgcaaaaaa aaatatgttt tttacagttg gaaaaaaaaa aaaaaaaaaa 1500
aaaaa 1505
118
271
PRT
Glycine max
118
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln Gln Gln Gln Gln Gln His
1 5 10 15
Val Met Gly Val Ala Ala Gly Ala Ser Gln Met Ala Tyr Ser Ser His
20 25 30
Tyr Pro Thr Ala Ser Met Val Ala Ser Gly Thr Pro Ala Val Thr Ala
35 40 45
Pro Ser Pro Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln
50 55 60
Leu Ala Tyr Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His
65 70 75 80
Gln Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile
85 90 95
Glu Gln Thr Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile
100 105 110
Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu
115 120 125
Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu
130 135 140
Thr Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu
145 150 155 160
Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp
165 170 175
Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu
180 185 190
Gly Ile Thr Lys Ala Thr Ile Pro Leu Val Gly Ser Pro Ala Asp Met
195 200 205
Pro Tyr Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly
210 215 220
Met Ile Met Gly Lys Pro Ile Gly Ala Glu Gln Ala Thr Leu Tyr Ser
225 230 235 240
Thr Gln Gln Pro Arg Pro Pro Val Ala Phe Met Pro Trp Pro His Thr
245 250 255
Gln Pro Leu Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265 270
119
730
DNA
Glycine max
119
gcacgagtga ctttaaaaac catagccttc ctcttgctcg gataaaaaag ataatgaaag 60
ctgatgaaga tgtccggatg atttcagcag aagctccggt catatttgca aaagcttgtg 120
aaatgttcat attagagttg acgttgcgat cttggatcca cacagaagag aacaagagga 180
gaactctaca aaagaatgat atagcagctg ctatttcgag aaacgatgtt tttgatttct 240
tggttgatat tattccaaga gatgagttga aagaggaagg acttggaata accaaggcta 300
ctattccgtt agtgggttct ccagctgata tgccatatta ctatgtccct ccacagcatc 360
ctgttgtagg accacctggg atgatcatgg gcaagcccat tggcgctgag caagcaacac 420
tatattctac acagcagcct cgacctcctg tggcgttcat gccatggcct catacacaac 480
ccctgcaaca gcagccaccc caacatcaac aaacagactc atgatgacta tgcaattcaa 540
ttaggttgga aagtagcctg caccttttga ttattacaaa tttacttaat gcctttcagc 600
cagctgtagt ttagtgttgt gcattgaaaa aaagcaaaag attgttttga ggtttcttgc 660
actcatttat gattgtatga gctcttgtga tgagttactt ttggttgtgt ttaaaaaaaa 720
aaaaaaaaaa 730
120
171
PRT
Glycine max
120
Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
1 5 10 15
Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile
20 25 30
Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser
35 40 45
Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
50 55 60
Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe Leu Val Asp
65 70 75 80
Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly Ile Thr Lys
85 90 95
Ala Thr Ile Pro Leu Val Gly Ser Pro Ala Asp Met Pro Tyr Tyr Tyr
100 105 110
Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met Ile Met Gly
115 120 125
Lys Pro Ile Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr Gln Gln Pro
130 135 140
Arg Pro Pro Val Ala Phe Met Pro Trp Pro His Thr Gln Pro Leu Gln
145 150 155 160
Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
165 170
121
1139
DNA
Glycine max
121
gcacgagaca cagcttttgt tctcgcactt cgctgtctga ggttctggat tctcagtgtt 60
tgcgaagcgc tgcatcatcc tttggggaag aatggatcat caagggcata gccagaaccc 120
atctatgggg gtggttggta gtggagctca attagcatat ggttctaacc catatcagcc 180
aggccaaata actgggccac cggggtctgt tgtgacatca gttggtacca ttcaatccac 240
acctgctgga gctcagctag gacagcatca acttgcttat cagcatattc atcagcaaca 300
acaacaccag cttcagcaac agctccaaca attttggtca aaccagtacc aagaaattga 360
gaaggttact gatttcaaga accacagtct tcccctggca aggatcaaga agattatgaa 420
ggctgacgag gatgttagga tgatatcagc cgaagcacca gtcatctttg caagggcatg 480
tgaaatgttc atattagagt taaccctgcg ttcttggaat cacactgaag agaacaaaag 540
gcgaacactt caaaaaaatg atattgctgc tgcaatcaca aggactgaca tctttgattt 600
cttggttgac attgtgcctc gtgaggactt gaaagatgaa gtgcttgcat caatcccaag 660
aggaacaatg cctgttgcag ggcctgctga tgcccttcca tattgctaca tgccgcctca 720
gcatgcgtcc caagttggag ctgctggtgt tataatgggt aagcctgtga tggacccaaa 780
catgtatgct cagcagtctc acccctacat ggcaccacaa atgtggccac agccaccaga 840
ccaacgacag tcgtccccag aacattagct gatgtgtcgt ggaaattaag ataaccaggc 900
accggaatca gttgtgaatg tcaaactgaa tggttgggaa gatccatact acattgcgag 960
cagaagctgt agctgatagt ttacatgcaa tgcagactat aaacatatgt agataatgtg 1020
ctagggaaaa cttaacctta tctttgattt agctggataa aatggtattt ttcatgttta 1080
aatttacagg tcatcagatg ataatattta tttactggtg caaaaaaaaa aaaaaaaaa 1139
122
258
PRT
Glycine max
122
Met Asp His Gln Gly His Ser Gln Asn Pro Ser Met Gly Val Val Gly
1 5 10 15
Ser Gly Ala Gln Leu Ala Tyr Gly Ser Asn Pro Tyr Gln Pro Gly Gln
20 25 30
Ile Thr Gly Pro Pro Gly Ser Val Val Thr Ser Val Gly Thr Ile Gln
35 40 45
Ser Thr Pro Ala Gly Ala Gln Leu Gly Gln His Gln Leu Ala Tyr Gln
50 55 60
His Ile His Gln Gln Gln Gln His Gln Leu Gln Gln Gln Leu Gln Gln
65 70 75 80
Phe Trp Ser Asn Gln Tyr Gln Glu Ile Glu Lys Val Thr Asp Phe Lys
85 90 95
Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
100 105 110
Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Arg
115 120 125
Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His
130 135 140
Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
145 150 155 160
Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro
165 170 175
Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Ser Ile Pro Arg Gly Thr
180 185 190
Met Pro Val Ala Gly Pro Ala Asp Ala Leu Pro Tyr Cys Tyr Met Pro
195 200 205
Pro Gln His Ala Ser Gln Val Gly Ala Ala Gly Val Ile Met Gly Lys
210 215 220
Pro Val Met Asp Pro Asn Met Tyr Ala Gln Gln Ser His Pro Tyr Met
225 230 235 240
Ala Pro Gln Met Trp Pro Gln Pro Pro Asp Gln Arg Gln Ser Ser Pro
245 250 255
Glu His
123
1493
DNA
Triticum aestivum
123
ggcaccagct ctggcttcca agtctataca taatataggg accgagcttg cggttttgcc 60
aagggtgatg gggaccgagc aagggaagga aggaacggga gcgggggagg ggcgcgtgga 120
ggtgcgcacg gggccgaggc cagcgctgcc ggcgccgcag cagcgggcgg tggacgggtt 180
ctggagggag cggcaggagg agatggaggc gacggcggac ttcaacgacc gcatactgcc 240
catggcccgc ctcaagaggc tcatccgcgc cgaggaggac ggcatgatga tcgccgccga 300
cacgccggcg tacctggcca agctctgcga gctcttcgtg caggagctcg ccgtgcgcgc 360
ctgggcgtgc gcccaatccc accaccgccg catcatactg gaatcggaca tcgccgaggc 420
catcgccttc acccagtcgt acgacttcct cgccaccgtg ctcctcgagc accaacggga 480
ggcgcggctg gccggccgtg ctgctatccc gacaacggtt ccggtgacgg cggcgagggc 540
aaggctcatc accaggaagc gccacatgcc ggacccgaat cctccacggc cggtgcatgg 600
ggtgcggaga attcgtcctc gtgcgcttcc tatcccgccg ccgtcggact ttcgctacgt 660
gccggttcca tttccgttca cctcggcgcc gataggagcc gcagcgatgg cggaggggct 720
gatgattctc ccacccatca accacgcgac taccgagcgc gtgttcttcc tggacaggaa 780
cagcggcact gacttcgcag gtgaaaactc tgctgctgaa actatagcat ctccgcctcc 840
tccggcaggg cctgcaggag cagtggcgct gcccactgtc catcctgctg cttactactt 900
gtgcgcttac ccggtgacca acgacgttga ggcctttgcc gttggcaaca ctgatcctga 960
tgtcatccca ccggagattg tagtgggaga cgtcgccatc ccaccggaga ttatagaggg 1020
aaacgtcgcc gatggcaacg gcgacggcgg acagcagcag cagcagagcg aaaaccttgg 1080
tggtaatggt gagagtgtgg tggtgtcgca aagcaatggt gtgcaggaag atggtgcaga 1140
tgggatgttt ctgaaggaga tcctcatgga tgaagacctg atgtttcccg acgctgagct 1200
ttttccgttg gtgggcgctg cacctggtcc agaggatttc atcgtcgacc aagatgttct 1260
cgacgacgtc ttcgccaacc cgagcagcag cgcaagcagc gactgaaccg aaagaagatc 1320
agagcgggac gcagcatcgg ttgattcatc tatcgtctct cgacctgcta ctctatgcta 1380
gccgctatat cggttaataa atttgggaat aagtttgtgt tcgtgcgtgt gacatggact 1440
gtatggttcg ccctgaattt atcgtattgc aatatatagc cgtgattgtg tgt 1493
124
434
PRT
Triticum aestivum
124
Ala Pro Ala Leu Ala Ser Lys Ser Ile His Asn Ile Gly Thr Glu Leu
1 5 10 15
Ala Val Leu Pro Arg Val Met Gly Thr Glu Gln Gly Lys Glu Gly Thr
20 25 30
Gly Ala Gly Glu Gly Arg Val Glu Val Arg Thr Gly Pro Arg Pro Ala
35 40 45
Leu Pro Ala Pro Gln Gln Arg Ala Val Asp Gly Phe Trp Arg Glu Arg
50 55 60
Gln Glu Glu Met Glu Ala Thr Ala Asp Phe Asn Asp Arg Ile Leu Pro
65 70 75 80
Met Ala Arg Leu Lys Arg Leu Ile Arg Ala Glu Glu Asp Gly Met Met
85 90 95
Ile Ala Ala Asp Thr Pro Ala Tyr Leu Ala Lys Leu Cys Glu Leu Phe
100 105 110
Val Gln Glu Leu Ala Val Arg Ala Trp Ala Cys Ala Gln Ser His His
115 120 125
Arg Arg Ile Ile Leu Glu Ser Asp Ile Ala Glu Ala Ile Ala Phe Thr
130 135 140
Gln Ser Tyr Asp Phe Leu Ala Thr Val Leu Leu Glu His Gln Arg Glu
145 150 155 160
Ala Arg Leu Ala Gly Arg Ala Ala Ile Pro Thr Thr Val Pro Val Thr
165 170 175
Ala Ala Arg Ala Arg Leu Ile Thr Arg Lys Arg His Met Pro Asp Pro
180 185 190
Asn Pro Pro Arg Pro Val His Gly Val Arg Arg Ile Arg Pro Arg Ala
195 200 205
Leu Pro Ile Pro Pro Pro Ser Asp Phe Arg Tyr Val Pro Val Pro Phe
210 215 220
Pro Phe Thr Ser Ala Pro Ile Gly Ala Ala Ala Met Ala Glu Gly Leu
225 230 235 240
Met Ile Leu Pro Pro Ile Asn His Ala Thr Thr Glu Arg Val Phe Phe
245 250 255
Leu Asp Arg Asn Ser Gly Thr Asp Phe Ala Gly Glu Asn Ser Ala Ala
260 265 270
Glu Thr Ile Ala Ser Pro Pro Pro Pro Ala Gly Pro Ala Gly Ala Val
275 280 285
Ala Leu Pro Thr Val His Pro Ala Ala Tyr Tyr Leu Cys Ala Tyr Pro
290 295 300
Val Thr Asn Asp Val Glu Ala Phe Ala Val Gly Asn Thr Asp Pro Asp
305 310 315 320
Val Ile Pro Pro Glu Ile Val Val Gly Asp Val Ala Ile Pro Pro Glu
325 330 335
Ile Ile Glu Gly Asn Val Ala Asp Gly Asn Gly Asp Gly Gly Gln Gln
340 345 350
Gln Gln Gln Ser Glu Asn Leu Gly Gly Asn Gly Glu Ser Val Val Val
355 360 365
Ser Gln Ser Asn Gly Val Gln Glu Asp Gly Ala Asp Gly Met Phe Leu
370 375 380
Lys Glu Ile Leu Met Asp Glu Asp Leu Met Phe Pro Asp Ala Glu Leu
385 390 395 400
Phe Pro Leu Val Gly Ala Ala Pro Gly Pro Glu Asp Phe Ile Val Asp
405 410 415
Gln Asp Val Leu Asp Asp Val Phe Ala Asn Pro Ser Ser Ser Ala Ser
420 425 430
Ser Asp
125
660
DNA
Triticum aestivum
unsure
(483)
n = A, C, G, or T
125
ggcaccgagc tagcttggca atggccgcga gggcgtgtcc tgctgcttct ggttaccgtg 60
tgtgctgaag catctgacgc gcttgcgccg agcagcagga gctagccgtt catgctcttc 120
ttccctcccc ttggcatctg aagcagtaag agctcaagtt cacagagggc gttcgtccga 180
tctacaaagc ccagctgtac atcgccttag ctagcttgca gatcgcaagc tagatagtaa 240
tggagaacca ccagctgccc tacaccaccc agccgccggc aacgggcgcg gccggaggag 300
ccccggtgcc tggcgtgcct gggccaccgc cggtgccaca ccaccacctg ctccagcagc 360
agcaggccca gctgcaggcg ttctgggcgt accagcggca ggaggcggag cgcgcatcgg 420
cgtccgactt caagaaccac cagctgccgc tggctcggat caagaagatc atgaaggccg 480
acnaagacgt gcgcatgatc tccgcggagg cgcccgtgct cttcgccaag gcctgcgagc 540
tctttattct cgaagctcac cattccgctt cctggctgca cgcccgagga agaacaagcc 600
gccgcacaac ttgnagcgca aacgacgttn cccgcttgcc aatnggngcc gccacccgac 660
126
147
PRT
Triticum aestivum
UNSURE
(82)
Xaa = any amino acid
126
Met Glu Asn His Gln Leu Pro Tyr Thr Thr Gln Pro Pro Ala Thr Gly
1 5 10 15
Ala Ala Gly Gly Ala Pro Val Pro Gly Val Pro Gly Pro Pro Pro Val
20 25 30
Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala Phe
35 40 45
Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp Phe
50 55 60
Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala
65 70 75 80
Asp Xaa Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala
85 90 95
Lys Ala Cys Glu Leu Phe Ile Leu Glu Ala His His Ser Ala Ser Trp
100 105 110
Leu His Ala Arg Gly Arg Thr Ser Arg Arg Thr Thr Xaa Ser Ala Asn
115 120 125
Asp Val Xaa Arg Leu Pro Xaa Gly Ala Ala Thr Arg Arg Xaa Phe Glu
130 135 140
Xaa Phe Leu
145
127
1874
DNA
Triticum aestivum
127
gcacgagccc acccacaacc ctagctcccc cgaacccatg gatcccacca aatccagcac 60
cccgccgccg ccccccgtcc tgggcgcgcc cgtcggctac ccgccggggg cgtaccctcc 120
tccgccgggc gcccccgcgg ccgcctaccc gccgcagctc tacgcgccgc cgggcgccgc 180
cgccgcccag caggccgcgg cgcagcagca gcagcagctg caggtgttct gggcggagca 240
gtaccgcgag atcgaggcca ccaccgactt caagaaccac aacctcccgc tggcccggat 300
caagaagatc atgaaggccg acgaggacgt ccgcatgatc gccgccgagg cccccgtcgt 360
cttcgcccgc gcctgcgaga tgttcatcct cgagctcacc caccgcggct gggcgcacgc 420
cgaggagaac aagcgccgca cgctccagaa gtccgacatt gcggccgcca tcgcccgcac 480
cgaggtcttc gacttcctcg tggacatcgt gccccgggac gacgccaagg acgccgaggc 540
ggccgccgcc gcggccatgg ccacggcggc ggccgggatc ccgcgcccgg ccgccggcgt 600
gcctgccacc gacccgagta tggcatacta ctatgtcccc cagcagtaat gtatcatcga 660
tctaaacttg cgcatttcta atcggagaat gtgttgttgt tctgtgactg tccttggtgc 720
tgttgttgct gcggcgtaat aagatttatg ggcctcccct gagcttatga attgagctgt 780
tcggttctag tattacagta ggattgttgt aatgggggag gccgtatgat tgcttccgta 840
gtgcatgact aactggccac ccagtgtaat ctgataacta ttatctggcg cctcccatgg 900
ttactatgta tttatgttct tcacacagtc ctctttgtct ctaccacttc gaggagttct 960
tcggaaggat gggctccaag atgcttctgg tcaccgctct cttggtgggc atagcctctc 1020
agagctatgc caccaggagc cttgacggaa accacttggc tgatcagaag tacggcggcg 1080
gcggctacgg aggtggcggt gggggctccg gaggtggtgg tggctacgga ggaggtggca 1140
gcggcggcgg gggtggctat ggaggaggcg gcggcggtgg ctacggagga ggaggcggcg 1200
gttacacacc gatgccaaca ccgtcgaccc ccagccacag cggatcctgc gactactgga 1260
agggccaccc ggagaagatc atcgactgca tcggcagcct gggcagcatc ctgggctccc 1320
tcggagaggt gtgccactcc ttcttcggca gcaagatcca taccctgcag gacgcgctgt 1380
gcaacacccg gaccgactgc tacggcgacc tgctgcgcga gggcgccgcc gcctacatca 1440
acgccatcgc cgccaagaag gagaagttcg cctacaccgc ctaccaggtc aaggagtgcg 1500
tcgccgtcgg gctcacctcc gagttcgccg ccgccgcgca ggccgccatg ttgaagaagg 1560
ccaactacgc ctgccactac taggaggcta ggctaccggc cggccgcccc agctggtggt 1620
cgtcggtggc taaataagtc catatatgca tgcacgtgtc gtgcatgttt tcatgcagtt 1680
tcccggatgc gcgcgcgcgt gtcctccgct atgcctttat gtgtttgctt gccgtttgat 1740
gatgcatgcc atgccgtctc atatatacgt agtgatgctt aatgctttgc ttgcttttct 1800
tatcttcgtt ggtgatgtaa gaataatttg attgaggagt tattagtgaa agacatagta 1860
tgcaaaaaaa aaaa 1874
128
203
PRT
Triticum aestivum
128
Met Asp Pro Thr Lys Ser Ser Thr Pro Pro Pro Pro Pro Val Leu Gly
1 5 10 15
Ala Pro Val Gly Tyr Pro Pro Gly Ala Tyr Pro Pro Pro Pro Gly Ala
20 25 30
Pro Ala Ala Ala Tyr Pro Pro Gln Leu Tyr Ala Pro Pro Gly Ala Ala
35 40 45
Ala Ala Gln Gln Ala Ala Ala Gln Gln Gln Gln Gln Leu Gln Val Phe
50 55 60
Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp Phe Lys Asn
65 70 75 80
His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
85 90 95
Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala
100 105 110
Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala
115 120 125
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala
130 135 140
Ile Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile Val Pro Arg
145 150 155 160
Asp Asp Ala Lys Asp Ala Glu Ala Ala Ala Ala Ala Ala Met Ala Thr
165 170 175
Ala Ala Ala Gly Ile Pro Arg Pro Ala Ala Gly Val Pro Ala Thr Asp
180 185 190
Pro Ser Met Ala Tyr Tyr Tyr Val Pro Gln Gln
195 200
129
629
DNA
Amaranthus retroflexus
unsure
(566)..(567)..(568)
n = A, C, G, or T
129
gcacgaggat ggatcatcat catcgtggag ggttccatgg ttaccgcaaa caacatcccc 60
tttctaagtc ctcctcttct gaaatgagat tgacatcgga ggtgttaccg gctgagatga 120
atcacatacg cccaactagc aatggaaaag gagtatcaca tgacatgaac aaccatacca 180
ataaccatca tccctacaac aatagcaaca acaacaacaa tggtttcagc aacggaaata 240
gtaatcactc agcatcaacc gatcaagata acaatgagtg cactgtacgc gagcaagatc 300
gctttatgcc catcgccaat gtcattagga tcatgcgcaa gattcttcct cctcatgcca 360
aaatctccga tgatgctaag gaaactatcc aggagtgtgt atcagagtac atcagcttca 420
taacaggtga agccaacgag aggtgccaaa gggaacaacg taagaccata actgctgaag 480
atgttctttg ggcgatgagc aagttgggat tcgatgacta catcgaaccc ctcacactgt 540
acttgcatcg atacagggaa ctcgannngg aacgtggttc catccgcact tgtgagccac 600
tcctcnnnct cagtcgtgct gccatnnnn 629
130
198
PRT
Amaranthus retroflexus
UNSURE
(186)..(187)
Xaa = any amino acid
130
Met Asp His His His Arg Gly Gly Phe His Gly Tyr Arg Lys Gln His
1 5 10 15
Pro Leu Ser Lys Ser Ser Ser Ser Glu Met Arg Leu Thr Ser Glu Val
20 25 30
Leu Pro Ala Glu Met Asn His Ile Arg Pro Thr Ser Asn Gly Lys Gly
35 40 45
Val Ser His Asp Met Asn Asn His Thr Asn Asn His His Pro Tyr Asn
50 55 60
Asn Ser Asn Asn Asn Asn Asn Gly Phe Ser Asn Gly Asn Ser Asn His
65 70 75 80
Ser Ala Ser Thr Asp Gln Asp Asn Asn Glu Cys Thr Val Arg Glu Gln
85 90 95
Asp Arg Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Lys Ile
100 105 110
Leu Pro Pro His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln
115 120 125
Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn Glu
130 135 140
Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Val Leu
145 150 155 160
Trp Ala Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro Leu Thr
165 170 175
Leu Tyr Leu His Arg Tyr Arg Glu Leu Xaa Xaa Glu Arg Gly Ser Ile
180 185 190
Arg Thr Cys Glu Pro Leu
195
131
625
DNA
Momordica charantia
unsure
(597)..(598)..(599)
n = A, C, G, or T
131
gcacgaggct agctagctag gtctctctac tcagttagag agagaaagaa aaagaaaaca 60
aggggaagag agagagagag gcatggaata tggaggagga ggaggagatg ggttccatag 120
ctacagaagg cagcagccaa acacaaaacc aagctctgct ttgaacatgt tgctgaccac 180
aaacaagcca tccgccaaca accaccacca ccacttaaac ggccaaaacg ccaccaccac 240
caccaactcc tctgctgctg ccgccccgac cctggccccg gccgctgctg ccaacaacaa 300
cgagcagcag tgcgtcgtgc gggagcaaga ccaatacatg ccgatcgcca acgtgatacg 360
catcatgcgg cggatcttac cctcccatgc aaagatatcc gacgatgcca aggagaccat 420
ccaagagtgt gtgtcggagt acattagctt catcaccggc gaggccaacg agcggtgcca 480
gcgagagcag cgcaagacgg tgacggcgga ggacgtcctt tgggccatgg ggaagcttgg 540
cttcgacgac tacatcgagc cactcaccgt gttcctcaac cgctaccggg agtcagnnng 600
cgatcgaatc cgaacggagn nnntc 625
132
179
PRT
Momordica charantia
UNSURE
(172)..(173)
Xaa = any amino acid
132
Met Glu Tyr Gly Gly Gly Gly Gly Asp Gly Phe His Ser Tyr Arg Arg
1 5 10 15
Gln Gln Pro Asn Thr Lys Pro Ser Ser Ala Leu Asn Met Leu Leu Thr
20 25 30
Thr Asn Lys Pro Ser Ala Asn Asn His His His His Leu Asn Gly Gln
35 40 45
Asn Ala Thr Thr Thr Thr Asn Ser Ser Ala Ala Ala Ala Pro Thr Leu
50 55 60
Ala Pro Ala Ala Ala Ala Asn Asn Asn Glu Gln Gln Cys Val Val Arg
65 70 75 80
Glu Gln Asp Gln Tyr Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg
85 90 95
Arg Ile Leu Pro Ser His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr
100 105 110
Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala
115 120 125
Asn Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Val Thr Ala Glu Asp
130 135 140
Val Leu Trp Ala Met Gly Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro
145 150 155 160
Leu Thr Val Phe Leu Asn Arg Tyr Arg Glu Ser Xaa Xaa Asp Arg Ile
165 170 175
Arg Thr Glu
133
1173
DNA
Zea mays
133
ccacgcgtcc gccaccacac cacgagcgcg cgataaccct agctagcttc aggtagtagc 60
gagagccaat ggactccagc agcttcctcc ctgccgccgg cgcggagaat ggctcggcgg 120
cgggcggcgc caacaatggc ggcgctgctc agcagcatgc ggcgccggcg atccgcgagc 180
aggaccggct gatgccgatc gcgaacgtga tccgcatcat gcggcgcgtg ctgccggcgc 240
acgccaagat ctcggacgac gccaaggaga cgatccagga gtgcgtgtcg gagtacatca 300
gcttcatcac gggggaggcc aacgagcggt gccagcggga gcagcgcaag accatcaccg 360
ccgaggacgt gctgtgggcc atgagccgcc tcggcttcga cgactacgtc gagccgctcg 420
gcgcctacct ccaccgctac cgcgagttcg agggcgacgc gcgcggcgtc gggctcgtcc 480
cgggggccgc cccatcgcgc ggcggcgacc accacccgca ctccatgtcg ccagcggcga 540
tgctcaagtc ccgcgggcca gtctccggag ccgccatgct accgcaccac caccaccacc 600
acgacatgca gatgcacgcc gccatgtacg ggggaacggc cgtgcccccg ccggccgggc 660
ctcctcacca cggcgggttc ctcatgccac acccacaggg tagtagccac tacctgcctt 720
acgcgtacga gcccacgtac ggcggtgagc acgccatggc tgcatactat ggaggcgccg 780
cgtacgcgcc cggcaacggc gggagcggcg acggcagtgg cagtggcggc ggtggcggga 840
gcgcgtcgca cacaccgcag ggcagcggcg gcttggagca cccgcacccg ttcgcgtaca 900
agtagctagt tcgtacgtcg ttcgacttga gcaagccatc gatctgctga tctgaacgta 960
cgctgtattg tacacgcatg cacgtacgta tcggcggcta gctctcctgt ttaagttgta 1020
ctgtgattct gtcccggccg gctagcaact tagtatcttc cttcagtctc tagtttctta 1080
gcagtcgtag aagtgttcaa tgcttgccag tgtgttgttt tagggccggg gtaaaccatc 1140
cgatgagatt atttcaaaaa aaaaaaaaaa aaa 1173
134
278
PRT
Zea mays
134
Met Asp Ser Ser Ser Phe Leu Pro Ala Ala Gly Ala Glu Asn Gly Ser
1 5 10 15
Ala Ala Gly Gly Ala Asn Asn Gly Gly Ala Ala Gln Gln His Ala Ala
20 25 30
Pro Ala Ile Arg Glu Gln Asp Arg Leu Met Pro Ile Ala Asn Val Ile
35 40 45
Arg Ile Met Arg Arg Val Leu Pro Ala His Ala Lys Ile Ser Asp Asp
50 55 60
Ala Lys Glu Thr Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile
65 70 75 80
Thr Gly Glu Ala Asn Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile
85 90 95
Thr Ala Glu Asp Val Leu Trp Ala Met Ser Arg Leu Gly Phe Asp Asp
100 105 110
Tyr Val Glu Pro Leu Gly Ala Tyr Leu His Arg Tyr Arg Glu Phe Glu
115 120 125
Gly Asp Ala Arg Gly Val Gly Leu Val Pro Gly Ala Ala Pro Ser Arg
130 135 140
Gly Gly Asp His His Pro His Ser Met Ser Pro Ala Ala Met Leu Lys
145 150 155 160
Ser Arg Gly Pro Val Ser Gly Ala Ala Met Leu Pro His His His His
165 170 175
His His Asp Met Gln Met His Ala Ala Met Tyr Gly Gly Thr Ala Val
180 185 190
Pro Pro Pro Ala Gly Pro Pro His His Gly Gly Phe Leu Met Pro His
195 200 205
Pro Gln Gly Ser Ser His Tyr Leu Pro Tyr Ala Tyr Glu Pro Thr Tyr
210 215 220
Gly Gly Glu His Ala Met Ala Ala Tyr Tyr Gly Gly Ala Ala Tyr Ala
225 230 235 240
Pro Gly Asn Gly Gly Ser Gly Asp Gly Ser Gly Ser Gly Gly Gly Gly
245 250 255
Gly Ser Ala Ser His Thr Pro Gln Gly Ser Gly Gly Leu Glu His Pro
260 265 270
His Pro Phe Ala Tyr Lys
275
135
1269
DNA
Zea mays
135
ccacgcgtcc gcatgaataa tccccaaaac cctaaagcca gtgctccttg caccttgcca 60
ccggagcttc ccaaagaagc agtggcgacc gacgaagcac cgccgccaat gggcaacaac 120
aacaacacgg aatcggcgac ggcgacgatg gtccgggagc aggaccggct gatgcccgtg 180
gccaacgtgt cccgcatcat gcgccaagtg ctgcctccgt acgccaagat ctccgacgac 240
gccaaggagg tgatccagga gtgcgtgtcg gagttcatca gcttcgtcac tggcgaggcg 300
aacgagcggt gccacaccga gcgccgcaag accgtcacct ccgaggacat cgtgtgggcc 360
atgagccgcc tcggcttcga cgactacgtc gcgcccctcg gcgccttcct ccagcgcatg 420
cgcgacgaca gcgaccacgg cggtgaagag cgcggcggcc ctgcagggcg tggtggctcg 480
cgccgcggct cgtcgtcctt gccgctccac tgcccgcagc agatgcacca cctgcaccca 540
gccgtctgcc ggcgtccgca ccagagcgtg tcgcctgctg caggatacgc cgtccggccc 600
gttccccgcc cgatgccagc cagtgggtac cgcatgcagg gcggagacca ccgcagcgtg 660
ggcggcgtgg ctccctgcag ctacggaggg gcgctcgtcc aggccggtgg aacccaacac 720
gttgttggat tccacgacga cgaggcaagc tcttcgagtg aaaatccgcc gccggagggg 780
cgtgccgctg gctcgaacta gcctagcttc tcagttcccc gtgtacaata agaggggcgg 840
tcgcggcgcc gcgccgcgcc cttgggttgg gccgggcgct atgctgcagt ttggtttgta 900
aactaacgag cctagggtag ctggtgcacg cgcgccacct cgccggacgt cgccgtcgtc 960
gtcggcatgg acttaaccgg cgggccctgt tgttatttct caagtttgta gccaacgcac 1020
tgttcggtgc gttccataat ttaatttacc atgttgctct cgaaatgaaa aaaaaaaaaa 1080
aaaaaagggc ggccgccctt tttttttttt tttttttttt tcctcttaag gcaaggcaac 1140
tcctgtttgt aggggaatcg ttatggttct gcttctgatt gctcctagtt cttccatcat 1200
tttcgtgttc aaagagaagg ctcccagaaa ataaaataac gattgctatg aaaaaaaaaa 1260
aaaaaaaag 1269
136
262
PRT
Zea mays
136
Met Asn Asn Pro Gln Asn Pro Lys Ala Ser Ala Pro Cys Thr Leu Pro
1 5 10 15
Pro Glu Leu Pro Lys Glu Ala Val Ala Thr Asp Glu Ala Pro Pro Pro
20 25 30
Met Gly Asn Asn Asn Asn Thr Glu Ser Ala Thr Ala Thr Met Val Arg
35 40 45
Glu Gln Asp Arg Leu Met Pro Val Ala Asn Val Ser Arg Ile Met Arg
50 55 60
Gln Val Leu Pro Pro Tyr Ala Lys Ile Ser Asp Asp Ala Lys Glu Val
65 70 75 80
Ile Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Gly Glu Ala
85 90 95
Asn Glu Arg Cys His Thr Glu Arg Arg Lys Thr Val Thr Ser Glu Asp
100 105 110
Ile Val Trp Ala Met Ser Arg Leu Gly Phe Asp Asp Tyr Val Ala Pro
115 120 125
Leu Gly Ala Phe Leu Gln Arg Met Arg Asp Asp Ser Asp His Gly Gly
130 135 140
Glu Glu Arg Gly Gly Pro Ala Gly Arg Gly Gly Ser Arg Arg Gly Ser
145 150 155 160
Ser Ser Leu Pro Leu His Cys Pro Gln Gln Met His His Leu His Pro
165 170 175
Ala Val Cys Arg Arg Pro His Gln Ser Val Ser Pro Ala Ala Gly Tyr
180 185 190
Ala Val Arg Pro Val Pro Arg Pro Met Pro Ala Ser Gly Tyr Arg Met
195 200 205
Gln Gly Gly Asp His Arg Ser Val Gly Gly Val Ala Pro Cys Ser Tyr
210 215 220
Gly Gly Ala Leu Val Gln Ala Gly Gly Thr Gln His Val Val Gly Phe
225 230 235 240
His Asp Asp Glu Ala Ser Ser Ser Ser Glu Asn Pro Pro Pro Glu Gly
245 250 255
Arg Ala Ala Gly Ser Asn
260
137
481
DNA
Argemone mexicana
unsure
(410)
n = A, C, G, or T
137
cgagagaaag agttggtgaa gaagaagaag aagttgaaaa gagatggaac gtggtggtgg 60
tggtggtggt agtggtggtg gtttccatgg atatcagaaa ctcccaaaat caaactccgc 120
tggaatgatg ctctcggagc tatcgaataa caacaacaat attgacgtaa actctacatg 180
tactgtacga gagcaagatc gatacatgcc aattgctaat gtgatcagga tcatgcgtaa 240
ggtacttcct actcatgcca agatctctga cgatgccaaa gaaactatcc aagaatgtgt 300
ctcagaatac atcagtttca tcacaagtga agccaatgat cgttgccaac gtgaacaaag 360
aaagacaatc acagctgaag atgttttatg ggcgatgagc aaactagggn ttgatgagta 420
cattgaacct ctaactcttt accttcaacg ttatcgtgag tttgaaggtg nacgttggtc 480
a 481
138
146
PRT
Argemone mexicana
UNSURE
(123)
Xaa = any amino acid
138
Met Glu Arg Gly Gly Gly Gly Gly Gly Ser Gly Gly Gly Phe His Gly
1 5 10 15
Tyr Gln Lys Leu Pro Lys Ser Asn Ser Ala Gly Met Met Leu Ser Glu
20 25 30
Leu Ser Asn Asn Asn Asn Asn Ile Asp Val Asn Ser Thr Cys Thr Val
35 40 45
Arg Glu Gln Asp Arg Tyr Met Pro Ile Ala Asn Val Ile Arg Ile Met
50 55 60
Arg Lys Val Leu Pro Thr His Ala Lys Ile Ser Asp Asp Ala Lys Glu
65 70 75 80
Thr Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Ser Glu
85 90 95
Ala Asn Asp Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu
100 105 110
Asp Val Leu Trp Ala Met Ser Lys Leu Gly Xaa Asp Glu Tyr Ile Glu
115 120 125
Pro Leu Thr Leu Tyr Leu Gln Arg Tyr Arg Glu Phe Glu Gly Xaa Arg
130 135 140
Trp Ser
145
139
1154
DNA
Glycine max
unsure
(3)
n = A, C, G, or T
139
atnacacaca cctaccttat aactatggaa actggaggct ttcatggcta ccgcaagctc 60
cccaacacaa cctctgggtt gaagctgtca gtgtcagaca tgaacatgaa catgaggcag 120
cagcaggtag catcatcaga tcagaactgc agcaaccaca gtgcagcagg agaggagaac 180
gaatgcacgg tgagggagca agacaggttc atgccaatcg ctaacgtgat acggatcatg 240
cgcaagattc tccctccaca cgcaaaaatc tccgatgatg caaaggagac aatccaagag 300
tgcgtgtcgg agtacatcag cttcatcacc ggggaggcca acgagcgttg ccagagggag 360
cagcgcaaga ccataaccgc agaggacgtg ctttgggcaa tgagtaagct tggattcgac 420
gactacatcg aaccgttaac catgtacctt caccgctacc gtgagctgga gggtgaccgc 480
acctctatga ggggtgaacc gctcgggaag aggactgtgg aatatgccac gcttgctact 540
gcttttgtgc cgccaccctt tcatcaccac aatggctact ttggtgctgc catgcccatg 600
gggacttacg ttagggaaac gccaccaaat gctgcgtcat ctcatcacca tcatggaatc 660
tccaatgctc atgaaccaaa tgctcgctcc atataaaatt aatgaagagt actgttcagt 720
aggagaacaa gacttcttgg acttgattag cttaactctc agtgattggt gttagagtac 780
tgttgttgag gatggttaat tttataatta agggctggga attggggagt tagtatatat 840
tcctaatcct aattatgtgc atctttaatt tatggaataa ctttgttttt tgttttaact 900
tctgataatt tggattttct gatgtttaat gtggttttgt ctatccctta ttaacagtgc 960
caagcttaag gttttagcca tgctccaaaa tggaatactt gtactgttat gttgttctgg 1020
tagtgatggt gatgaaacct gcaagttatg tttatgtata aagccactat tgatcaaaat 1080
tagagaaatt atcatttaat aagtatcctc ccatgttaat tttaaaaaaa aaaaaaaaaa 1140
actcgagacc ggca 1154
140
223
PRT
Glycine max
140
Met Glu Thr Gly Gly Phe His Gly Tyr Arg Lys Leu Pro Asn Thr Thr
1 5 10 15
Ser Gly Leu Lys Leu Ser Val Ser Asp Met Asn Met Asn Met Arg Gln
20 25 30
Gln Gln Val Ala Ser Ser Asp Gln Asn Cys Ser Asn His Ser Ala Ala
35 40 45
Gly Glu Glu Asn Glu Cys Thr Val Arg Glu Gln Asp Arg Phe Met Pro
50 55 60
Ile Ala Asn Val Ile Arg Ile Met Arg Lys Ile Leu Pro Pro His Ala
65 70 75 80
Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln Glu Cys Val Ser Glu
85 90 95
Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn Glu Arg Cys Gln Arg Glu
100 105 110
Gln Arg Lys Thr Ile Thr Ala Glu Asp Val Leu Trp Ala Met Ser Lys
115 120 125
Leu Gly Phe Asp Asp Tyr Ile Glu Pro Leu Thr Met Tyr Leu His Arg
130 135 140
Tyr Arg Glu Leu Glu Gly Asp Arg Thr Ser Met Arg Gly Glu Pro Leu
145 150 155 160
Gly Lys Arg Thr Val Glu Tyr Ala Thr Leu Ala Thr Ala Phe Val Pro
165 170 175
Pro Pro Phe His His His Asn Gly Tyr Phe Gly Ala Ala Met Pro Met
180 185 190
Gly Thr Tyr Val Arg Glu Thr Pro Pro Asn Ala Ala Ser Ser His His
195 200 205
His His Gly Ile Ser Asn Ala His Glu Pro Asn Ala Arg Ser Ile
210 215 220
141
942
DNA
Glycine max
141
gcacgagctc tcttataatc acacacacac ctaccttaat agctatggaa actggaggct 60
ttcacggcta ccgcaagctc cccaacacca ccgctgggtt gaagctgtca gtgtcagaca 120
tgaacatgag gcagcaggta gcatcatcag atcacagtgc agccacagga gaggagaacg 180
aatgcacggt gagggagcaa gacaggttca tgccaatcgc caacgtgatt aggatcatgc 240
gcaagattct ccctccacac gcaaaaatct cggacgatgc aaaagaaaca atccaagagt 300
gcgtgtctga gtacatcagc ttcatcacag gtgaggcgaa cgagcgttgc cagagggagc 360
agcggaagac cataaccgca gaggacgtgc tttgggccat gagcaagctt ggattcgacg 420
actacatcga accgttgacc atgtaccttc accgctaccg tgaacttgag ggtgaccgca 480
cctctatgag gggtgaacca ctcgggaaga ggactgtgga atacgccacg cttggtgttg 540
ctactgcttt tgtccctcca ccctatcatc accacaatgg gtactttggt gctgccatgc 600
ccatggggac ttacgttagg gaagcgccac caaatacagc ctcctcccat caccaccacc 660
accaccacca ccaccatgct cgtggaatct ccaatgctca tgaaccaaat gctcgctcca 720
tataaaatta tataattatg actaggattc agaacaagac ttgatgatga ttagcttaac 780
tctcagtaat tggtgctaga gtactactgt tgttgaggat actttatttt ataattaagg 840
gctgggaagg gagttagtat attcctaatc ctaactatgt gcatctttaa tttatgaaat 900
cactttgttt taacctttga tgaaaaaaaa aaaaaaaaaa aa 942
142
240
PRT
Glycine max
142
Thr Ser Ser Leu Ile Ile Thr His Thr Pro Thr Leu Ile Ala Met Glu
1 5 10 15
Thr Gly Gly Phe His Gly Tyr Arg Lys Leu Pro Asn Thr Thr Ala Gly
20 25 30
Leu Lys Leu Ser Val Ser Asp Met Asn Met Arg Gln Gln Val Ala Ser
35 40 45
Ser Asp His Ser Ala Ala Thr Gly Glu Glu Asn Glu Cys Thr Val Arg
50 55 60
Glu Gln Asp Arg Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg
65 70 75 80
Lys Ile Leu Pro Pro His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr
85 90 95
Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala
100 105 110
Asn Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp
115 120 125
Val Leu Trp Ala Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro
130 135 140
Leu Thr Met Tyr Leu His Arg Tyr Arg Glu Leu Glu Gly Asp Arg Thr
145 150 155 160
Ser Met Arg Gly Glu Pro Leu Gly Lys Arg Thr Val Glu Tyr Ala Thr
165 170 175
Leu Gly Val Ala Thr Ala Phe Val Pro Pro Pro Tyr His His His Asn
180 185 190
Gly Tyr Phe Gly Ala Ala Met Pro Met Gly Thr Tyr Val Arg Glu Ala
195 200 205
Pro Pro Asn Thr Ala Ser Ser His His His His His His His His His
210 215 220
His Ala Arg Gly Ile Ser Asn Ala His Glu Pro Asn Ala Arg Ser Ile
225 230 235 240
143
796
DNA
Glycine max
143
gcacgagcaa tggcgggagt gagggaacag gaccagtaca tgccgatagc gaacgtgata 60
aggatcatgc gtcggattct gccagcgcac gcgaagatct cagacgacgc gaaggagacg 120
atccaggagt gcgtgtctga gtacatcagt ttcatcacgg cggaggcgaa cgagcggtgc 180
cagcgggagc agcggaagac ggtgaccgca gaggatgtgt tgtgggcgat ggagaagctt 240
ggctttgaca actacgctca ccctctctct ctttaccttc accgctaccg cgagagtgaa 300
ggagaacctg cttctgtcag acgcgcttct tctgcaatgg ggatcaataa taatatggtg 360
cacccacctt atattaattc tcatggcttt ggaatgtttg attttgaccc atcatcgcaa 420
gggttttaca gggacgatca taacgctgct tctggatctg gtggttttgt tgcgcctttt 480
gatccttatg ctaacatcaa acgtgatgcc ctgtgatcat gtaagaacaa caactagtgc 540
atgctgcttt ttcacttggt tagttatatt caagcacaag cacatgcagg tgcagctgca 600
actatttagc ttcatctaca aatctttttt cctctcttct tctcatgctt taattattta 660
gagacaatac ttgttattca ttgttatgct caattgctag cttctattca tcgtcgactg 720
tctgtattgt tgatgttcat tacagtaaca gataagatgg taactgcttt actacttcaa 780
aaaaaaaaaa aaaaaa 796
144
171
PRT
Glycine max
144
Ala Arg Ala Met Ala Gly Val Arg Glu Gln Asp Gln Tyr Met Pro Ile
1 5 10 15
Ala Asn Val Ile Arg Ile Met Arg Arg Ile Leu Pro Ala His Ala Lys
20 25 30
Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln Glu Cys Val Ser Glu Tyr
35 40 45
Ile Ser Phe Ile Thr Ala Glu Ala Asn Glu Arg Cys Gln Arg Glu Gln
50 55 60
Arg Lys Thr Val Thr Ala Glu Asp Val Leu Trp Ala Met Glu Lys Leu
65 70 75 80
Gly Phe Asp Asn Tyr Ala His Pro Leu Ser Leu Tyr Leu His Arg Tyr
85 90 95
Arg Glu Ser Glu Gly Glu Pro Ala Ser Val Arg Arg Ala Ser Ser Ala
100 105 110
Met Gly Ile Asn Asn Asn Met Val His Pro Pro Tyr Ile Asn Ser His
115 120 125
Gly Phe Gly Met Phe Asp Phe Asp Pro Ser Ser Gln Gly Phe Tyr Arg
130 135 140
Asp Asp His Asn Ala Ala Ser Gly Ser Gly Gly Phe Val Ala Pro Phe
145 150 155 160
Asp Pro Tyr Ala Asn Ile Lys Arg Asp Ala Leu
165 170
145
905
DNA
Vernonia mespilifolia
145
gcacgagcca atttctagag agagaacgag agagaattct ctaaagagga aaaatagatg 60
gaacgtggag gaggtttcca tggctaccac aggctcccca tccaccctac atctggaatc 120
caacaatcgg atatgaagct aaagctacca gaaatgacca acaataactc gtccactgat 180
gacaatgagt gcaccgttcg agaacaggac cgcttcatgc cgatagcaaa cgtgatccgc 240
atcatgcgga agatccttcc tccacatgcc aagatctctg atgatgccaa agagacgatc 300
caagaatgtg tttcagagta cattagcttt gtcacaggcg aggcaaatga ccgctgccag 360
cgtgagcaaa ggaagaccat cacagctgaa gatgtgctct gggctatgag caaactggga 420
tttgatgatt atatcgagcc cttgactgtg tatctccatc gctacaggga gtttgatggt 480
ggcgaacgtg gatccataag gggtgagccc cttgtgaaga ggagtacttc tgatcctggt 540
cactttggga tggcttcttt tgtgcctgct tttcatatgg gtcatcataa cggcttcttt 600
ggtcctgcaa gcattggtgg tttcctgaaa gacccatcga gtgctggccc ttcgggacct 660
gcagtcgctg ggtttgagcc gtatgctcag tgtaaagagt aactgcaaaa agtaggggtt 720
gggatgagat gatgatgatg gtggtggtgg tggtggtttg ttttgttttg ttctttcttt 780
tttttttctt ctttcttttc ttggtcattg aggaacaaac ttacattggt tcactttggc 840
taggcatgta aacggttaac atgcttatca agtagtagtt ttcgatcaaa aaaaaaaaaa 900
aaaaa 905
146
214
PRT
Vernonia mespilifolia
146
Met Glu Arg Gly Gly Gly Phe His Gly Tyr His Arg Leu Pro Ile His
1 5 10 15
Pro Thr Ser Gly Ile Gln Gln Ser Asp Met Lys Leu Lys Leu Pro Glu
20 25 30
Met Thr Asn Asn Asn Ser Ser Thr Asp Asp Asn Glu Cys Thr Val Arg
35 40 45
Glu Gln Asp Arg Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg
50 55 60
Lys Ile Leu Pro Pro His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr
65 70 75 80
Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Val Thr Gly Glu Ala
85 90 95
Asn Asp Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp
100 105 110
Val Leu Trp Ala Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro
115 120 125
Leu Thr Val Tyr Leu His Arg Tyr Arg Glu Phe Asp Gly Gly Glu Arg
130 135 140
Gly Ser Ile Arg Gly Glu Pro Leu Val Lys Arg Ser Thr Ser Asp Pro
145 150 155 160
Gly His Phe Gly Met Ala Ser Phe Val Pro Ala Phe His Met Gly His
165 170 175
His Asn Gly Phe Phe Gly Pro Ala Ser Ile Gly Gly Phe Leu Lys Asp
180 185 190
Pro Ser Ser Ala Gly Pro Ser Gly Pro Ala Val Ala Gly Phe Glu Pro
195 200 205
Tyr Ala Gln Cys Lys Glu
210
147
1098
DNA
Triticum aestivum
147
gcacgagcaa gtgcgagtgc gactacctgc attgcacctt ggctagccct agacatggag 60
aacgacggcg tccccaacgg accagcggcg ccggcaccta cccaggggac gccggtggtg 120
cgggagcagg accggctgat gccgatcgcg aacgtgatcc gcatcatgcg ccgtgcgctc 180
cctgcccacg ccaagatctc cgacgacgcc aaggaggcga ttcaggaatg cgtgtccgag 240
ttcatcagct tcgtcaccgg cgaggccaac gaacggtgcc gcatgcagca ccgcaagacc 300
gtcaacgccg aagacatcgt gtgggcccta aaccgcctcg gcttcgacga ctacgtcgtg 360
cccctcagcg tcttcctgca ccgcatgcgc gaccccgagg cggggacagg tggtgccgct 420
gcaggcgaca gccgcgccgt gacgagtgcg cctccccgcg cggccccgcc cgtgatccac 480
gccgtgccgc tgcaggctca gcgcccgatg tacgcgcccc cggctccgtt gcaggttgag 540
aatcagatgc agcggcctgt gtacgctccc ccggctccgg tgcaggttca gatgcagcgg 600
ggcatctatg ggccccgggc tccagtgcac gggtacgccg tcggaatggc gcccgtgcgg 660
gccaacgtcg gcgggcagta ccaggtgttc ggcggagagg gtgtcatggc ccagcaatac 720
tacgggtacg ggtacgagga aggagcgtac ggcgcaggta gcagcaacgg aggagccgcc 780
attggcgacg aggagagctc gtccaacggc gtgccggcac cgggggaggg catgggggag 840
ccagagccag agccagcagc agaagaatcg catgacaagc ccgtccaatc tggctagtcg 900
cgtgcgcggc gcgcgttagc ttctgcgtcc tgtgtactgt aataatttgc cgtgtcgatc 960
cggccatggt ttgtgtgtgc gtagtgctta tctaatgtgg gcttgtcctc tagtaattca 1020
tgtattgctt atctaatgtg gacttgtcct ctagtaattc atgtactctt tgctgttgaa 1080
aaaaaaaaaa aaaaaaaa 1098
148
280
PRT
Triticum aestivum
148
Met Glu Asn Asp Gly Val Pro Asn Gly Pro Ala Ala Pro Ala Pro Thr
1 5 10 15
Gln Gly Thr Pro Val Val Arg Glu Gln Asp Arg Leu Met Pro Ile Ala
20 25 30
Asn Val Ile Arg Ile Met Arg Arg Ala Leu Pro Ala His Ala Lys Ile
35 40 45
Ser Asp Asp Ala Lys Glu Ala Ile Gln Glu Cys Val Ser Glu Phe Ile
50 55 60
Ser Phe Val Thr Gly Glu Ala Asn Glu Arg Cys Arg Met Gln His Arg
65 70 75 80
Lys Thr Val Asn Ala Glu Asp Ile Val Trp Ala Leu Asn Arg Leu Gly
85 90 95
Phe Asp Asp Tyr Val Val Pro Leu Ser Val Phe Leu His Arg Met Arg
100 105 110
Asp Pro Glu Ala Gly Thr Gly Gly Ala Ala Ala Gly Asp Ser Arg Ala
115 120 125
Val Thr Ser Ala Pro Pro Arg Ala Ala Pro Pro Val Ile His Ala Val
130 135 140
Pro Leu Gln Ala Gln Arg Pro Met Tyr Ala Pro Pro Ala Pro Leu Gln
145 150 155 160
Val Glu Asn Gln Met Gln Arg Pro Val Tyr Ala Pro Pro Ala Pro Val
165 170 175
Gln Val Gln Met Gln Arg Gly Ile Tyr Gly Pro Arg Ala Pro Val His
180 185 190
Gly Tyr Ala Val Gly Met Ala Pro Val Arg Ala Asn Val Gly Gly Gln
195 200 205
Tyr Gln Val Phe Gly Gly Glu Gly Val Met Ala Gln Gln Tyr Tyr Gly
210 215 220
Tyr Gly Tyr Glu Glu Gly Ala Tyr Gly Ala Gly Ser Ser Asn Gly Gly
225 230 235 240
Ala Ala Ile Gly Asp Glu Glu Ser Ser Ser Asn Gly Val Pro Ala Pro
245 250 255
Gly Glu Gly Met Gly Glu Pro Glu Pro Glu Pro Ala Ala Glu Glu Ser
260 265 270
His Asp Lys Pro Val Gln Ser Gly
275 280
149
932
DNA
Canna edulis
149
gcaccagctc aaatctccga attagggttt ctgtgccttg tctccaatgg cggaatcggg 60
ggccccgggc acgcccgaga gcggacattc cggcggcgga tctggcgcgc gggagcagga 120
ccgctgcctc cccattgcca acattgggcg gattatgagg aaggccgtac ccgagaacgg 180
caagatcgcc aaggacgcca aggaatccgt ccaggagtgc gtctccgagt tcatcagctt 240
cgtcaccagc gaggcgagcg ataagtgccg ccgcgagaaa aggaagacga tcaacggcga 300
tgatcttctg tgggctatgc ggatgcttgg cttcgaagag tacgtcgagc ctcttaagct 360
ctacttgcag ctctacagag agatggaggg aaacgtcatg gtttcacgtc ccgctgatca 420
atgatcaacc aggaaaaaga gatggagcaa ttaacaggca gcccacagat tcgttcaatg 480
gcatgtagga tggttctcaa gaaagcaaac ttttgcttac tatttcaagg tgtaggccct 540
ttgttagtgt agttaataag ttatagttgc tgcaggttat ttttgttctt atttgtactc 600
ttgtccaata ccttttcctc taagtgaaca acattcagag aatggctctt ctctaggact 660
tggacgaagg cacgaagcac tgatctgaag ttatgatcca ttcaaccatc taaaattaat 720
tttaaatttt aaattgagac aatgttttga cccttgtttc gacatttccc gacagcccta 780
ctgtaatgta aagatgactt ggatagcaaa attgttaaaa aggtacaatt cctgcaatgt 840
tttacaagtc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 900
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 932
150
121
PRT
Canna edulis
150
Met Ala Glu Ser Gly Ala Pro Gly Thr Pro Glu Ser Gly His Ser Gly
1 5 10 15
Gly Gly Ser Gly Ala Arg Glu Gln Asp Arg Cys Leu Pro Ile Ala Asn
20 25 30
Ile Gly Arg Ile Met Arg Lys Ala Val Pro Glu Asn Gly Lys Ile Ala
35 40 45
Lys Asp Ala Lys Glu Ser Val Gln Glu Cys Val Ser Glu Phe Ile Ser
50 55 60
Phe Val Thr Ser Glu Ala Ser Asp Lys Cys Arg Arg Glu Lys Arg Lys
65 70 75 80
Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Arg Met Leu Gly Phe
85 90 95
Glu Glu Tyr Val Glu Pro Leu Lys Leu Tyr Leu Gln Leu Tyr Arg Glu
100 105 110
Met Glu Gly Asn Val Met Val Ser Arg
115 120
151
863
DNA
Momordica charantia
151
gcacgagcag gatctcgctc acatggcgga ggctccgacg agtccagccg gcggcagcca 60
cgagagcggc ggcgagcaga gccccaatac cggtggggtt cgggagcagg accgatacct 120
cccgatcgct aacattagcc ggatcatgaa gaaggccttg cccgctaatg gcaagatcgc 180
caaggacgcc aaggacaccg tccaggaatg cgtctccgaa ttcatcagct tcatcactag 240
cgaggcgagc gataagtgcc agaaggagaa gagaaagacc attaatgggg atgatttgct 300
gtgggcaatg gcgacattgg gtttcgagga ctatattgat ccgcttaagt cgtatctaac 360
taggtacaga gagttggagt gtgatgctaa gggatcttct aggggtggtg atgagtctgc 420
taaaagagat gcagttgggg ccttgcctgg ccaaaattcc cagcagtaca tgcagccggg 480
agcaatgacc tacattaaca cccaaggaca gcatttgatc attccttcaa tgcagaataa 540
tgaataggag actcctgcat tccctcttgg attgtctgaa atctgaggct ggtagaagcg 600
ttcaacacct atatagcatc tttacaatcg atttggctaa tttattatga aatgatgata 660
ttatatatat ttctggggtt tctgtgttgg ttctggattt gattttggtt tgggctttta 720
aggtgggctt cgattttatt gatgctctcg tcatctaaag ttattgtaaa tttgggacct 780
tcaatttagt atagttgctt tggtaatttg gaaactggaa aaaaaaaaaa aaaaaaaaaa 840
aaaaaaaaaa aaaaaaaaaa aaa 863
152
174
PRT
Momordica charantia
152
Met Ala Glu Ala Pro Thr Ser Pro Ala Gly Gly Ser His Glu Ser Gly
1 5 10 15
Gly Glu Gln Ser Pro Asn Thr Gly Gly Val Arg Glu Gln Asp Arg Tyr
20 25 30
Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu Pro Ala
35 40 45
Asn Gly Lys Ile Ala Lys Asp Ala Lys Asp Thr Val Gln Glu Cys Val
50 55 60
Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu Ala Ser Asp Lys Cys Gln
65 70 75 80
Lys Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met
85 90 95
Ala Thr Leu Gly Phe Glu Asp Tyr Ile Asp Pro Leu Lys Ser Tyr Leu
100 105 110
Thr Arg Tyr Arg Glu Leu Glu Cys Asp Ala Lys Gly Ser Ser Arg Gly
115 120 125
Gly Asp Glu Ser Ala Lys Arg Asp Ala Val Gly Ala Leu Pro Gly Gln
130 135 140
Asn Ser Gln Gln Tyr Met Gln Pro Gly Ala Met Thr Tyr Ile Asn Thr
145 150 155 160
Gln Gly Gln His Leu Ile Ile Pro Ser Met Gln Asn Asn Glu
165 170
153
1179
DNA
Eucalyptus grandis
153
gcaccagttt ccccccgccc ccccgatcgc cgcccctccc gccggggccg gcggcggcgg 60
ggcgtcggcg gcggcggcgg aggatgtggg gagctttctc acggaggatg aggtttcttc 120
tcttctatgt tttttttttt gcagctgctc ggcttgcctg ccctctcggg cgacgacgcg 180
atggcggagg ctccggcgag tcccggcggc ggcggcagcc acgagagcgg cgagcacagc 240
ccccggtccg gcggcgccgt ccgcgagcag gacaggtacc tccccatcgc caacatcagc 300
cgcatcatga agaaggccct ccccgccaac ggcaagatcg ccaaggacgc caaggagacc 360
gtgcaggagt gcgtctccga gttcatcagc ttcatcacca gcgaggcgag cgacaagtgc 420
cagagggaga agaggaagac gatcaacggc gacgacttgc tctggcccat ggcgacctta 480
gggtttgagg attacctcga tccgcttaag atttacctgg ccagatacag ggagatggag 540
ggggatacca aggggtcagc taaagtgggg gaagcatcta ctaaaagaga tggcgccgca 600
gttcagtcag ttcctaatgc acagattgct catcaaggtt ctttctctca cggcaccaac 660
tattcgcatt ctcaagttca ccatcctgcg cttccgatgc atggctcaga atgacatgtt 720
ccagcccttg ttgcatgaga tgaagaagtc atcacacttg ttccaggcgt ttgactcatc 780
tcggcatcaa gatattcata agatgtgctg ctgacatttt agggtggtct ctgccaattg 840
tgttcatttg gagttgtttt ccagtgggct gtatatttta gcatctgcat catatttgct 900
ttcagcctta catatgtctg gtttagattt acttgataat gtagaaaggt aagcccccct 960
gcgagtattt atcttattgt catttagatt cgacacccaa ggaggacgag aatgaagttt 1020
ctttttagct ctctgtttcg ttggagttgt cttgtgtatt cttgagttag aaacttgtga 1080
acaaattggt atgcacagtc catgtttatg tgacaatgtc gaggtctgag tgtataatcc 1140
agagtccaat tcagatcgta aaaaaaaaaa aaaaaaaaa 1179
154
177
PRT
Eucalyptus grandis
154
Met Ala Glu Ala Pro Ala Ser Pro Gly Gly Gly Gly Ser His Glu Ser
1 5 10 15
Gly Glu His Ser Pro Arg Ser Gly Gly Ala Val Arg Glu Gln Asp Arg
20 25 30
Tyr Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu Pro
35 40 45
Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln Glu Cys
50 55 60
Val Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu Ala Ser Asp Lys Cys
65 70 75 80
Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Pro
85 90 95
Met Ala Thr Leu Gly Phe Glu Asp Tyr Leu Asp Pro Leu Lys Ile Tyr
100 105 110
Leu Ala Arg Tyr Arg Glu Met Glu Gly Asp Thr Lys Gly Ser Ala Lys
115 120 125
Val Gly Glu Ala Ser Thr Lys Arg Asp Gly Ala Ala Val Gln Ser Val
130 135 140
Pro Asn Ala Gln Ile Ala His Gln Gly Ser Phe Ser His Gly Thr Asn
145 150 155 160
Tyr Ser His Ser Gln Val His His Pro Ala Leu Pro Met His Gly Ser
165 170 175
Glu
155
983
DNA
Zea mays
155
gcacgagccg gagcgcctcc tcttctccag cgtccgatcc ccattcccca cctctcctcc 60
ctccgccgcc agctcccgcc cccttctctc ccctcctcgc ctccccgcgc gcgcgttttt 120
ataagggttt cggcggaggc gcccggtcgc tggcgatggc cgacgacggc gggagccacg 180
agggcagcgg cggcggcgga ggcgtccggg agcaggaccg gttcctgccc atcgccaaca 240
tcagccggat catgaagaag gccgtcccgg ccaacggcaa gatcgccaag gacgctaagg 300
agaccctgca ggagtgcgtc tccgagttca tatcattcgt gaccagcgag gccagcgaca 360
aatgccagaa ggagaaacga aagacaatca acggggacga tttgctctgg gcgatggcca 420
ctttaggatt cgaggagtac gtcgagcctc tcaagattta cctacaaaag tacaaagaga 480
tggagggtga tagcaagctg tctacaaagg ctggcgaggg ctctgtaaag aaggatgcaa 540
ttagtcccca tggtggcacc agtagctcaa gtaatcagtt ggttcagcat ggagtctaca 600
accaagggat gggctatatg cagccacagt accacaatgg ggaaacctaa taaagggcta 660
atacagcagc aatttatgct agggaagtct ctgcattgct taccatgtgt attggcagaa 720
aacaggaggc acttacaaag ggtgttaatc tctgcgatgg ctgcctctca ggtgtaaatt 780
ggcttcggtt tagcgctgct tttgtccgta tatttaggat gatttgactg ttgctacttt 840
tggcaacctt ttacatttac agatatgtat tattcagcat aaatataata tagtagtcct 900
aggcctaaat aatggtgatt aacataccaa gtcttttatc aggctactcg ttttctggaa 960
caaaaaaaaa aaaaaaaaaa aaa 983
156
164
PRT
Zea mays
156
Met Ala Asp Asp Gly Gly Ser His Glu Gly Ser Gly Gly Gly Gly Gly
1 5 10 15
Val Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile
20 25 30
Met Lys Lys Ala Val Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys
35 40 45
Glu Thr Leu Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Ser
50 55 60
Glu Ala Ser Asp Lys Cys Gln Lys Glu Lys Arg Lys Thr Ile Asn Gly
65 70 75 80
Asp Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu Glu Tyr Val
85 90 95
Glu Pro Leu Lys Ile Tyr Leu Gln Lys Tyr Lys Glu Met Glu Gly Asp
100 105 110
Ser Lys Leu Ser Thr Lys Ala Gly Glu Gly Ser Val Lys Lys Asp Ala
115 120 125
Ile Ser Pro His Gly Gly Thr Ser Ser Ser Ser Asn Gln Leu Val Gln
130 135 140
His Gly Val Tyr Asn Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His
145 150 155 160
Asn Gly Glu Thr
157
1021
DNA
Zea mays
157
ggcacgagcg ctcctgttct tctcgcatcc ccagcccagg tggtgtcccc tgtcgcgttg 60
atgcatgctc cctcggcggt ggccttgagc tgaggcggcg gagcgatgcc ggactcggac 120
aacgactccg gcgggccgag caacgccggg ggcgagctgt cgtcgccgcg ggagcaggac 180
cggttcctgc ccatcgccaa cgtgagccgg atcatgaaga aggcgctccc ggccaacgcc 240
aagatcagca aggacgccaa ggagacggtg caggagtgcg tgtccgagtt catctccttc 300
atcaccggcg aggcctccga caagtgccag cgcgagaagc gcaagaccat caacggcgac 360
gacctgctgt gggccatgac cacgctcggc ttcgaggact acgtcgagcc gctcaagcac 420
tacctgcaca agttccgcga gatcgagggc gagagggccg ccgcgtccgc cggcgcctcg 480
ggctcgcagc agcagcagca gcagggcgag ctgcccagag gcgccgccaa tgccgccggg 540
tacgccgggt acggcgcgcc tggctccggc ggcatgatga tgatgatgat ggggcagccc 600
atgtacggcg gctcgcagcc gcagcaacag ccgccgccgc ctcagccgcc acagcagcag 660
cagcaacatc aacagcatca catggcaata ggaggcagag gaggattcgg ccaacaaggc 720
ggcggcggcg gctcctcgtc gtcgtcaggg cttggccggc aagacagggc gtgagttgcg 780
acgatacgtt cagaatcaga atcgctgata ctcctacgta gaattatacc tcctacctaa 840
ttgatgacac cgcaccgcac ctcgttgtgc tgcctgtcct tgtacgttta ctaattactg 900
ctgcctgtat gtaaatcaaa atctgaggct cccatttcga aacggacggt gaactactct 960
tcccgtttcg tttcatacga gaatcgaact cgttttcaat taaaaaaaaa aaaaaaaaaa 1020
a 1021
158
222
PRT
Zea mays
158
Met Pro Asp Ser Asp Asn Asp Ser Gly Gly Pro Ser Asn Ala Gly Gly
1 5 10 15
Glu Leu Ser Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn
20 25 30
Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile Ser
35 40 45
Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser
50 55 60
Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys
65 70 75 80
Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly Phe
85 90 95
Glu Asp Tyr Val Glu Pro Leu Lys His Tyr Leu His Lys Phe Arg Glu
100 105 110
Ile Glu Gly Glu Arg Ala Ala Ala Ser Ala Gly Ala Ser Gly Ser Gln
115 120 125
Gln Gln Gln Gln Gln Gly Glu Leu Pro Arg Gly Ala Ala Asn Ala Ala
130 135 140
Gly Tyr Ala Gly Tyr Gly Ala Pro Gly Ser Gly Gly Met Met Met Met
145 150 155 160
Met Met Gly Gln Pro Met Tyr Gly Gly Ser Gln Pro Gln Gln Gln Pro
165 170 175
Pro Pro Pro Gln Pro Pro Gln Gln Gln Gln Gln His Gln Gln His His
180 185 190
Met Ala Ile Gly Gly Arg Gly Gly Phe Gly Gln Gln Gly Gly Gly Gly
195 200 205
Gly Ser Ser Ser Ser Ser Gly Leu Gly Arg Gln Asp Arg Ala
210 215 220
159
1055
DNA
Oryza sativa
159
gcacgagctt acatctctct ctctcctctc ttctcttctt cctcccagac tagtcagtct 60
ctcccaagaa cacccactcc tctagtctct ctctcgagag agagaaaatt gatgattctt 120
gggatgattt tgaggcgtct gatttgctga agaggaggag gaggatgccg gactcggaca 180
acgactccgg cgggccgagc aactacgcgg gaggggagct gtcgtcgccg cgggagcagg 240
acaggttcct gccgatcgcg aacgtgagca ggatcatgaa gaaggcgctg ccggcgaacg 300
ccaagatcag caaggacgcc aaggagacgg tgcaggagtg cgtctccgag ttcatctcct 360
tcatcaccgg cgaggcctcc gacaagtgcc agcgcgagaa gcgcaagacc atcaacggcg 420
acgacctgct ctgggccatg accaccctcg gcttcgagga ctacgtcgac cccctcaagc 480
actacctcca caagttccgc gagatcgagg gcgagcgcgc cgccgcctcc accaccggcg 540
ccggcaccag cgccgcctcc accacgccgc cgcagcagca gcacaccgcc aatgccgccg 600
gcggctacgc cgggtacgcc gccccgggag ccggccccgg cggcatgatg atgatgatgg 660
ggcagcccat gtacggctcg ccgccaccgc cgccacagca gcagcagcag caacaccacc 720
acatggcaat gggaggaaga ggcggcttcg gtcatcatcc cggcggcggc ggcggcgggt 780
cgtcgtcgtc gtcggggcac ggtcggcaaa acaggggcgc ttgacatcgc tccgagacga 840
gtagcatgca ccatggtaca tatatacagt aatcagcagc tgttcatttt tctatgatta 900
ctagttgact taagcttgca aatttgctaa tctgagctcc tgagtttttt tttttggtca 960
gcaatttcaa gatggtcaga agctaaattt gtctatttgt tactgataaa ttatttgttc 1020
tctcaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 1055
160
219
PRT
Oryza sativa
160
Met Pro Asp Ser Asp Asn Asp Ser Gly Gly Pro Ser Asn Tyr Ala Gly
1 5 10 15
Gly Glu Leu Ser Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala
20 25 30
Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile
35 40 45
Ser Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile
50 55 60
Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg
65 70 75 80
Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly
85 90 95
Phe Glu Asp Tyr Val Asp Pro Leu Lys His Tyr Leu His Lys Phe Arg
100 105 110
Glu Ile Glu Gly Glu Arg Ala Ala Ala Ser Thr Thr Gly Ala Gly Thr
115 120 125
Ser Ala Ala Ser Thr Thr Pro Pro Gln Gln Gln His Thr Ala Asn Ala
130 135 140
Ala Gly Gly Tyr Ala Gly Tyr Ala Ala Pro Gly Ala Gly Pro Gly Gly
145 150 155 160
Met Met Met Met Met Gly Gln Pro Met Tyr Gly Ser Pro Pro Pro Pro
165 170 175
Pro Gln Gln Gln Gln Gln Gln His His His Met Ala Met Gly Gly Arg
180 185 190
Gly Gly Phe Gly His His Pro Gly Gly Gly Gly Gly Gly Ser Ser Ser
195 200 205
Ser Ser Gly His Gly Arg Gln Asn Arg Gly Ala
210 215
161
873
DNA
Oryza sativa
161
gtttttggag ggcggcgcgg ggatggcgga cgcggggcac gacgagagcg ggagcccgcc 60
gaggagcggc ggggtgaggg agcaggacag gttcctgccc atcgccaaca tcagccgcat 120
catgaagaag gccgtcccgg cgaacggcaa gatcgccaag gacgccaagg agaccctgca 180
ggagtgcgtc tcggagttca tctccttcgt caccagcgag gcgagcgaca aatgtcagaa 240
ggagaagcgc aagaccatca acggggaaga tctcctcttt gcgatgggta cgcttggctt 300
tgaggagtac gttgatccgt tgaagatcta tttacacaag tacagagaga tggagggtga 360
tagtaagctg tcctcaaagg ctggtgatgg ttcagtaaag aaggatacaa ttggtccgca 420
cagtggcgct agtagctcaa gtgcgcaagg gatggttggg gcttacaccc aagggatggg 480
ttatatgcaa cctcagtatc ataatgggga cacctaaaga tgaggacagt gaaaattttc 540
agtaactggt gtcctctgtg agttattatc catctgttaa ggaagaaccc acattagggc 600
catatttatt agtagaagac taaagcactt gaagggtgtt ggtttagaaa gggtgttaac 660
agttggctgt ggcgattgct tcacagatgt aaattgcttc ataagtggtt taatgcttgt 720
ttttgcctgt atattcagag caattttcac atattggtag ttctgcaatc ttttgcattc 780
ccatacatgt atcaggtggc acaaatctat tgcaagtacc ctagcattga ataatgctgg 840
ttaacatata aaaaaaaaaa aaaaaaaaaa aaa 873
162
164
PRT
Oryza sativa
162
Met Ala Asp Ala Gly His Asp Glu Ser Gly Ser Pro Pro Arg Ser Gly
1 5 10 15
Gly Val Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg
20 25 30
Ile Met Lys Lys Ala Val Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala
35 40 45
Lys Glu Thr Leu Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr
50 55 60
Ser Glu Ala Ser Asp Lys Cys Gln Lys Glu Lys Arg Lys Thr Ile Asn
65 70 75 80
Gly Glu Asp Leu Leu Phe Ala Met Gly Thr Leu Gly Phe Glu Glu Tyr
85 90 95
Val Asp Pro Leu Lys Ile Tyr Leu His Lys Tyr Arg Glu Met Glu Gly
100 105 110
Asp Ser Lys Leu Ser Ser Lys Ala Gly Asp Gly Ser Val Lys Lys Asp
115 120 125
Thr Ile Gly Pro His Ser Gly Ala Ser Ser Ser Ser Ala Gln Gly Met
130 135 140
Val Gly Ala Tyr Thr Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His
145 150 155 160
Asn Gly Asp Thr
163
799
DNA
Glycine max
163
gcacgagacg aaagcaacgg tgaagatgaa taatgagtga ggcaatccaa tggtgagaaa 60
ggagtccgtg aaagcagaga cttatcgaga aacaacggca cagaaggttc cacgtgggaa 120
gcagataaag gaatattaag cagagagatc caacggacac tgctagtgaa ggcagaagaa 180
gaagattcct ggattgattg tgaagatggc tgagtcggac aacgactcgg gaggggcgca 240
gaacgcggga aacagtggaa acttgagcga gttgtcgcct cgggaacagg accggtttct 300
ccccatagcg aacgtgagca ggatcatgaa gaaggccttg ccggcgaacg cgaagatctc 360
gaaggacgcg aaggagacgg tgcaggaatg cgtgtcggag ttcatcagct tcataacggg 420
tgaggcgtcg gacaagtgcc agagggagaa gcgcaagacc atcaacggcg acgatcttct 480
ctgggccatg acaaccctgg gattcgaaga gtacgtggag cctctgaaga tttacctcca 540
gcgcttccgc gagatggagg gagagaagac cgtggccgcc cgcgactctt ctaaggactc 600
ggcctccgcc tcctcctatc atcagggaca cgtgtacggc tcccctgcct accatcatca 660
agtgcctggg cccacttatc ctgcccctgg tagacccaga tgacgtgctc ctctattcgc 720
cactccctag actttttata ttatattatt taattaaact ctcttctcca ctcaaccttt 780
gcaaaaaaaa aaaaaaaaa 799
164
165
PRT
Glycine max
164
Met Ala Glu Ser Asp Asn Asp Ser Gly Gly Ala Gln Asn Ala Gly Asn
1 5 10 15
Ser Gly Asn Leu Ser Glu Leu Ser Pro Arg Glu Gln Asp Arg Phe Leu
20 25 30
Pro Ile Ala Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn
35 40 45
Ala Lys Ile Ser Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser
50 55 60
Glu Phe Ile Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg
65 70 75 80
Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr
85 90 95
Thr Leu Gly Phe Glu Glu Tyr Val Glu Pro Leu Lys Ile Tyr Leu Gln
100 105 110
Arg Phe Arg Glu Met Glu Gly Glu Lys Thr Val Ala Ala Arg Asp Ser
115 120 125
Ser Lys Asp Ser Ala Ser Ala Ser Ser Tyr His Gln Gly His Val Tyr
130 135 140
Gly Ser Pro Ala Tyr His His Gln Val Pro Gly Pro Thr Tyr Pro Ala
145 150 155 160
Pro Gly Arg Pro Arg
165
165
644
DNA
Glycine max
165
gcacgagcag tttctggggc atctcaaaat caatggaaga tattggaggc agttcctcaa 60
acgacaacaa caacaatggt ggcatcatca aggaacagga ccggttgctg ccaatagcca 120
atgttggtcg gctcatgaag cggattcttc ctcagaacgc caaaatctcg aaggaggcga 180
aggagacgat gcaggaatgt gtgtcggagt tcataagctt cgtgacgagt gaggcttcgg 240
agaagtgcag gaaggagagg aggaagacag tgaatggtga tgacatttgt tgggccttgg 300
caacactagg ctttgataac tatgctgaac caatgagaag gtacttgcat agatatagag 360
aggttgaggt agatcataat aaggtcaatc ttcaagaaaa agggaatagt cctgaagaga 420
aagacgatga attatttaaa ttgagcaata gaggggttgg gctttgacca attattatgc 480
ttatagtaga caggaactcg ttaatccatt catactcatc actgattact gattagatga 540
attagtaatt ttaaggtttt tgtgaggatg agataatata tgtaataatt ttcttgtctt 600
aattggaatt tatcgagctt agaacaaaaa aaaaaaaaaa aaaa 644
166
152
PRT
Glycine max
166
Ser Phe Trp Gly Ile Ser Lys Ser Met Glu Asp Ile Gly Gly Ser Ser
1 5 10 15
Ser Asn Asp Asn Asn Asn Asn Gly Gly Ile Ile Lys Glu Gln Asp Arg
20 25 30
Leu Leu Pro Ile Ala Asn Val Gly Arg Leu Met Lys Arg Ile Leu Pro
35 40 45
Gln Asn Ala Lys Ile Ser Lys Glu Ala Lys Glu Thr Met Gln Glu Cys
50 55 60
Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala Ser Glu Lys Cys
65 70 75 80
Arg Lys Glu Arg Arg Lys Thr Val Asn Gly Asp Asp Ile Cys Trp Ala
85 90 95
Leu Ala Thr Leu Gly Phe Asp Asn Tyr Ala Glu Pro Met Arg Arg Tyr
100 105 110
Leu His Arg Tyr Arg Glu Val Glu Val Asp His Asn Lys Val Asn Leu
115 120 125
Gln Glu Lys Gly Asn Ser Pro Glu Glu Lys Asp Asp Glu Leu Phe Lys
130 135 140
Leu Ser Asn Arg Gly Val Gly Leu
145 150
167
879
DNA
Glycine max
167
gcacgagaag gaacgtgaaa gtaaaacgga cggtggcgat agaagcgtct ctcatctcca 60
tcgtctcctc actcctctct tctccagcgt tcattttttc tcgcgcccaa atacaaaatc 120
acatcacaac agggttccgg cgaccatgtc cgatgctccg gcgagtccat gcggcggcgg 180
cggcggaggc agccacgaga gcggcgagca cagtccccgc tccaatttcc gcgagcagga 240
ccgcttcctc cccatcgcca acatcagccg catcatgaag aaagcgcttc ctcccaacgg 300
gaaaatcgcc aaggacgcca aggaaaccgt gcaggaatgc gtctccgagt tcatcagctt 360
cgtcaccagc gaagcgagcg ataagtgtca gagagagaag aggaagacca tcaacggcga 420
cgatttgctt tgggctatga ccactttagg tttcgaggag tatattgatc cgctcaaggt 480
ttacctcgcc gcttacagag agattgaggg tgattcaaag ggttcggcca agggtggaga 540
tgcatctgct aagagagatg tttatcagag tcctaatggc caggttgctc atcaaggttc 600
tttctcacaa ggtgttaatt atacgaattc ttagccccag gctcaacata tgatagttcc 660
gatgcaaggc caagagtaga tattgatcct ctccttcagt gtttgacatg tgtgatctaa 720
atgccagtgg aacttttatg tcaatatgtg cccttggtat aatgaatgca ttttatgtta 780
tgtaaacact acatgcgggg atgttggttc ttgtgaccag atattattta ttaagactta 840
catttatctt tggaaaaaaa aaaaaaaaaa aaaaaaaaa 879
168
162
PRT
Glycine max
168
Met Ser Asp Ala Pro Ala Ser Pro Cys Gly Gly Gly Gly Gly Gly Ser
1 5 10 15
His Glu Ser Gly Glu His Ser Pro Arg Ser Asn Phe Arg Glu Gln Asp
20 25 30
Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu
35 40 45
Pro Pro Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln Glu
50 55 60
Cys Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala Ser Asp Lys
65 70 75 80
Cys Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp
85 90 95
Ala Met Thr Thr Leu Gly Phe Glu Glu Tyr Ile Asp Pro Leu Lys Val
100 105 110
Tyr Leu Ala Ala Tyr Arg Glu Ile Glu Gly Asp Ser Lys Gly Ser Ala
115 120 125
Lys Gly Gly Asp Ala Ser Ala Lys Arg Asp Val Tyr Gln Ser Pro Asn
130 135 140
Gly Gln Val Ala His Gln Gly Ser Phe Ser Gln Gly Val Asn Tyr Thr
145 150 155 160
Asn Ser
169
771
DNA
Glycine max
169
gcacgagagt ctttagaaaa gatatccatg gctgagtccg acaacgagtc aggaggtcac 60
acggggaacg cgagcgggag caacgagttg tccggttgca gggagcaaga caggttcctc 120
ccaatagcaa acgtgagcag gatcatgaag aaggcgttgc cggcgaacgc gaagatatcg 180
aaggaggcga aggagacggt gcaggagtgc gtgtcggagt tcatcagctt cataacagga 240
gaggcttccg ataagtgcca gaaggagaag aggaagacga tcaacggcga cgatcttctc 300
tgggccatga ctaccctggg cttcgaggac tacgtggatc ctctcaagat ttacctgcac 360
aagtataggg agatggaggg ggagaaaacc gctatgatgg gaaggccaca tgagagggat 420
gagggttatg gccatggcca tggtcatgca actcctatga tgacgatgat gatggggcat 480
cagccccagc accagcacca gcaccagcac cagcaccagc accagggaca cgtgtatgga 540
tctggatcag catcttctgc aagaactaga tagcatgtgt catctgttta agcttaattg 600
attttattat gaggatgata tgatataaga tttatattcg tatatgtttg gttttagaaa 660
tacaccagct ccagcttgta attgcttgaa acttccttgt tgagagaata tagacattat 720
tgtggatggt gatgtggcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 771
170
181
PRT
Glycine max
170
Met Ala Glu Ser Asp Asn Glu Ser Gly Gly His Thr Gly Asn Ala Ser
1 5 10 15
Gly Ser Asn Glu Leu Ser Gly Cys Arg Glu Gln Asp Arg Phe Leu Pro
20 25 30
Ile Ala Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala
35 40 45
Lys Ile Ser Lys Glu Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu
50 55 60
Phe Ile Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Lys Glu
65 70 75 80
Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr
85 90 95
Leu Gly Phe Glu Asp Tyr Val Asp Pro Leu Lys Ile Tyr Leu His Lys
100 105 110
Tyr Arg Glu Met Glu Gly Glu Lys Thr Ala Met Met Gly Arg Pro His
115 120 125
Glu Arg Asp Glu Gly Tyr Gly His Gly His Gly His Ala Thr Pro Met
130 135 140
Met Thr Met Met Met Gly His Gln Pro Gln His Gln His Gln His Gln
145 150 155 160
His Gln His Gln His Gln Gly His Val Tyr Gly Ser Gly Ser Ala Ser
165 170 175
Ser Ala Arg Thr Arg
180
171
848
DNA
Glycine max
171
gcgccaaata caaattcgtg tcaacccaac ccagggttcc ggcgagcatg gccgacggtc 60
cggctagccc aggcggcggc agccacgaga gcggcgacca cagccctcgc tctaacgtgc 120
gcgagcagga caggtacctc cctatcgcta acataagccg catcatgaag aaggcacttc 180
ctgccaacgg taaaatcgca aaggacgcca aagagaccgt tcaggaatgc gtctccgagt 240
tcatcagctt catcaccagc gagttatgtc agagagaaaa gagaaagact attaacggcg 300
atgatttgct ctgggcgatg gccactctcg gtttcgagga ttatatggat cctcttaaaa 360
tttacctcac tagataccga gagatggagg gtgatacgaa gggctctgcc aagggtggag 420
actcatctgc taagagagat gttcagccaa gtcctaatgc tcagcttgct catcaaggtt 480
ctttctcaca aaatgttact tacccgaatt ctcagggtcg acatatgatg gttccaatgc 540
aaggcccgga gtaggtatca agtttattat tgaccctctt gttgtaacgt atgttttcta 600
cgccagttac caagtgctca cggcatattg aatgtctttt tatgttatgt gaatactgac 660
aggagatgtt ggttcttgtg tccgtttttt tttttttaaa ttaaggtttg tatattatct 720
ttggattcga attattattt gaaagttatt attatattgt aaatcctaga gccctgttgt 780
ctgaatccat caggcggctt ggtaaagacc gagattttag gactgattgt aagcataaat 840
ccgaatat 848
172
168
PRT
Glycine max
172
Met Ala Asp Gly Pro Ala Ser Pro Gly Gly Gly Ser His Glu Ser Gly
1 5 10 15
Asp His Ser Pro Arg Ser Asn Val Arg Glu Gln Asp Arg Tyr Leu Pro
20 25 30
Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Gly
35 40 45
Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu
50 55 60
Phe Ile Ser Phe Ile Thr Ser Glu Leu Cys Gln Arg Glu Lys Arg Lys
65 70 75 80
Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe
85 90 95
Glu Asp Tyr Met Asp Pro Leu Lys Ile Tyr Leu Thr Arg Tyr Arg Glu
100 105 110
Met Glu Gly Asp Thr Lys Gly Ser Ala Lys Gly Gly Asp Ser Ser Ala
115 120 125
Lys Arg Asp Val Gln Pro Ser Pro Asn Ala Gln Leu Ala His Gln Gly
130 135 140
Ser Phe Ser Gln Asn Val Thr Tyr Pro Asn Ser Gln Gly Arg His Met
145 150 155 160
Met Val Pro Met Gln Gly Pro Glu
165
173
1097
DNA
Triticum aestivum
173
gcacgaggcg ccgccttctc ttctccagcg tcggatcttc ccccactcgc cgccctcacc 60
gcacctccat tcccctccac caccttccct ccctccacgc gctcctctat ataaggggga 120
gggccggatg tcggacgagg cggcgagccc cccgggcggc ggcggcggcg gaggaggcgg 180
cggcagcgac gacggcggcg gcggcggcgg cttcggcggc gtcagggagc aggacaggtt 240
cctgcccatc gccaacatca gccgcatcat gaagaaggcc atcccggcca acggcaagat 300
cgccaaggac gccaaggaga ccgtgcagga gtgcgtctcc gagttcatct ccttcatcac 360
cagcgaggcg agcgacaagt gccagaggga gaagcgcaag accatcaacg gcgacgacct 420
gctctgggcg atggccacgc tgggcttcga ggagtacatc gagcccctca aggtttatct 480
gcagaagtac agagagacgg agggtgatag taagctagct gggaagtctg gtgatgtctc 540
tgttaaaaag gatgcactgg gtcctcatgg aggagcaagt ggcacaagtg cgcaagggat 600
gggccaacaa gtagcataca atccaggaat ggtttatatg caacctcagt accataatgg 660
ggacatctca aactgaagat atggaccatc tccgagactg ctgctactct gctaggcggg 720
ttttcgtcat gtggagagca ctaagcagtt aaagaaaact cttagtaccc ccattagtct 780
cgtgttgttg ggtctgccag aactgatgct caaaggctgc ttcccagatg taaattgctt 840
tttcctgaga atagattcag ttgtggttta gcatggttgt tgttgttgtc tgtatattta 900
tgatgattag cctcgtcgtg gctgtcattc ggttccatat aatctgggta tttgggggag 960
acataactcc tccaggtgta gtttgtcctg aactagctgt atcagactct tgagaagagt 1020
tgctattagc cctccaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1080
aaaaaaaaaa aaaaaaa 1097
174
182
PRT
Triticum aestivum
174
Met Ser Asp Glu Ala Ala Ser Pro Pro Gly Gly Gly Gly Gly Gly Gly
1 5 10 15
Gly Gly Gly Ser Asp Asp Gly Gly Gly Gly Gly Gly Phe Gly Gly Val
20 25 30
Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met
35 40 45
Lys Lys Ala Ile Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu
50 55 60
Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu
65 70 75 80
Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp
85 90 95
Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu Glu Tyr Ile Glu
100 105 110
Pro Leu Lys Val Tyr Leu Gln Lys Tyr Arg Glu Thr Glu Gly Asp Ser
115 120 125
Lys Leu Ala Gly Lys Ser Gly Asp Val Ser Val Lys Lys Asp Ala Leu
130 135 140
Gly Pro His Gly Gly Ala Ser Gly Thr Ser Ala Gln Gly Met Gly Gln
145 150 155 160
Gln Val Ala Tyr Asn Pro Gly Met Val Tyr Met Gln Pro Gln Tyr His
165 170 175
Asn Gly Asp Ile Ser Asn
180
175
1016
DNA
Triticum aestivum
175
ctcgtgccgc aaagattgaa ttttcgtaca agtgtccttc cttccagtta acttcatgct 60
cctgcttgat caggctagag tggtttgatt gcttcttgat ttgagacaca gatcggggag 120
aggagccatg ccggagtcgg acaacgactc cggcgggccg agcaacaccg gcggggaggg 180
ggagctgtcg tcgccgcggg agcaggaccg cttcctgccc atcgccaacg tgagccgcat 240
catgaagaag gcgctcccgg ccaacgccaa gatcagcaag gacgccaagg agacggtgca 300
ggagtgcgtc tccgagttca tctccttcat caccggcgag gcctccgaca agtgccagcg 360
cgagaagcgc aagaccatca acggcgacga cctcctctgg gccatgacca ccctcggctt 420
cgaggactac gtcgaccccc tcaagcacta cctccacaag ttccgcgaga tcgagggcga 480
gagggccgcc gccacgtcga cgtcaaccgc gccgcagcac ctgcccgaca ataatgccac 540
cggttacgcc gactatggtg gcgccgctgt ccccgccccg gccccgggag gcatgatgat 600
gatggggcag cccatgtacg gctcaccgcc gccgcagcag cagcaccaac atcaggttgc 660
aatgggaggg agagcgggct ttccctatca cggaggcagc agcggtggcg gcgggtcgtc 720
ttcttcgtcg gggttcggac ggaaagaggg gtgacatctt ttcttttctt ttcgttttga 780
gctgaccaaa gtgagtgatt tcaacatatg ttcctctctt ggatgaagcc gtgacttgta 840
gcttagggaa atccattcag tacaaggagg aataattgtt cagcaaatca gttttcttct 900
ataaacagga ggaatgtata actacgagtc tacaaatcat acctgggaag ctctccatga 960
attacttgtt taacaacatg gcgagacaca ataccaatat attgatgtta aaaaaa 1016
176
208
PRT
Triticum aestivum
176
Met Pro Glu Ser Asp Asn Asp Ser Gly Gly Pro Ser Asn Thr Gly Gly
1 5 10 15
Glu Gly Glu Leu Ser Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile
20 25 30
Ala Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys
35 40 45
Ile Ser Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe
50 55 60
Ile Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys
65 70 75 80
Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu
85 90 95
Gly Phe Glu Asp Tyr Val Asp Pro Leu Lys His Tyr Leu His Lys Phe
100 105 110
Arg Glu Ile Glu Gly Glu Arg Ala Ala Ala Thr Ser Thr Ser Thr Ala
115 120 125
Pro Gln His Leu Pro Asp Asn Asn Ala Thr Gly Tyr Ala Asp Tyr Gly
130 135 140
Gly Ala Ala Val Pro Ala Pro Ala Pro Gly Gly Met Met Met Met Gly
145 150 155 160
Gln Pro Met Tyr Gly Ser Pro Pro Pro Gln Gln Gln His Gln His Gln
165 170 175
Val Ala Met Gly Gly Arg Ala Gly Phe Pro Tyr His Gly Gly Ser Ser
180 185 190
Gly Gly Gly Gly Ser Ser Ser Ser Ser Gly Phe Gly Arg Lys Glu Gly
195 200 205
177
982
DNA
Triticum aestivum
177
gcacgaggca ttccccaccc ctcctcgcag cgccaaccac cgtctcctcc tcccccctcc 60
cttctctccc ctccgctcct ccccccccgc gcgcgcgttt tttataaggg tttcggggcg 120
cgggatggcc gacgacgaca gcgggagccc ccggggcggc ggcggggtca gggagcagga 180
ccgcttcctc cccatcgcca acatcagccg catcatgaag aaggccgtgc cggccaacgg 240
caagatcgcc aaggacgcca aggagaccct ccaggagtgc gtctccgagt tcatctcctt 300
cgtcaccagc gaggccagcg acaagtgcca gaaggagaag cgcaagacca tcaacgggga 360
cgatctgctc tgggccatgg ccacgctcgg attcgaggag tacgtagacc ccctcaagat 420
ctacctgcaa aagtacagag atatggaggg tgatagtaaa ttgacctcaa aatctggtga 480
aggatccgtg aagaaagata taattggtgc tcatagtggt gcgactagct caaacgccca 540
agcgatggtt cagcatggag cttacgccca agggatgggt tatatgcaac cccagtacca 600
taatggggac acctgaaact gaagatcagg caattttcgg caatgggtat tgctccatga 660
gtggttatct atctgttaag gaagccgccc caacattagg ttcatgatga tcattggctg 720
gaaactaaag cacctggaag ggtgcttaac agttggttgt gatggctgcc tccaagatgt 780
aaattgcttc cgagagaata gattcaccta ttatggttta gtgcttgttt ttatctgtac 840
attcagaata attcagccgt tggtagtttg gcaatctttt gtttcagata tttgtattag 900
gaagcataaa tatattacaa ctgggtatta acttataaaa aaaaaaaaaa aaaaaaaaaa 960
aaaaaaaaaa aaaaaaaaaa aa 982
178
163
PRT
Triticum aestivum
178
Met Ala Asp Asp Asp Ser Gly Ser Pro Arg Gly Gly Gly Gly Val Arg
1 5 10 15
Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys
20 25 30
Lys Ala Val Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr
35 40 45
Leu Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala
50 55 60
Ser Asp Lys Cys Gln Lys Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp
65 70 75 80
Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu Glu Tyr Val Asp Pro
85 90 95
Leu Lys Ile Tyr Leu Gln Lys Tyr Arg Asp Met Glu Gly Asp Ser Lys
100 105 110
Leu Thr Ser Lys Ser Gly Glu Gly Ser Val Lys Lys Asp Ile Ile Gly
115 120 125
Ala His Ser Gly Ala Thr Ser Ser Asn Ala Gln Ala Met Val Gln His
130 135 140
Gly Ala Tyr Ala Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His Asn
145 150 155 160
Gly Asp Thr
179
272
PRT
Arabidopsis thaliana
misc_feature
gi 11282597
179
Met Gln Ser Lys Pro Gly Arg Glu Asn Glu Glu Glu Val Asn Asn His
1 5 10 15
His Ala Val Gln Gln Pro Met Met Tyr Ala Glu Pro Trp Trp Lys Asn
20 25 30
Asn Ser Phe Gly Val Val Pro Gln Ala Arg Pro Ser Gly Ile Pro Ser
35 40 45
Asn Ser Ser Ser Leu Asp Cys Pro Asn Gly Ser Glu Ser Asn Asp Val
50 55 60
His Ser Ala Ser Glu Asp Gly Ala Leu Asn Gly Glu Asn Asp Gly Thr
65 70 75 80
Trp Lys Asp Ser Gln Ala Ala Thr Ser Ser Arg Ser Val Asp Asn His
85 90 95
Gly Met Glu Gly Asn Asp Pro Ala Leu Ser Ile Arg Asn Met His Asp
100 105 110
Gln Pro Leu Val Gln Pro Pro Glu Leu Val Gly His Tyr Ile Ala Cys
115 120 125
Val Pro Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly Leu Met Gly Ala
130 135 140
Tyr Gly His Gln Gln Leu Gly Phe Arg Pro Tyr Leu Gly Met Pro Arg
145 150 155 160
Glu Arg Thr Ala Leu Pro Leu Asp Met Ala Gln Glu Pro Val Tyr Val
165 170 175
Asn Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg Arg Lys Ala Arg Ala
180 185 190
Lys Ala Glu Leu Glu Arg Lys Val Ile Arg Asp Arg Lys Pro Tyr Leu
195 200 205
His Glu Ser Arg His Lys His Ala Met Arg Arg Ala Arg Ala Ser Gly
210 215 220
Gly Arg Phe Ala Lys Lys Ser Glu Val Glu Ala Gly Glu Asp Ala Gly
225 230 235 240
Gly Arg Asp Arg Glu Arg Gly Ser Ala Thr Asn Ser Ser Gly Ser Glu
245 250 255
Gln Val Glu Thr Asp Ser Asn Glu Thr Leu Asn Ser Ser Gly Ala Pro
260 265 270
180
215
PRT
Vitis riparia
misc_feature
gi 7141243
180
Met Met Pro Met Thr Met Ala Glu Tyr His Leu Ala Pro Pro Ser Gln
1 5 10 15
Leu Glu Leu Val Gly His Ser Ile Val Gln Ser Gln Phe Leu Gly Val
20 25 30
Asn Val Ala Arg Met Ala Leu Pro Ile Glu Met Ala Glu Glu Pro Val
35 40 45
Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser
50 55 60
Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Val Arg Lys Pro
65 70 75 80
Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala Arg Gly
85 90 95
Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Asp Ser Asn Ala Ser
100 105 110
Tyr Asp Met Pro Asp Lys Gly Ser Asp Pro Asp Val Asn Leu Ser Thr
115 120 125
Arg Pro Ile Ser Ser Ser Val Ser Glu Ser Leu Pro Phe Asn Ser Ser
130 135 140
Arg Asn Glu Asp Ser Pro Thr Ser His Leu Asp Ala Arg Gly Pro Ser
145 150 155 160
Val Gln Glu Leu His Asn Arg Gln Thr Ser Ser Met Glu Met Ala Thr
165 170 175
Ser Leu Leu Ser Thr Gln Pro Gly Ile Ser Val Gly Arg Thr Tyr His
180 185 190
Ser Leu Lys Met Met Ile Gly Val Glu Arg Arg Arg Pro Arg Lys Ala
195 200 205
Ala Ser Ile Arg Glu Phe Trp
210 215
181
238
PRT
Oryza sativa
misc_feature
gi 7489565
181
Met Leu Pro Pro His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe
1 5 10 15
Gly His Lys Met Pro Asp Tyr Glu Ser Ser Ala Thr Gln Ser Thr Ser
20 25 30
Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu Asn Glu
35 40 45
Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu
50 55 60
Gly Lys Met Met Ser Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr
65 70 75 80
Ala His Ser Glu Pro Asp Arg Ser Gln Pro Phe Gly Ile Ser Tyr Pro
85 90 95
Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr His
100 105 110
Ala Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val
115 120 125
Pro Leu Pro Ile Glu Pro Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala
130 135 140
Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu
145 150 155 160
Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu
165 170 175
Ser Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg
180 185 190
Phe Leu Asn Thr Lys Gln Gln Pro Glu Ala Ser Asp Gly Gly Thr Pro
195 200 205
Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys His Glu His Ser
210 215 220
Leu Ser Ser Ser Asp Leu His His Arg Ala Lys Glu Gly Ala
225 230 235
182
197
PRT
Arabidopsis thaliana
misc_feature
gi 6634774
182
Met Thr His Thr Thr Glu Asn Thr Asn Lys Asn Arg Ala Thr Gly Arg
1 5 10 15
Asp Asn Ile Gly Ser His Glu Lys Gln Glu Gln Arg Asp Ser His Phe
20 25 30
Gln Pro Pro Ile Pro Ser Ala Arg Asn Tyr Glu Ser Ile Val Thr Ser
35 40 45
Leu Val Tyr Ser Asp Pro Gly Thr Thr Asn Ser Met Ala Pro Gly Gln
50 55 60
Tyr Pro Tyr Pro Asp Pro Tyr Tyr Arg Ser Ile Phe Ala Pro Pro Pro
65 70 75 80
Gln Pro Tyr Thr Gly Val His Leu Gln Leu Met Gly Val Gln Gln Gln
85 90 95
Gly Val Pro Leu Pro Ser Asp Ala Val Glu Glu Pro Val Phe Val Asn
100 105 110
Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser Arg Ala Arg
115 120 125
Leu Glu Ser Gln Asn Lys Val Ile Lys Ser Arg Lys Pro Tyr Leu His
130 135 140
Glu Ser Arg His Leu His Ala Ile Arg Arg Pro Arg Gly Cys Gly Gly
145 150 155 160
Arg Phe Leu Asn Ala Lys Lys Glu Asp Glu His His Glu Asp Ser Ser
165 170 175
His Glu Glu Lys Ser Asn Leu Ser Ala Gly Lys Ser Ala Met Ala Ala
180 185 190
Ser Ser Gly Thr Ser
195
183
298
PRT
Arabidopsis thaliana
misc_feature
gi 9293997
183
Met His Ser Lys Ser Asp Ser Gly Gly Asn Lys Val Asp Ser Glu Val
1 5 10 15
His Gly Thr Val Ser Ser Ser Ile Asn Ser Leu Asn Pro Trp His Arg
20 25 30
Ala Ala Ala Ala Cys Asn Ala Asn Ser Ser Val Glu Ala Gly Asp Lys
35 40 45
Ser Ser Lys Ser Ile Ala Leu Ala Leu Glu Ser Asn Gly Ser Lys Ser
50 55 60
Pro Ser Asn Arg Asp Asn Thr Val Asn Lys Glu Ser Gln Val Thr Thr
65 70 75 80
Ser Pro Gln Ser Ala Gly Asp Tyr Ser Asp Lys Asn Gln Glu Ser Leu
85 90 95
His His Gly Ile Thr Gln Pro Pro Pro His Pro Gln Leu Val Gly His
100 105 110
Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln Asp Pro Tyr Tyr Ala
115 120 125
Gly Val Met Gly Ala Tyr Gly His His Pro Leu Gly Phe Val Pro Tyr
130 135 140
Gly Gly Met Pro His Ser Arg Met Pro Leu Pro Pro Glu Met Ala Gln
145 150 155 160
Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg
165 170 175
Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Ser
180 185 190
Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg
195 200 205
Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asn Thr Glu Ala
210 215 220
Ser Lys Arg Lys Ala Glu Glu Lys Ser Asn Gly His Val Thr Gln Ser
225 230 235 240
Pro Ser Ser Ser Asn Ser Asp Gln Gly Glu Ala Trp Asn Gly Asp Tyr
245 250 255
Arg Thr Pro Gln Gly Asp Glu Met Gln Ser Ser Ala Tyr Lys Arg Arg
260 265 270
Glu Glu Gly Glu Cys Ser Gly Gln Gln Trp Asn Ser Leu Ser Ser Asn
275 280 285
His Pro Ser Gln Ala Arg Leu Ala Ile Lys
290 295
184
340
PRT
Arabidopsis thaliana
misc_feature
gi 5903072
184
Met Met His Gln Met Leu Asn Lys Lys Asp Ser Ala Thr His Ser Thr
1 5 10 15
Leu Pro Tyr Leu Asn Thr Ser Ile Ser Trp Gly Val Val Pro Thr Asp
20 25 30
Ser Val Ala Asn Arg Arg Gly Ser Ala Glu Ser Leu Ser Leu Lys Val
35 40 45
Asp Ser Arg Pro Gly His Ile Gln Thr Thr Lys Gln Ile Ser Phe Gln
50 55 60
Asp Gln Asp Ser Ser Ser Thr Gln Ser Thr Gly Gln Ser Tyr Thr Glu
65 70 75 80
Val Ala Ser Ser Gly Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Ser
85 90 95
Ala Lys Ser Gly Ser Glu Ile Thr Gln Arg Lys Gly Phe Ala Ser Asn
100 105 110
Pro Lys Gln Gly Ser Met Thr Gly Phe Pro Asn Ile His Phe Ala Pro
115 120 125
Ala Gln Ala Asn Phe Ser Phe His Tyr Ala Asp Pro His Tyr Gly Gly
130 135 140
Leu Leu Ala Ala Thr Tyr Leu Pro Gln Ala Pro Thr Cys Asn Pro Gln
145 150 155 160
Met Val Ser Met Ile Pro Gly Arg Val Pro Leu Pro Ala Glu Leu Thr
165 170 175
Glu Thr Asp Pro Val Phe Val Asn Ala Lys Gln Tyr His Ala Ile Met
180 185 190
Arg Arg Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile
195 200 205
Arg Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His Val His Ala Leu
210 215 220
Lys Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu
225 230 235 240
Leu Gln Glu Ser Glu Gln Ala Ala Ala Arg Glu Gln Glu Gln Asp Lys
245 250 255
Leu Gly Gln Gln Val Asn Arg Lys Thr Asn Met Ser Arg Phe Glu Ala
260 265 270
His Met Leu Gln Asn Asn Lys Asp Arg Ser Ser Thr Thr Ser Gly Ser
275 280 285
Asp Ile Thr Ser Val Ser Asp Gly Ala Asp Ile Phe Gly His Thr Glu
290 295 300
Phe Gln Phe Ser Gly Phe Pro Thr Pro Ile Asn Arg Ala Met Leu Val
305 310 315 320
His Gly Gln Ser Asn Asp Met His Gly Gly Gly Asp Met His His Phe
325 330 335
Ser Val His Ile
340
185
355
PRT
Arabidopsis thaliana
misc_feature
gi 8778470
185
Met Asp Lys Lys Val Ser Phe Thr Ser Ser Val Ala His Ser Thr Pro
1 5 10 15
Pro Tyr Leu Ser Thr Ser Ile Ser Trp Gly Leu Pro Thr Lys Ser Asn
20 25 30
Gly Val Thr Glu Ser Leu Ser Leu Lys Val Val Asp Ala Arg Pro Glu
35 40 45
Arg Leu Ile Asn Thr Lys Asn Ile Ser Phe Gln Asp Gln Asp Ser Ser
50 55 60
Ser Thr Leu Ser Ser Ala Gln Ser Ser Asn Asp Val Thr Ser Ser Gly
65 70 75 80
Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Leu Ala His Ser Asp Val
85 90 95
Cys Lys Gly Phe Glu Glu Thr Gln Arg Lys Arg Phe Ala Ile Lys Ser
100 105 110
Gly Ser Ser Thr Ala Gly Ile Ala Asp Ile His Ser Ser Pro Ser Lys
115 120 125
Val Pro Val Tyr Leu Leu Arg Val Thr Ile Ser Ser Thr Cys Asp Cys
130 135 140
Leu Leu Thr Ser Cys Val Ile Leu Trp Phe Gln Ala Asn Phe Ser Phe
145 150 155 160
His Tyr Ala Asp Pro His Phe Gly Gly Leu Met Pro Ala Ala Tyr Leu
165 170 175
Pro Gln Ala Thr Ile Trp Asn Pro Gln Met Thr Arg Val Pro Leu Pro
180 185 190
Phe Asp Leu Ile Glu Asn Glu Pro Val Phe Val Asn Ala Lys Gln Phe
195 200 205
His Ala Ile Met Arg Arg Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln
210 215 220
Asn Lys Leu Ile Lys Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His
225 230 235 240
Val His Ala Leu Lys Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn
245 250 255
Thr Lys Lys Leu Gln Glu Ser Thr Asp Pro Lys Gln Asp Met Pro Ile
260 265 270
Gln Gln Gln His Ala Thr Gly Asn Met Ser Arg Phe Val Leu Tyr Gln
275 280 285
Leu Gln Asn Ser Asn Asp Cys Asp Cys Ser Thr Thr Ser Arg Ser Asp
290 295 300
Ile Thr Ser Ala Ser Asp Ser Val Asn Leu Phe Gly His Ser Glu Phe
305 310 315 320
Leu Ile Ser Asp Cys Pro Ser Gln Thr Asn Pro Thr Met Tyr Val His
325 330 335
Gly Gln Ser Asn Asp Met His Gly Gly Arg Asn Thr His His Phe Ser
340 345 350
Val His Ile
355
186
271
PRT
Arabidopsis thaliana
misc_feature
gi 2398521
186
Met Gln Ser Lys Pro Gly Arg Glu Asn Glu Glu Glu Val Asn Asn His
1 5 10 15
His Ala Val Gln Gln Pro Met Met Tyr Ala Glu Pro Trp Trp Lys Asn
20 25 30
Asn Ser Phe Gly Val Val Pro Gln Ala Arg Pro Ser Gly Ile Pro Ser
35 40 45
Asn Ser Ser Ser Leu Asp Cys Pro Asn Gly Ser Glu Ser Asn Asp Val
50 55 60
His Ser Ala Ser Glu Asp Gly Ala Leu Asn Gly Glu Asn Asp Gly Thr
65 70 75 80
Trp Lys Asp Ser Gln Ala Ala Thr Ser Ser Arg Ser Asp Asn His Gly
85 90 95
Met Glu Gly Asn Asp Pro Ala Leu Ser Ile Arg Asn Met His Asp Gln
100 105 110
Pro Leu Val Gln Pro Pro Glu Leu Val Gly His Tyr Ile Ala Cys Val
115 120 125
Pro Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly Leu Met Gly Ala Tyr
130 135 140
Gly His Gln Gln Leu Gly Phe Arg Pro Tyr Leu Gly Met Pro Arg Glu
145 150 155 160
Arg Thr Ala Leu Pro Leu Asp Met Ala Gln Glu Pro Val Tyr Val Asn
165 170 175
Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg Arg Lys Ala Arg Ala Lys
180 185 190
Ala Glu Leu Glu Arg Lys Val Ile Arg Asp Arg Lys Pro Tyr Leu His
195 200 205
Glu Ser Arg His Lys His Ala Met Arg Arg Ala Arg Ala Ser Gly Gly
210 215 220
Arg Phe Ala Lys Lys Ser Glu Val Glu Ala Gly Glu Asp Ala Gly Gly
225 230 235 240
Arg Asp Arg Glu Arg Gly Ser Ala Thr Asn Ser Ser Gly Ser Glu Gln
245 250 255
Val Glu Thr Asp Ser Asn Glu Thr Leu Asn Ser Ser Gly Ala Pro
260 265 270
187
315
PRT
Brassica napus
misc_feature
gi 1586551
187
Met Ile Ser Leu Thr Val Thr Thr Pro Ser Leu Arg Met Glu Thr Glu
1 5 10 15
Asp Met His Ser Lys Ser Glu Ser Gly Asn Gln Ile Val Ser Glu Ala
20 25 30
His His His Thr Ser Ser Thr Ser Ile Asn Ser Leu Asn Pro Trp Leu
35 40 45
Arg Ala Ala Ala Ser Cys Asn Ala Asn Ser Ser Val Glu Glu Ala Gly
50 55 60
Asp Lys Ser Ile Ala Leu Glu Asn Gln Thr Asn Leu Glu Ser Ser Asn
65 70 75 80
Gly Ser Lys Ser Pro Ser Asn Arg Asp Glu Asn Gly Asn Lys Glu Ser
85 90 95
Gln Val Thr Ala Ser Pro Gln Gln Ser Ala Ala Asp Tyr Ser Glu Lys
100 105 110
Ser Gln Glu Leu Val His Pro Gly Ser Thr Pro Pro Pro His Pro Gln
115 120 125
Leu Val Ser His Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln Asp
130 135 140
Ser Tyr Tyr Ala Gly Met Met Gly Ala Tyr Pro Leu Thr Tyr Val Pro
145 150 155 160
His Gly Gly Met Pro His Ser Arg Met Gln Leu Pro Pro Glu Met Ala
165 170 175
Gln Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr Gln Ala Ile Met Arg
180 185 190
Arg Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys
195 200 205
Ser Arg Lys Arg Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg
210 215 220
Arg Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asn Thr Glu
225 230 235 240
Ala Ser Gln Gln Lys Asp Gly Glu Lys Arg Asn Ala Cys Ala Thr Gln
245 250 255
Ser Pro Thr Ser Ser His Ser Asp Gln His Glu Gly Cys Ser Asp Glu
260 265 270
Tyr Arg Thr Asn Gln Ser Asp Glu Met Gln Ser Ser Ala Tyr Lys Ile
275 280 285
Arg Glu Glu Ala Asp Cys Ser Gly Gln Gln Trp Asn Asn Ile Ser Ser
290 295 300
Asn His Pro Ser Gln Pro Leu Leu Ala Ile Lys
305 310 315
188
295
PRT
Arabidopsis thaliana
misc_feature
gi 6714441
188
Met Ala Met Gln Thr Val Arg Glu Gly Leu Phe Ser Ala Pro Gln Thr
1 5 10 15
Ser Trp Trp Thr Ala Phe Gly Ser Gln Pro Leu Ala Pro Glu Ser Leu
20 25 30
Ala Gly Asp Ser Asp Ser Phe Ala Gly Val Lys Val Gly Ser Val Gly
35 40 45
Glu Thr Gly Gln Arg Val Asp Lys Gln Ser Asn Ser Ala Thr His Leu
50 55 60
Ala Phe Ser Leu Gly Asp Val Lys Ser Pro Arg Leu Val Pro Lys Pro
65 70 75 80
His Gly Ala Thr Phe Ser Met Gln Ser Pro Cys Leu Glu Leu Gly Phe
85 90 95
Ser Gln Pro Pro Ile Tyr Thr Lys Tyr Pro Tyr Gly Glu Gln Gln Tyr
100 105 110
Tyr Gly Val Val Ser Ala Tyr Gly Ser Gln Ser Arg Val Met Leu Pro
115 120 125
Leu Asn Met Glu Thr Glu Asp Ser Thr Ile Tyr Val Asn Ser Lys Gln
130 135 140
Tyr His Gly Ile Ile Arg Arg Arg Gln Ser Arg Ala Lys Ala Ala Ala
145 150 155 160
Val Leu Asp Gln Lys Lys Leu Ser Ser Arg Cys Arg Lys Pro Tyr Met
165 170 175
His His Ser Arg His Leu His Ala Leu Arg Arg Pro Arg Gly Ser Gly
180 185 190
Gly Arg Phe Leu Asn Thr Lys Ser Gln Asn Leu Glu Asn Ser Gly Thr
195 200 205
Asn Ala Lys Lys Gly Asp Gly Ser Met Gln Ile Gln Ser Gln Pro Lys
210 215 220
Pro Gln Gln Ser Asn Ser Gln Asn Ser Glu Val Val His Pro Glu Asn
225 230 235 240
Gly Thr Met Asn Leu Ser Asn Gly Leu Asn Val Ser Gly Ser Glu Val
245 250 255
Thr Ser Met Asn Tyr Phe Leu Ser Ser Pro Val His Ser Leu Gly Gly
260 265 270
Met Val Met Pro Ser Lys Trp Ile Ala Ala Ala Ala Ala Met Asp Asn
275 280 285
Gly Cys Cys Asn Phe Lys Thr
290 295
189
205
PRT
Oryza sativa
misc_feature
gi 5257260
189
Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro Pro Pro Pro Pro Val
1 5 10 15
Leu Gly Ala Pro Val Pro Tyr Pro Pro Ala Gly Ala Tyr Pro Pro Pro
20 25 30
Val Gly Pro Tyr Ala His Ala Pro Pro Leu Tyr Ala Pro Pro Pro Pro
35 40 45
Ala Ala Ala Ala Ala Ser Ala Ala Ala Thr Ala Ala Ser Gln Gln Ala
50 55 60
Ala Ala Ala Gln Leu Gln Asn Phe Trp Ala Glu Gln Tyr Arg Glu Ile
65 70 75 80
Glu His Thr Thr Asp Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile
85 90 95
Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu
100 105 110
Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu
115 120 125
Thr His Arg Gly Trp Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu
130 135 140
Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala Arg Thr Glu Val Phe Asp
145 150 155 160
Phe Leu Val Asp Ile Val Pro Arg Asp Glu Ala Lys Asp Ala Glu Ala
165 170 175
Ala Ala Ala Val Ala Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro
180 185 190
Ala Thr Asp Pro Met Ala Tyr Tyr Tyr Val Gln Pro Gln
195 200 205
190
234
PRT
Arabidopsis thaliana
misc_feature
gi 6523090
190
Met Asp Thr Asn Asn Gln Gln Pro Pro Pro Ser Ala Ala Gly Ile Pro
1 5 10 15
Pro Pro Pro Pro Gly Thr Thr Ile Ser Ala Ala Gly Gly Gly Ala Ser
20 25 30
Tyr His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Leu Phe Trp
35 40 45
Thr Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His
50 55 60
Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp
65 70 75 80
Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys
85 90 95
Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu
100 105 110
Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile
115 120 125
Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Asp
130 135 140
Glu Ile Lys Asp Glu Ala Ala Val Leu Gly Gly Gly Met Val Val Ala
145 150 155 160
Pro Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro
165 170 175
Ala Gly Pro Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro Asn
180 185 190
Gly Val Tyr Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln
195 200 205
Thr Ser Thr Gly Thr Gly Asp Asp Val Ser Tyr Gly Ser Gly Gly Ser
210 215 220
Ser Gly Gln Gly Asn Leu Asp Gly Gln Gly
225 230
191
217
PRT
Arabidopsis thaliana
misc_feature
gi 3776575
191
Met Asp Gln Gln Gly Gln Ser Ser Ala Met Asn Tyr Gly Ser Asn Pro
1 5 10 15
Tyr Gln Thr Asn Ala Met Thr Thr Thr Pro Thr Gly Ser Asp His Pro
20 25 30
Ala Tyr His Gln Ile His Gln Gln Gln Gln Gln Gln Leu Thr Gln Gln
35 40 45
Leu Gln Ser Phe Trp Glu Thr Gln Phe Lys Glu Ile Glu Lys Thr Thr
50 55 60
Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
65 70 75 80
Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val
85 90 95
Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser
100 105 110
Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
115 120 125
Ile Ala Ala Ala Val Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp
130 135 140
Ile Val Pro Arg Glu Asp Leu Arg Asp Glu Val Leu Gly Gly Val Gly
145 150 155 160
Ala Glu Ala Ala Thr Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Pro
165 170 175
Gly Thr Ala Pro Ile Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly
180 185 190
Ala Tyr Pro Pro Asn Pro Tyr Met Gly Gln Pro Met Trp Gln Gln Pro
195 200 205
Gly Pro Glu Gln Gln Asp Pro Asp Asn
210 215
192
231
PRT
Arabidopsis thaliana
misc_feature
gi 6289057
192
Met Asp Gln Gln Asp His Gly Gln Ser Gly Ala Met Asn Tyr Gly Thr
1 5 10 15
Asn Pro Tyr Gln Thr Asn Pro Met Ser Thr Thr Ala Ala Thr Val Ala
20 25 30
Gly Gly Ala Ala Gln Pro Gly Gln Leu Ala Phe His Gln Ile His Gln
35 40 45
Gln Gln Gln Gln Gln Gln Leu Ala Gln Gln Leu Gln Ala Phe Trp Glu
50 55 60
Asn Gln Phe Lys Glu Ile Glu Lys Thr Thr Asp Phe Lys Lys His Ser
65 70 75 80
Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val
85 90 95
Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu
100 105 110
Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu
115 120 125
Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr
130 135 140
Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Asp
145 150 155 160
Leu Arg Asp Glu Val Leu Gly Ser Ile Pro Arg Gly Thr Val Pro Glu
165 170 175
Ala Ala Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Ala Gly Thr Ala
180 185 190
Pro Ile Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly Gly Ala Tyr
195 200 205
Pro Pro Asn Pro Tyr Met Gly Gln Pro Met Trp Gln Gln Gln Ala Pro
210 215 220
Asp Gln Pro Asp Gln Glu Asn
225 230
193
137
PRT
Arabidopsis thaliana
misc_feature
gi 6056368
193
Met Gln Glu Ile Glu His Thr Thr Asp Phe Lys Asn His Thr Leu Pro
1 5 10 15
Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met
20 25 30
Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe
35 40 45
Ile Leu Glu Leu Thr Leu Arg Ala Trp Ile His Thr Glu Glu Asn Lys
50 55 60
Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Thr
65 70 75 80
Asp Val Phe Asp Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys
85 90 95
Glu Glu Gly Leu Gly Val Thr Lys Gly Thr Ile Pro Ser Val Val Gly
100 105 110
Ser Pro Pro Tyr Tyr Tyr Leu Gln Gln Gln Gly Met Met Gln His Trp
115 120 125
Pro Gln Glu Gln His Pro Asp Glu Ser
130 135
194
250
PRT
Arabidopsis thaliana
misc_feature
gi 9758288
194
Met Asp Asn Asn Asn Asn Asn Asn Asn Gln Gln Pro Pro Pro Thr Ser
1 5 10 15
Val Tyr Pro Pro Gly Ser Ala Val Thr Thr Val Ile Pro Pro Pro Pro
20 25 30
Ser Gly Ser Ala Ser Ile Val Thr Gly Gly Gly Ala Thr Tyr His His
35 40 45
Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe Trp Thr Tyr Gln
50 55 60
Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His Gln Leu Pro
65 70 75 80
Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met
85 90 95
Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu Leu Phe
100 105 110
Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu Asn Lys
115 120 125
Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr
130 135 140
Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Glu Ile Lys
145 150 155 160
Glu Glu Glu Asp Ala Ala Ser Ala Leu Gly Gly Gly Gly Met Val Ala
165 170 175
Pro Ala Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro
180 185 190
Ala Val Pro Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro Ser
195 200 205
Gly Val Tyr Ala Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln
210 215 220
Asn Ser Ala Gly Gly Gly Asp Asp Val Ser Tyr Gly Ser Gly Gly Ser
225 230 235 240
Ser Gly His Gly Asn Leu Asp Ser Gln Gly
245 250
195
208
PRT
Arabidopsis thaliana
misc_feature
gi 6552738
195
Met Thr Ser Ser Val Val Val Ala Gly Ala Gly Asp Lys Asn Asn Gly
1 5 10 15
Ile Val Val Gln Gln Gln Pro Pro Cys Val Ala Arg Glu Gln Asp Gln
20 25 30
Tyr Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Lys Thr Leu Pro
35 40 45
Ser His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln Glu Cys
50 55 60
Val Ser Glu Tyr Ile Ser Phe Val Thr Gly Glu Ala Asn Glu Arg Cys
65 70 75 80
Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Ile Leu Trp Ala
85 90 95
Met Ser Lys Leu Gly Phe Asp Asn Tyr Val Asp Pro Leu Thr Val Phe
100 105 110
Ile Asn Arg Tyr Arg Glu Ile Glu Thr Asp Arg Gly Ser Ala Leu Arg
115 120 125
Gly Glu Pro Pro Ser Leu Arg Gln Thr Tyr Gly Gly Asn Gly Ile Gly
130 135 140
Phe His Gly Pro Ser His Gly Leu Pro Pro Pro Gly Pro Tyr Gly Tyr
145 150 155 160
Gly Met Leu Asp Gln Ser Met Val Met Gly Gly Gly Arg Tyr Tyr Gln
165 170 175
Asn Gly Ser Ser Gly Gln Asp Glu Ser Ser Val Gly Gly Gly Ser Ser
180 185 190
Ser Ser Ile Asn Gly Met Pro Ala Phe Asp His Tyr Gly Gln Tyr Lys
195 200 205
196
205
PRT
Arabidopsis thaliana
misc_feature
gi 9758795
196
Met Ala Glu Gly Ser Met Arg Pro Pro Glu Phe Asn Gln Pro Asn Lys
1 5 10 15
Thr Ser Asn Gly Gly Glu Glu Glu Cys Thr Val Arg Glu Gln Asp Arg
20 25 30
Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Arg Ile Leu Pro
35 40 45
Ala His Ala Lys Ile Ser Asp Asp Ser Lys Glu Thr Ile Gln Glu Cys
50 55 60
Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn Glu Arg Cys
65 70 75 80
Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Val Leu Trp Ala
85 90 95
Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro Leu Thr Leu Tyr
100 105 110
Leu His Arg Tyr Arg Glu Leu Glu Gly Glu Arg Gly Val Ser Cys Ser
115 120 125
Ala Gly Ser Val Ser Met Thr Asn Gly Leu Val Val Lys Arg Pro Asn
130 135 140
Gly Thr Met Thr Glu Tyr Gly Ala Tyr Gly Pro Val Pro Gly Ile His
145 150 155 160
Met Ala Gln Tyr His Tyr Arg His Gln Asn Gly Phe Val Phe Ser Gly
165 170 175
Asn Glu Pro Asn Ser Lys Met Ser Gly Ser Ser Ser Gly Ala Ser Gly
180 185 190
Ala Arg Val Glu Val Phe Pro Thr Gln Gln His Lys Tyr
195 200 205
197
178
PRT
Zea mays
misc_feature
gi 22380
197
Met Ala Glu Ala Pro Ala Ser Pro Gly Gly Gly Gly Gly Ser His Glu
1 5 10 15
Ser Gly Ser Pro Arg Gly Gly Gly Gly Gly Gly Ser Val Arg Glu Gln
20 25 30
Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala
35 40 45
Ile Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln
50 55 60
Glu Cys Val Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu Ala Ser Asp
65 70 75 80
Lys Cys Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu
85 90 95
Trp Ala Met Ala Thr Leu Gly Phe Glu Asp Tyr Ile Glu Pro Leu Lys
100 105 110
Val Tyr Leu Gln Lys Tyr Arg Glu Met Glu Gly Asp Ser Lys Leu Thr
115 120 125
Ala Lys Ser Ser Asp Gly Ser Ile Lys Lys Asp Ala Leu Gly His Val
130 135 140
Gly Ala Ser Ser Ser Ala Ala Glu Gly Met Gly Gln Gln Gly Ala Tyr
145 150 155 160
Asn Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His Asn Gly Asp Ile
165 170 175
Ser Asn
198
228
PRT
Arabidopsis thaliana
misc_feature
gi 6729485
198
Met Ala Glu Ser Gln Thr Gly Gly Gly Gly Gly Gly Ser His Glu Ser
1 5 10 15
Gly Gly Asp Gln Ser Pro Arg Ser Leu Asn Val Arg Glu Gln Asp Arg
20 25 30
Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Arg Gly Leu Pro
35 40 45
Leu Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Met Gln Glu Cys
50 55 60
Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala Ser Asp Lys Cys
65 70 75 80
Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala
85 90 95
Met Ala Thr Leu Gly Phe Glu Asp Tyr Ile Asp Pro Leu Lys Val Tyr
100 105 110
Leu Met Arg Tyr Arg Glu Met Glu Gly Asp Thr Lys Gly Ser Gly Lys
115 120 125
Gly Gly Glu Ser Ser Ala Lys Arg Asp Gly Gln Pro Ser Gln Val Ser
130 135 140
Gln Phe Ser Gln Val Pro Gln Gln Gly Ser Phe Ser Gln Gly Pro Tyr
145 150 155 160
Gly Asn Ser Gln Ser Leu Arg Phe Gly Asn Ser Ile Glu His Leu Glu
165 170 175
Val Leu Met Ser Ser Thr Arg Thr Leu Phe Ile Thr Ile Phe Arg Asp
180 185 190
Ser Thr Met Pro Val Val Ser Glu Asn Leu Ser Asp Pro Leu Ser Ile
195 200 205
Asp Met Asp Cys Glu Ala Ile Tyr His His Phe Ile Gly Leu Leu Ile
210 215 220
Leu Ser Cys Lys
225
199
161
PRT
Arabidopsis thaliana
misc_feature
gi 2244810
199
Met Ala Asp Ser Asp Asn Asp Ser Gly Gly His Lys Asp Gly Gly Asn
1 5 10 15
Ala Ser Thr Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Val Ser
20 25 30
Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile Ser Lys Asp
35 40 45
Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Ile
50 55 60
Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys Thr Ile
65 70 75 80
Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly Phe Glu Asp
85 90 95
Tyr Val Glu Pro Leu Lys Val Tyr Leu Gln Lys Tyr Arg Glu Val Glu
100 105 110
Gly Glu Lys Thr Thr Thr Ala Gly Arg Gln Gly Asp Lys Glu Gly Gly
115 120 125
Gly Gly Gly Gly Gly Ala Gly Ser Gly Ser Gly Gly Ala Pro Met Tyr
130 135 140
Gly Gly Gly Met Val Thr Thr Met Gly His Gln Phe Ser His His Phe
145 150 155 160
Ser
200
187
PRT
Arabidopsis thaliana
misc_feature
gi 2398529
200
Arg Asp Arg Asp Ser Gly Gly Gly Gln Asn Gly Asn Asn Gln Asn Gly
1 5 10 15
Gln Ser Ser Leu Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala
20 25 30
Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile
35 40 45
Ser Lys Asp Ala Lys Glu Thr Met Gln Glu Cys Val Ser Glu Phe Ile
50 55 60
Ser Phe Val Thr Gly Glu Ala Ser Asp Lys Cys Gln Lys Glu Lys Arg
65 70 75 80
Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly
85 90 95
Phe Glu Asp Tyr Val Glu Pro Leu Lys Val Tyr Leu Gln Arg Phe Arg
100 105 110
Glu Ile Glu Gly Glu Arg Thr Gly Leu Gly Arg Pro Gln Thr Gly Gly
115 120 125
Glu Val Gly Glu His Gln Arg Asp Ala Val Gly Asp Gly Gly Gly Phe
130 135 140
Tyr Gly Gly Gly Gly Gly Met Gln Tyr His Gln His His Gln Phe Leu
145 150 155 160
His Gln Gln Asn His Met Tyr Gly Ala Thr Gly Gly Gly Ser Asp Ser
165 170 175
Gly Gly Gly Ala Ala Ser Gly Arg Thr Arg Thr
180 185
201
160
PRT
Arabidopsis thaliana
misc_feature
gi 3738293
201
Met Ala Gly Asn Tyr His Ser Phe Gln Asn Pro Ile Pro Arg Tyr Gln
1 5 10 15
Asn Tyr Asn Phe Gly Ser Ser Ser Ser Asn His Gln His Glu His Asp
20 25 30
Gly Leu Val Val Val Val Glu Asp Gln Gln Gln Glu Glu Ser Met Met
35 40 45
Val Lys Glu Gln Asp Arg Leu Leu Pro Ile Ala Asn Val Gly Arg Ile
50 55 60
Met Lys Asn Ile Leu Pro Ala Asn Ala Lys Val Ser Lys Glu Ala Lys
65 70 75 80
Glu Thr Met Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Gly
85 90 95
Glu Ala Ser Asp Lys Cys His Lys Glu Lys Arg Lys Thr Val Asn Gly
100 105 110
Asp Asp Ile Cys Trp Ala Met Ala Asn Leu Gly Phe Asp Asp Tyr Ala
115 120 125
Ala Gln Leu Lys Lys Tyr Leu His Arg Tyr Arg Val Leu Glu Gly Glu
130 135 140
Lys Pro Asn His His Gly Lys Gly Gly Pro Lys Ser Ser Pro Asp Asn
145 150 155 160
202
308
PRT
Arabidopsis thaliana
misc_feature
gi 4587559
202
Met Gln Val Phe Gln Arg Lys Glu Asp Ser Ser Trp Gly Asn Ser Met
1 5 10 15
Pro Thr Thr Asn Ser Asn Ile Gln Gly Ser Glu Ser Phe Ser Leu Thr
20 25 30
Lys Asp Met Ile Met Ser Thr Thr Gln Leu Pro Ala Met Lys His Ser
35 40 45
Gly Leu Gln Leu Gln Asn Gln Asp Ser Thr Ser Ser Gln Ser Thr Glu
50 55 60
Glu Glu Ser Gly Gly Gly Glu Val Ala Ser Phe Gly Glu Tyr Lys Arg
65 70 75 80
Tyr Gly Cys Ser Ile Val Asn Asn Asn Leu Ser Gly Tyr Ile Glu Asn
85 90 95
Leu Gly Lys Pro Ile Glu Asn Tyr Thr Lys Ser Ile Thr Thr Ser Ser
100 105 110
Met Val Ser Gln Asp Ser Val Phe Pro Ala Pro Thr Ser Gly Gln Ile
115 120 125
Ser Trp Ser Leu Gln Cys Ala Glu Thr Ser His Phe Asn Gly Phe Leu
130 135 140
Ala Pro Glu Tyr Ala Ser Thr Pro Thr Ala Leu Pro His Leu Glu Met
145 150 155 160
Met Gly Leu Val Ser Ser Arg Val Pro Leu Pro His His Ile Gln Glu
165 170 175
Asn Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg
180 185 190
Arg Arg Lys His Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys
195 200 205
Cys Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Leu Lys
210 215 220
Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Gln
225 230 235 240
Glu Ser Ser Asn Ser Leu Cys Ser Ser Gln Met Ala Asn Gly Gln Asn
245 250 255
Phe Ser Met Ser Pro His Gly Gly Gly Ser Gly Ile Gly Ser Ser Ser
260 265 270
Ile Ser Pro Ser Ser Asn Ser Asn Cys Ile Asn Met Phe Gln Asn Pro
275 280 285
Gln Phe Arg Phe Ser Gly Tyr Pro Ser Thr His His Ala Ser Ala Leu
290 295 300
Met Ser Gly Thr
305
203
25
DNA
synthetic construct
203
acagtacagt acagtacagt acagt 25
204
25
DNA
synthetic construct
204
actgtactgt actgtacgtg actgt 25
205
765
DNA
Oryza sativa
205
atggaggccg gctacccggg cgcggcggcg aacggcgctg ccgccgacgg gaacggtggc 60
gcgcagcagg cggcggccgc gccggctata cgtgagcagg accggctgat gccgatcgcg 120
aacgtgatcc gcatcatgcg ccgcgtgctc ccggcgcacg ccaagatctc ggacgacgcc 180
aaggagacga tccaggagtg cgtgtcggag tacatcagct tcatcaccgg ggaggccaac 240
gagcggtgcc agcgcgagca gcgcaagacc atcaccgccg aggacgtgct ctgggccatg 300
agccgcctcg gcttcgacga ctacgtcgag cccctcggcg tctacctcca ccgctaccgc 360
gagttcgagg gggagtcccg cggcgtcggc gtcggcgtcg gcgccgcgcg cggcgaccac 420
caccatggtc acgtcggtgg gatgctcaag tcccgcgcgc agggctccat ggtgacgcac 480
cacgacatgc agatgcacgc ggccatgtac ggtggcggcg cggtgccgcc gccgccgcat 540
cctcctccgc accaccacgc gttccaccag ctcatgccgc cgcaccacgg ccagtacgcg 600
ccgccgtacg acatgtacgg cggcgagcac gggatggcgg cgtactacgg cgggatgtac 660
gcgcccggca gcggcggcga cgggagcggc agcagcggca gcggtggcgc cggcacgccg 720
cagaccgtca acttcgagca ccagcatccg ttcggataca agtag 765
206
254
PRT
Oryza sativa
206
Met Glu Ala Gly Tyr Pro Gly Ala Ala Ala Asn Gly Ala Ala Ala Asp
1 5 10 15
Gly Asn Gly Gly Ala Gln Gln Ala Ala Ala Ala Pro Ala Ile Arg Glu
20 25 30
Gln Asp Arg Leu Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Arg
35 40 45
Val Leu Pro Ala His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile
50 55 60
Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn
65 70 75 80
Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Val
85 90 95
Leu Trp Ala Met Ser Arg Leu Gly Phe Asp Asp Tyr Val Glu Pro Leu
100 105 110
Gly Val Tyr Leu His Arg Tyr Arg Glu Phe Glu Gly Glu Ser Arg Gly
115 120 125
Val Gly Val Gly Val Gly Ala Ala Arg Gly Asp His His His Gly His
130 135 140
Val Gly Gly Met Leu Lys Ser Arg Ala Gln Gly Ser Met Val Thr His
145 150 155 160
His Asp Met Gln Met His Ala Ala Met Tyr Gly Gly Gly Ala Val Pro
165 170 175
Pro Pro Pro His Pro Pro Pro His His His Ala Phe His Gln Leu Met
180 185 190
Pro Pro His His Gly Gln Tyr Ala Pro Pro Tyr Asp Met Tyr Gly Gly
195 200 205
Glu His Gly Met Ala Ala Tyr Tyr Gly Gly Met Tyr Ala Pro Gly Ser
210 215 220
Gly Gly Asp Gly Ser Gly Ser Ser Gly Ser Gly Gly Ala Gly Thr Pro
225 230 235 240
Gln Thr Val Asn Phe Glu His Gln His Pro Phe Gly Tyr Lys
245 250
207
1499
DNA
Catalpa speciosa
207
gcacgaggtg ctctttaaaa ttcacaagta catctgacct ctacatcaac acacattgac 60
tctaaattct ctctctaaat tctgtcaacc cccaaattct agggttttgt tttaattgtc 120
atcagatttc gccttaacag gacacattgg ttgatttctt tggagaaatt aggggagcat 180
gcaatccaag tcccagagcg gcaaccaagg agaatccaac ctttataatg ttcctaactc 240
caaagtaaat ccggattctt ggtggaataa tactggatat aattcctttt cctcaacaat 300
gatgggtgga aatgcatcag attcatcatc cctagaacaa tctgtggatg gacagtcgca 360
gtctaaaggt ggtataaatg aggaagatga tgatactacc aaacgatcac caagtagtac 420
acctctgctg ccagatagaa actataggca ggagggtccg agtctccagc aagctccacc 480
taccatacat ccaagaaaca atgggatcgt taatcaggcc ccacagcttg agcttggtgg 540
gcattcagta gcttgtgggt caaatcctta tgatccatat tacggaggaa tgatggcagc 600
ttatggccag ccattggttc ctcctcattt atatgatatg catcatgcaa ggatggcact 660
gcccctggag atgactcaag agcctgtata tgtgaatgcc aagcagtacc atggcattct 720
gcggaggcgg cagtctcgtg ctaaagctga gcttgaaaag aagttaataa aagttcggaa 780
gccttatctc catgagtctc gacaccaaca tgccttaagg agggcaaggg ggactggagg 840
acgatttgca aagaagtccg atgcagatac ttccaagggg actggacccg gctcatccat 900
cccatcgcag cttattagct catcacgagg ttctgagcca gtgcctgagg ctcagaattt 960
gtacaacgct gatgatggca attttagaag gcaaaccaac ttgcaggaac cggcacttca 1020
gttgggcaag acaggtgaag ggcccacttc aagtcacaag tggggaaata caacctcgaa 1080
ccatgcactt gctatgcagt aaagtcatac ttattggaag gtacaaatgc tggttacttg 1140
tttaaatctt ggctttccca agctgagcgg caattcattc ttggctgttt ctattttatc 1200
tcgtggagga ggaaggatga gagtctttgt ttcttagctt ctcttaatgt ctattgttct 1260
tcccttgtgt acaaaatgtc ttttagcatt agaggcaaag tttgagttag gacaagacaa 1320
ccgaagtttg ggtagggaaa acttggttta taacttaaga ttcttgtaaa gttccgcaag 1380
gagtcgcatg catgtgtttg ctacttacat ttgttgcact ttcgaattgt gaacccaaaa 1440
gcatcaatgg tgtttgaata gaacttttaa aagccaaaaa aaaaaaaaaa aaaaaaaaa 1499
208
307
PRT
Catalpa speciosa
208
Met Gln Ser Lys Ser Gln Ser Gly Asn Gln Gly Glu Ser Asn Leu Tyr
1 5 10 15
Asn Val Pro Asn Ser Lys Val Asn Pro Asp Ser Trp Trp Asn Asn Thr
20 25 30
Gly Tyr Asn Ser Phe Ser Ser Thr Met Met Gly Gly Asn Ala Ser Asp
35 40 45
Ser Ser Ser Leu Glu Gln Ser Val Asp Gly Gln Ser Gln Ser Lys Gly
50 55 60
Gly Ile Asn Glu Glu Asp Asp Asp Thr Thr Lys Arg Ser Pro Ser Ser
65 70 75 80
Thr Pro Leu Leu Pro Asp Arg Asn Tyr Arg Gln Glu Gly Pro Ser Leu
85 90 95
Gln Gln Ala Pro Pro Thr Ile His Pro Arg Asn Asn Gly Ile Val Asn
100 105 110
Gln Ala Pro Gln Leu Glu Leu Gly Gly His Ser Val Ala Cys Gly Ser
115 120 125
Asn Pro Tyr Asp Pro Tyr Tyr Gly Gly Met Met Ala Ala Tyr Gly Gln
130 135 140
Pro Leu Val Pro Pro His Leu Tyr Asp Met His His Ala Arg Met Ala
145 150 155 160
Leu Pro Leu Glu Met Thr Gln Glu Pro Val Tyr Val Asn Ala Lys Gln
165 170 175
Tyr His Gly Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu
180 185 190
Glu Lys Lys Leu Ile Lys Val Arg Lys Pro Tyr Leu His Glu Ser Arg
195 200 205
His Gln His Ala Leu Arg Arg Ala Arg Gly Thr Gly Gly Arg Phe Ala
210 215 220
Lys Lys Ser Asp Ala Asp Thr Ser Lys Gly Thr Gly Pro Gly Ser Ser
225 230 235 240
Ile Pro Ser Gln Leu Ile Ser Ser Ser Arg Gly Ser Glu Pro Val Pro
245 250 255
Glu Ala Gln Asn Leu Tyr Asn Ala Asp Asp Gly Asn Phe Arg Arg Gln
260 265 270
Thr Asn Leu Gln Glu Pro Ala Leu Gln Leu Gly Lys Thr Gly Glu Gly
275 280 285
Pro Thr Ser Ser His Lys Trp Gly Asn Thr Thr Ser Asn His Ala Leu
290 295 300
Ala Met Gln
305
209
1626
DNA
Zea mays
209
ccacgcgtcc gcgatcagcg tcagttacca cgacgaccga tcttgctcgc cagcgagagc 60
gacccctccc ctccctactt cccatgctga tctcggcgcg cttctcttcc tcctccccca 120
gagccgggca ctgatttccc ttggctgctg ctgctggatt ctttggtgtt ccatcaggcc 180
aaggatcccg caaagagctc cggagccaag cctgctgcag ccgtcgcgtc gggtgaggca 240
ggcttcagct tcagtctcct actcgacgag gcaagcggat cggagcgggc ctccgctccg 300
ccatgatgag cttcaagggc cacgaggggt ttggccaggt ggccgccgcc ggtgccggga 360
gccaggctgc ctcccatggt ggagcaggcc cgctgccatg gtgggcgggg ccccagctgc 420
tgttcggcga gccggcgccc ccgtcaccgg aggagacgcg ccgggacgcc cagttccagg 480
tcgtgccggg ggttcagggc acgccggatc cagcgccgcc caagacaggg acacctgagg 540
tcctcaaatt ctctgtcttt caagggaatt tggagtcggg tggtaaagga gagaaaaccc 600
caaagaactc taccactatt gctcttcagt caccgttccc agaatacaat ggccgtttcg 660
agattggtct tggtcaatct atgctggccc cttccaatta tccttgtgct gaccagtgct 720
atggcatgct tgcggcttat ggaatgagat cgatgtctgg tgggagaatg ctgttgccac 780
taaatgcgac agctgatgca cccatctatg tgaatccgaa gcagtacgaa ggcatcctcc 840
gccgtcgccg tgctcgcgcc aaggcggaga gcgagaacag gctcgccaaa ggcagaaagc 900
cctatctcca cgagtcgcgc cacctccacg cgatgcgtcg ggtaagaggc accggcgggc 960
gcttcgtcaa cacgaagaaa gaagggcgtg gcacgggcgt tgcttcgaac gggggcagca 1020
agacggctgc agcggcaccg tcgcgcctcg ccatgccccc tagcttccag agtagcgtcg 1080
ccagcctgtc tggctccgac gtgtcaaaca tgtacagcgg cggcttggag cagcaccttc 1140
gggcgccgca cttcttcacc ccgctgccac ccatcatgga ggacggcgac cacggtggtc 1200
cccccacccg catctcctcc tccttcaagt gggcagccag cgacggctgc tgcgagctcc 1260
tcaaggcgtg aaccgacgag gaggagggga tggctactca gacgaacggc cttctcgccg 1320
atggctggtc gtctgtaggc aaatcattct tggctgttcc gcattggggt gcaacctcat 1380
ccacatcatc tacctaccca gtaggccagt accccctgtt ccctgaacag tgcttgggtt 1440
acaggggtcc tcctgtgtgt gtgatgatgt ggtgtgcctc ccccacatgc atttgctgta 1500
acataatagt gtacccaaac cactgcttcg gactatcatt gtctgtctcg gtatggattc 1560
tctgttgtca cagtgtctga ataattgagg cgtcagactt caaagttaaa aaaaaaaaaa 1620
aaaaaa 1626
210
322
PRT
Zea mays
210
Met Met Ser Phe Lys Gly His Glu Gly Phe Gly Gln Val Ala Ala Ala
1 5 10 15
Gly Ala Gly Ser Gln Ala Ala Ser His Gly Gly Ala Gly Pro Leu Pro
20 25 30
Trp Trp Ala Gly Pro Gln Leu Leu Phe Gly Glu Pro Ala Pro Pro Ser
35 40 45
Pro Glu Glu Thr Arg Arg Asp Ala Gln Phe Gln Val Val Pro Gly Val
50 55 60
Gln Gly Thr Pro Asp Pro Ala Pro Pro Lys Thr Gly Thr Pro Glu Val
65 70 75 80
Leu Lys Phe Ser Val Phe Gln Gly Asn Leu Glu Ser Gly Gly Lys Gly
85 90 95
Glu Lys Thr Pro Lys Asn Ser Thr Thr Ile Ala Leu Gln Ser Pro Phe
100 105 110
Pro Glu Tyr Asn Gly Arg Phe Glu Ile Gly Leu Gly Gln Ser Met Leu
115 120 125
Ala Pro Ser Asn Tyr Pro Cys Ala Asp Gln Cys Tyr Gly Met Leu Ala
130 135 140
Ala Tyr Gly Met Arg Ser Met Ser Gly Gly Arg Met Leu Leu Pro Leu
145 150 155 160
Asn Ala Thr Ala Asp Ala Pro Ile Tyr Val Asn Pro Lys Gln Tyr Glu
165 170 175
Gly Ile Leu Arg Arg Arg Arg Ala Arg Ala Lys Ala Glu Ser Glu Asn
180 185 190
Arg Leu Ala Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu
195 200 205
His Ala Met Arg Arg Val Arg Gly Thr Gly Gly Arg Phe Val Asn Thr
210 215 220
Lys Lys Glu Gly Arg Gly Thr Gly Val Ala Ser Asn Gly Gly Ser Lys
225 230 235 240
Thr Ala Ala Ala Ala Pro Ser Arg Leu Ala Met Pro Pro Ser Phe Gln
245 250 255
Ser Ser Val Ala Ser Leu Ser Gly Ser Asp Val Ser Asn Met Tyr Ser
260 265 270
Gly Gly Leu Glu Gln His Leu Arg Ala Pro His Phe Phe Thr Pro Leu
275 280 285
Pro Pro Ile Met Glu Asp Gly Asp His Gly Gly Pro Pro Thr Arg Ile
290 295 300
Ser Ser Ser Phe Lys Trp Ala Ala Ser Asp Gly Cys Cys Glu Leu Leu
305 310 315 320
Lys Ala
211
1569
DNA
Oryza sativa
211
gcacgaggcg atctttcccc agagagagag agagagagag agagagtctt gattggggga 60
ggagagaggg agagagagaa agagagagga cagaaaatgt ttgtggatct tgagtaatgc 120
cttctaataa tgataatgct gttgcaagaa atggagaatc atcctgtcca atgcatggcc 180
aagaccaact atgattttct tgccaggaat aactatccaa tgaaacagtt agttcagagg 240
aactctgatg gtgactcgtc accaacaaag tctggggagt ctcaccaaga agcatctgca 300
gtaagtgaca gcagtctcaa cggacaacac acctcaccac aatcagtgtt tgtcccctca 360
gatattaaca acaatgatag ttgtggggag cgggaccatg gcactaagtc ggtattgtct 420
ttgggcaaca cagaagctgc ctttcctcct tcaaagttcg attacaacca gccttttgca 480
tgtgtttctt atccatatgg tactgatcca tattatggtg gagtattaac aggatacact 540
tcacatgcat ttgttcatcc tcaaattact ggtgctgcaa actctaggat gccattgcct 600
gttgatcctt ctgtagaaga gcccatattt gtcaatgcaa agcaatacaa tgcgatcctt 660
agaagaaggc aaacgcgtgc aaaattggag gcccaaaata aggcggtgaa aggtcggaag 720
ccttacctcc atgaatctcg acatcatcat gctatgaagc gagcccgtgg atcaggtggt 780
cggyyactta ccaaaaagga gctgctggaa cagcagcagc agcagcagca gcagaagcca 840
ccaccggcat cagctcagtc tccaacaggt agagccagaa cgagcggcgg tgccgttgtc 900
cttggcaaga acctgtgccc agagaacagc acatcctgct cgccatcgac accgacaggc 960
tccgagatct ccagcatctc atttgggggc ggcatgctgg ctcaccaaga gcacatcagc 1020
ttcgcatccg ctgatcgcca ccccacaatg aaccagaacc accgtgtccc cgtcatgagg 1080
tgaaaacctc gggatcgcgg gacacgggcg gttctggttt accctcactg gcgcactccg 1140
gtgtgcccgt ggcaattcat ccttggctta tgaagtatct acctgataat agtctgctgt 1200
cagtttatat gcaatgcaac ctctgtcaga taaactctta tagtttgttt tattgtaagc 1260
tatgactgaa cgaactgtcg agcagatggc taatttgtat gttgtgggta cagaaatcct 1320
gaagcttttg atgtacctaa ttgccttttg cttatactct tggtgtatac ccattaccaa 1380
gttgccttaa aaaccctcca attatgtaat cagtcatggt tttatagaac cttgccacat 1440
gtaatcaatc acctgttttt gtaaattgat ctataaacgc taaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1560
aaaaaaaaa 1569
212
317
PRT
Oryza sativa
212
Met Ile Met Leu Leu Gln Glu Met Glu Asn His Pro Val Gln Cys Met
1 5 10 15
Ala Lys Thr Asn Tyr Asp Phe Leu Ala Arg Asn Asn Tyr Pro Met Lys
20 25 30
Gln Leu Val Gln Arg Asn Ser Asp Gly Asp Ser Ser Pro Thr Lys Ser
35 40 45
Gly Glu Ser His Gln Glu Ala Ser Ala Val Ser Asp Ser Ser Leu Asn
50 55 60
Gly Gln His Thr Ser Pro Gln Ser Val Phe Val Pro Ser Asp Ile Asn
65 70 75 80
Asn Asn Asp Ser Cys Gly Glu Arg Asp His Gly Thr Lys Ser Val Leu
85 90 95
Ser Leu Gly Asn Thr Glu Ala Ala Phe Pro Pro Ser Lys Phe Asp Tyr
100 105 110
Asn Gln Pro Phe Ala Cys Val Ser Tyr Pro Tyr Gly Thr Asp Pro Tyr
115 120 125
Tyr Gly Gly Val Leu Thr Gly Tyr Thr Ser His Ala Phe Val His Pro
130 135 140
Gln Ile Thr Gly Ala Ala Asn Ser Arg Met Pro Leu Pro Val Asp Pro
145 150 155 160
Ser Val Glu Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile
165 170 175
Leu Arg Arg Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala
180 185 190
Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His His His Ala
195 200 205
Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Thr Lys Lys Glu
210 215 220
Leu Leu Glu Gln Gln Gln Gln Gln Gln Gln Gln Lys Pro Pro Pro Ala
225 230 235 240
Ser Ala Gln Ser Pro Thr Gly Arg Ala Arg Thr Ser Gly Gly Ala Val
245 250 255
Val Leu Gly Lys Asn Leu Cys Pro Glu Asn Ser Thr Ser Cys Ser Pro
260 265 270
Ser Thr Pro Thr Gly Ser Glu Ile Ser Ser Ile Ser Phe Gly Gly Gly
275 280 285
Met Leu Ala His Gln Glu His Ile Ser Phe Ala Ser Ala Asp Arg His
290 295 300
Pro Thr Met Asn Gln Asn His Arg Val Pro Val Met Arg
305 310 315
213
1375
DNA
Glycine max
213
gcacgaggag gttgcagact tagaaagaga gagagagaga gaatgggtct catctcaatg 60
caatttaggt tctgaaaacc aaagcttttc ataggaaaag ttgtgctaag atgccaggga 120
aacctgacac tgatgattgg cgtgtagagc gtggggagca gattcagttt cagtcttcca 180
tttactctca tcatcagcct tggtggcgcg gagtggggga aaatgcctcc aaatcatctt 240
cagatgatca gttaaatggt tcaatcgtga atggtatcac gcggtctgag accaatgata 300
agtcaggcgg aggtgttgcc aaagaatacc aaaacatcaa acatgccatg ttgtcaaccc 360
catttaccat ggagaaacat cttgctccaa atccccagat ggaacttgtt ggtcattcag 420
ttgttttaac atctccttat tcagatgcac agtatggtca aatcttgact acttacgggc 480
aacaagttat gataaatcct cagttgtatg gaatgcatca tgctagaatg cctttgccac 540
ttgaaatgga agaggagcct gtttatgtca atgcgaagca gtatcatggt attttgaggc 600
gaagacagtc acgtgctaag gctgagattg aaaagaaagt aatcaaaaac aggaagccat 660
acctccatga atcccgtcac cttcatgcaa tgagaagggc aagaggcaac ggtggtcgct 720
ttctcaacac aaagaagctt gaaaataaca attctaattc cacttcagac aaaggcaaca 780
atactcgtgc aaacgcctca acaaactcgc ctaacactca acttttgttc accaacaatt 840
tgaatctagg ctcatcaaat gtttcacaag ccacagttca gcacatgcac acagagcaga 900
gtttcactat aggttaccat aatggaaatg gtcttacagc actataccgt tcacaagcaa 960
atgggaaaaa ggagggaaac tgctttggta aagagaggga ccctaatggg gatttcaaat 1020
aacacttccc tcagccatac agcaagagtg aagatgaagg gctttatctc atccaacttg 1080
tgatgctgta tagaaggcaa ttcattcttg gcttagttaa gtggtgagac cagtgacatg 1140
gtgtacacta tggccttgtt tggtctctcc cttgcttttg tttctctcta caagtccata 1200
tgtaaaatgg ataacagaaa gaaaaagaaa aatcactttg gtttgagaac tttttaaagt 1260
ttatattaac tgtgttaagg ttcataaaac tgtagactga tttgtgtgac atgctccaca 1320
gaaccttaaa ttttcctcta ttttgtccta aaaaaaaaaa aaaaaaaaaa aaaaa 1375
214
303
PRT
Glycine max
214
Met Pro Gly Lys Pro Asp Thr Asp Asp Trp Arg Val Glu Arg Gly Glu
1 5 10 15
Gln Ile Gln Phe Gln Ser Ser Ile Tyr Ser His His Gln Pro Trp Trp
20 25 30
Arg Gly Val Gly Glu Asn Ala Ser Lys Ser Ser Ser Asp Asp Gln Leu
35 40 45
Asn Gly Ser Ile Val Asn Gly Ile Thr Arg Ser Glu Thr Asn Asp Lys
50 55 60
Ser Gly Gly Gly Val Ala Lys Glu Tyr Gln Asn Ile Lys His Ala Met
65 70 75 80
Leu Ser Thr Pro Phe Thr Met Glu Lys His Leu Ala Pro Asn Pro Gln
85 90 95
Met Glu Leu Val Gly His Ser Val Val Leu Thr Ser Pro Tyr Ser Asp
100 105 110
Ala Gln Tyr Gly Gln Ile Leu Thr Thr Tyr Gly Gln Gln Val Met Ile
115 120 125
Asn Pro Gln Leu Tyr Gly Met His His Ala Arg Met Pro Leu Pro Leu
130 135 140
Glu Met Glu Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly
145 150 155 160
Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Ile Glu Lys Lys
165 170 175
Val Ile Lys Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His
180 185 190
Ala Met Arg Arg Ala Arg Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys
195 200 205
Lys Leu Glu Asn Asn Asn Ser Asn Ser Thr Ser Asp Lys Gly Asn Asn
210 215 220
Thr Arg Ala Asn Ala Ser Thr Asn Ser Pro Asn Thr Gln Leu Leu Phe
225 230 235 240
Thr Asn Asn Leu Asn Leu Gly Ser Ser Asn Val Ser Gln Ala Thr Val
245 250 255
Gln His Met His Thr Glu Gln Ser Phe Thr Ile Gly Tyr His Asn Gly
260 265 270
Asn Gly Leu Thr Ala Leu Tyr Arg Ser Gln Ala Asn Gly Lys Lys Glu
275 280 285
Gly Asn Cys Phe Gly Lys Glu Arg Asp Pro Asn Gly Asp Phe Lys
290 295 300
215
1192
DNA
Triticum aestivum
215
gcacgaggga gtgacgcggt cgaggagggg cgtgcggggg gcagacagag agggagcgca 60
aagggacggc ggaggcaagc tagcttcccg ggggcggacg caccgagaga gggcggcggg 120
agggaggagg cgcgtgggag ccatgcttct cccctcttct tcgtcttcct cctacgatcc 180
caaaggtgac tcctttggga aatcggttga cgatcatatg aggtcaactt tgacttttgg 240
tgataagcat tctgtatttg caagtcaaaa cactgactat ggccacccaa tggcttgcat 300
ttcataccca ttcaatgatt ctggttctgt ttgggcggcc tatgggtcac gggctatgtt 360
ccagcccctc atggcggaag gaggggcatc tgcgaccgca agagttccat tgcctgtcga 420
attagcagcg gatgagccca tatttgtcaa tcccaaacaa tataatggga ttctccggcg 480
aaggcagctg cgcgccaagt tagaggccca gaataaactc acaaaaaaca gaaagcccta 540
cctccacgag tctcgccatc ttcacgcgat gaagcgggca agaggttccg ggggacgttt 600
cctcaattcc aaacagctga agcagcagca gcagcagtct ggcagtgcat gcacgaaggc 660
cattgcggat ggcgcgaatt ccttgggttc aacccatcta cggctaggca gcggcgcagc 720
cggagaccga agcaactcgg cgtccaaggc gatgtcctcc caagagaaca gcaagagagt 780
cgccgccccg gctcccgcct tcaccatgat tcaagcggcg cgcaaagacg acgacttctt 840
ccaccatcac ggccaccatc tcagcttctc cgaccacttc ggccagtcga gcgaccggta 900
tacgtaacaa ggggtcctct gtgccccggt gtggtctggc aactcatcct tggctttatt 960
tctggcgtgt tagggtttca gagatagtgt atctcatagt actactgttg tactgctttg 1020
cacccacata gttctctgct tgatgttcgg catgcaaatg ttggtgtact ggtgcgttgg 1080
gacaaaagtt tgatgtgttt acatgacaat tggtcgcgga actcatcttg tgttctgctc 1140
gactctaatg tgtgtgctca catgtgaatt ccgtaaaaaa aaaaaaaaaa aa 1192
216
254
PRT
Triticum aestivum
216
Met Leu Leu Pro Ser Ser Ser Ser Ser Ser Tyr Asp Pro Lys Gly Asp
1 5 10 15
Ser Phe Gly Lys Ser Val Asp Asp His Met Arg Ser Thr Leu Thr Phe
20 25 30
Gly Asp Lys His Ser Val Phe Ala Ser Gln Asn Thr Asp Tyr Gly His
35 40 45
Pro Met Ala Cys Ile Ser Tyr Pro Phe Asn Asp Ser Gly Ser Val Trp
50 55 60
Ala Ala Tyr Gly Ser Arg Ala Met Phe Gln Pro Leu Met Ala Glu Gly
65 70 75 80
Gly Ala Ser Ala Thr Ala Arg Val Pro Leu Pro Val Glu Leu Ala Ala
85 90 95
Asp Glu Pro Ile Phe Val Asn Pro Lys Gln Tyr Asn Gly Ile Leu Arg
100 105 110
Arg Arg Gln Leu Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Thr Lys
115 120 125
Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Met Lys
130 135 140
Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Ser Lys Gln Leu Lys
145 150 155 160
Gln Gln Gln Gln Gln Ser Gly Ser Ala Cys Thr Lys Ala Ile Ala Asp
165 170 175
Gly Ala Asn Ser Leu Gly Ser Thr His Leu Arg Leu Gly Ser Gly Ala
180 185 190
Ala Gly Asp Arg Ser Asn Ser Ala Ser Lys Ala Met Ser Ser Gln Glu
195 200 205
Asn Ser Lys Arg Val Ala Ala Pro Ala Pro Ala Phe Thr Met Ile Gln
210 215 220
Ala Ala Arg Lys Asp Asp Asp Phe Phe His His His Gly His His Leu
225 230 235 240
Ser Phe Ser Asp His Phe Gly Gln Ser Ser Asp Arg Tyr Thr
245 250
217
298
PRT
Arabidopsis thaliana
misc_feature
gi 9293997
217
Met His Ser Lys Ser Asp Ser Gly Gly Asn Lys Val Asp Ser Glu Val
1 5 10 15
His Gly Thr Val Ser Ser Ser Ile Asn Ser Leu Asn Pro Trp His Arg
20 25 30
Ala Ala Ala Ala Cys Asn Ala Asn Ser Ser Val Glu Ala Gly Asp Lys
35 40 45
Ser Ser Lys Ser Ile Ala Leu Ala Leu Glu Ser Asn Gly Ser Lys Ser
50 55 60
Pro Ser Asn Arg Asp Asn Thr Val Asn Lys Glu Ser Gln Val Thr Thr
65 70 75 80
Ser Pro Gln Ser Ala Gly Asp Tyr Ser Asp Lys Asn Gln Glu Ser Leu
85 90 95
His His Gly Ile Thr Gln Pro Pro Pro His Pro Gln Leu Val Gly His
100 105 110
Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln Asp Pro Tyr Tyr Ala
115 120 125
Gly Val Met Gly Ala Tyr Gly His His Pro Leu Gly Phe Val Pro Tyr
130 135 140
Gly Gly Met Pro His Ser Arg Met Pro Leu Pro Pro Glu Met Ala Gln
145 150 155 160
Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg
165 170 175
Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Ser
180 185 190
Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg
195 200 205
Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asn Thr Glu Ala
210 215 220
Ser Lys Arg Lys Ala Glu Glu Lys Ser Asn Gly His Val Thr Gln Ser
225 230 235 240
Pro Ser Ser Ser Asn Ser Asp Gln Gly Glu Ala Trp Asn Gly Asp Tyr
245 250 255
Arg Thr Pro Gln Gly Asp Glu Met Gln Ser Ser Ala Tyr Lys Arg Arg
260 265 270
Glu Glu Gly Glu Cys Ser Gly Gln Gln Trp Asn Ser Leu Ser Ser Asn
275 280 285
His Pro Ser Gln Ala Arg Leu Ala Ile Lys
290 295
218
238
PRT
Oryza sativa
misc_feature
gi 7489565
218
Met Leu Pro Pro His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe
1 5 10 15
Gly His Lys Met Pro Asp Tyr Glu Ser Ser Ala Thr Gln Ser Thr Ser
20 25 30
Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu Asn Glu
35 40 45
Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu
50 55 60
Gly Lys Met Met Ser Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr
65 70 75 80
Ala His Ser Glu Pro Asp Arg Ser Gln Pro Phe Gly Ile Ser Tyr Pro
85 90 95
Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr His
100 105 110
Ala Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val
115 120 125
Pro Leu Pro Ile Glu Pro Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala
130 135 140
Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu
145 150 155 160
Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu
165 170 175
Ser Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg
180 185 190
Phe Leu Asn Thr Lys Gln Gln Pro Glu Ala Ser Asp Gly Gly Thr Pro
195 200 205
Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys His Glu His Ser
210 215 220
Leu Ser Ser Ser Asp Leu His His Arg Ala Lys Glu Gly Ala
225 230 235
219
215
PRT
Vitis riparia
misc_feature
gi 7141243
219
Met Met Pro Met Thr Met Ala Glu Tyr His Leu Ala Pro Pro Ser Gln
1 5 10 15
Leu Glu Leu Val Gly His Ser Ile Val Gln Ser Gln Phe Leu Gly Val
20 25 30
Asn Val Ala Arg Met Ala Leu Pro Ile Glu Met Ala Glu Glu Pro Val
35 40 45
Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser
50 55 60
Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Val Arg Lys Pro
65 70 75 80
Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala Arg Gly
85 90 95
Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Asp Ser Asn Ala Ser
100 105 110
Tyr Asp Met Pro Asp Lys Gly Ser Asp Pro Asp Val Asn Leu Ser Thr
115 120 125
Arg Pro Ile Ser Ser Ser Val Ser Glu Ser Leu Pro Phe Asn Ser Ser
130 135 140
Arg Asn Glu Asp Ser Pro Thr Ser His Leu Asp Ala Arg Gly Pro Ser
145 150 155 160
Val Gln Glu Leu His Asn Arg Gln Thr Ser Ser Met Glu Met Ala Thr
165 170 175
Ser Leu Leu Ser Thr Gln Pro Gly Ile Ser Val Gly Arg Thr Tyr His
180 185 190
Ser Leu Lys Met Met Ile Gly Val Glu Arg Arg Arg Pro Arg Lys Ala
195 200 205
Ala Ser Ile Arg Glu Phe Trp
210 215
220
1329
DNA
Glycine max
220
gcacgagtag ggttttctcc tcccccattg acccaccgtc catcgcaaag gaagtcgcgc 60
ccaatttcca tggtttgtag attaaatctt aaagcagtaa gtcatcatgg ataaatcaga 120
gcagactcag cagcaacatc agcatgggat gggcgttgcc acaggtgcta gccaaatggc 180
ctattcttct cactacccga ctgctcccat ggtggcttct ggcacgcctg ctgtagctgt 240
tccttcccca actcaggctc cagctgcctt ctctagttct gctcaccagc ttgcatacca 300
gcaagcacag catttccacc accaacagca gcaacaccaa caacagcagc ttcaaatgtt 360
ctggtcaaac caaatgcaag aaattgagca aacaattgac tttaaaaacc acagtcttcc 420
tcttgctcgg ataaaaaaga taatgaaagc tgatgaagat gtccggatga tttctgcaga 480
agctccagtc atatttgcaa aagcatgtga aatgttcata ttagagttga cgttgagatc 540
ttggatccac acagaagaga acaagaggag aactctacaa aagaatgata tagcagctgc 600
tatttcgaga aacgatgttt ttgatttctt ggttgatatt atcccaagag atgagttgaa 660
agaggaagga cttggaataa ccaaggctac tattccattg gtgaattctc cagctgatat 720
gccatattac tatgtccctc cacagcatcc tgttgtagga cctcctggga tgatcatggg 780
caagcccgtt ggtgctgagc aagcaacgct gtattctaca cagcagcctc gacctcccat 840
ggcgttcatg ccatggcccc atacacaacc ccagcaacag cagccacccc aacatcaaca 900
aacagactca tgatgacaat gcaattcaat taggtcggaa agtagcatgc accttatgat 960
tattacaaat ttacttaatg cctttaagtc agctgtagtt tagtgttttg cattgaaaaa 1020
tgccaaagat tgtttgaggt ttcttgcact catttatgat tgtatgagct cttatgctga 1080
gttacttttg gttgtgttta tttgaggtac tggtgtggta gttaaattag tttgtagctg 1140
tccataagta aacagcgtag ctgcttaatt aggaggtctg aaatgatgaa atagtttgta 1200
ttgttattgc agaaggtagg ttttattcag tatttcaaaa aaaaaaaaaa aaaaaaaaaa 1260
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1320
aaaaaaaaaa 1329
221
268
PRT
Glycine max
221
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln His Gln His Gly Met Gly
1 5 10 15
Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr Pro Thr
20 25 30
Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro Ser Pro
35 40 45
Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu Ala Tyr
50 55 60
Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln Gln Gln
65 70 75 80
Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu Gln Thr
85 90 95
Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile
100 105 110
Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val
115 120 125
Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg
130 135 140
Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn
145 150 155 160
Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe Leu Val
165 170 175
Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly Ile Thr
180 185 190
Lys Ala Thr Ile Pro Leu Val Asn Ser Pro Ala Asp Met Pro Tyr Tyr
195 200 205
Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met Ile Met
210 215 220
Gly Lys Pro Val Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr Gln Gln
225 230 235 240
Pro Arg Pro Pro Met Ala Phe Met Pro Trp Pro His Thr Gln Pro Gln
245 250 255
Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265
222
199
PRT
Arabidopsis thaliana
misc_feature
gi 15223482
222
Met Glu Gln Ser Glu Glu Gly Gln Gln Gln Gln Gln Gln Gly Val Met
1 5 10 15
Asp Tyr Val Pro Pro His Ala Tyr Gln Ser Gly Pro Val Asn Ala Ala
20 25 30
Ser His Met Ala Phe Gln Gln Ala His His Phe His His His His Gln
35 40 45
Gln Gln Gln Gln Gln Gln Leu Gln Met Phe Trp Ala Asn Gln Met Gln
50 55 60
Glu Ile Glu His Thr Thr Asp Phe Lys Asn His Thr Leu Pro Leu Ala
65 70 75 80
Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser
85 90 95
Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu
100 105 110
Glu Leu Thr Leu Arg Ala Trp Ile His Thr Glu Glu Asn Lys Arg Arg
115 120 125
Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Thr Asp Val
130 135 140
Phe Asp Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu
145 150 155 160
Gly Leu Gly Val Thr Lys Gly Thr Ile Pro Ser Val Val Gly Ser Pro
165 170 175
Pro Tyr Tyr Tyr Leu Gln Gln Gln Gly Met Met Gln His Trp Pro Gln
180 185 190
Glu Gln His Pro Asp Glu Ser
195
1.PublishNumber: US-2003126638-A1
2.Date Publish: 20030703
3.Inventor: ALLEN WILLIAM B.
CAHOON REBECCA E.
FAMODU OMOLAYO O.
HARVELL LESLIE T.
HELENTJARIS TIMOTHY G.
LI CHANGJIANG
LOWE KEITH S.
OLIVEIRA IGOR CUNHA
SHEN BO
TARCZYNSKI MITCHELL C.
4.Inventor Harmonized: ALLEN WILLIAM B(US)
CAHOON REBECCA E(US)
FAMODU OMOLAYO O(US)
HARVELL LESLIE T(US)
HELENTJARIS TIMOTHY G(US)
LI CHANGJIANG(US)
LOWE KEITH S(US)
OLIVEIRA IGOR CUNHA(US)
SHEN BO(US)
TARCZYNSKI MITCHELL C(US)
5.Country: US
6.Claims:
(en)The preparation and use of nucleic acid fragments useful in altering the oil phenotype in plants are disclosed. Recombinant DNA construct incorporating such nucleic acid fragments and suitable regulatory sequences can be used to create transgenic plants having altered lipid profiles. Methods for altering the oil phenotype in plants using such nucleic acid fragments also are disclosed.
7.Description:
(en)[0001] This application claims the priority benefit of U.S. Provisional Application 60/301,913 filed Jun. 29, 2001, the disclosure of which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present invention is in the field of plant breeding and genetics and, in particular, relates to the alteration of oil phenotype in plants through the controlled expression of selective genes.
BACKGROUND OF THE INVENTION
[0003] Plant lipids have a variety of industrial and nutritional uses and are central to plant membrane function and climatic adaptation. These lipids represent a vast array of chemical structures, and these structures determine the physiological and industrial properties of the lipid. Many of these structures result either directly or indirectly from metabolic processes that alter the degree of unsaturation of the lipid. Different metabolic regimes in different plants produce these altered lipids, and either domestication of exotic plant species or modification of agronomically adapted species is usually required to produce economically large amounts of the desired lipid.
[0004] There are serious limitations to using mutagenesis to alter fatty acid composition. Screens will rarely uncover mutations that a) result in a dominant (“gain-of-function”) phenotype, b) are in genes that are essential for plant growth, and c) are in an enzyme that is not rate-limiting and that is encoded by more than one gene. In cases where desired phenotypes are available in mutant corn lines, their introgression into elite lines by traditional breeding techniques is slow and expensive, since the desired oil compositions are likely the result of several recessive genes.
[0005] Recent molecular and cellular biology techniques offer the potential for overcoming some of the limitations of the mutagenesis approach, including the need for extensive breeding. Some of the particularly useful technologies are seed-specific expression of foreign genes in transgenic plants [see Goldberg et al (1989) Cell 56:149-160], and the use of antisense RNA to inhibit plant target genes in a dominant and tissue-specific manner [see van der Krol et al (1988) Gene 72:45-50]. Other advances include the transfer of foreign genes into elite commercial varieties of commercial oilcrops, such as soybean [Chee et al (1989) Plant Physiol. 91:1212-1218; Christou et al (1989) Proc. Natl. Acad. Sci. U.S.A. 86:7500-7504; Hinchee et al (1988) Bio/Technology 6:915-922; EPO publication 0 301 749 A2], rapeseed [De Block et al (1989) Plant Physiol. 91:694-701], and sunflower [Everett et al(1987) Bio/Technology 5:1201-1204], and the use of genes as restriction fragment length polymorphism (RFLP) markers in a breeding program, which makes introgression of recessive traits into elite lines rapid and less expensive [Tanksley et al (1989) Bio/Technology 7:257-264]. However, application of each of these technologies requires identification and isolation of commercially-important genes.
[0006] The regulation of transcription of most eukaryotic genes is coordinated through sequence-specific binding of proteins to the promoter region located upstream of the gene. Many of these protein-binding sequences have been conserved during evolution and are found in a wide variety of organisms. One such feature is the “CCAAT” sequence element. (Edwards et al, 1998, Plant Physiol. 117:1015-1022). CCAAT boxes are a feature of gene promoters in many eukaryotes including several plant gene promoters.
[0007] HAP proteins constitute a large family of transcription factors first identified in yeast. They combine to from a heteromeric protein complex that activates transcription by binding to CCAAT boxes in eukaryotic promoters. The orthologous Hap proteins display a high degree of evolutionary conservation in their functional domains in all species studied to date (Li et al, 1991).
[0008] WO 00/28058 published on May 18, 2000 describes Hap3-type CCAAT-box binding transcriptional activator polynucleotides and polypeptides, especially, the leafy cotyledon 1 transcriptional activator (LEC1) polynucleotides and polypeptides.
[0009] WO 99/67405 describes leafy cotyledons 1 genes and their uses.
[0010] The human, murine and plant homologues of CCAAT-binding proteins have been isolated and characterized based on their sequence similarity with their yeast counterparts (Li et al, 1991). This high degree of sequence homology translates remarkably into functional interchangeability among orthologue proteins of different species (Sinha et al, 1995). Unlike yeast, multiple forms of each HAP homolog have been identified in plants (Edwards et al, 1998).
[0011] Molecular and genetic analysis revealed HAP members to be involved in the control of diverse and critical biological processes ranging from development and cell cycle regulation to metabolic control and homeostasis (Lotan et al, 1998; Lopez et al, 1996). In yeast, HAPs are involved in the transcriptional control of metabolic relevant processes such as the regulation of catabolic derepression of cyc1 and other genes involved in respiration (Becker et al., 1991).
[0012] In mammalian systems, several reports describe HAPs as direct or indirect regulators of several important genes involved in lipid biosynthesis such as fatty acid synthase (Roder et al, 1997), farnesyl diphosphate (FPP) synthase (Jackson et al, 1995; Ericsson et al, 1996), glycerol-3-phosphate acyltransferase (GPA, Jackson et al, 1997), acetyl-CoA carboxylase (ACC, Lopez et al, 1996) and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase (Jackson et al, 1995), among others.
[0013] In addition, other CCAAT-binding transcription factors have also been reported to be involved in different aspects of the control of lipid biosynthesis and adipocyte growth and differentiation in mammalian systems (see McKnight et al, 1989).
[0014] It appears that the currently available evidence to date points to a family of proteins of the CCAAT-binding transcription factors as important modulators of metabolism and lipid biosynthesis in mammalian systems. Such a determination has not been made for plant systems.
SUMMARY OF THE INVENTION
[0015] This invention concerns an isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0016] (a) a nucleic acid sequence encoding a fifth polypeptide having Hap2-like transcription factor activity, the fifth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a sixth polypeptide selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6,10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,40, 42, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, or 208, 210, 212, 214, or 216;
[0017] (b) a nucleic acid sequence encoding a seventh polypeptide having Hap5-like transcription factor activity, the seventh polypeptide having at least 80% identity based on the Clustal method of alignment when compared to an eighth polypeptide selected from the group consisting of SEQ ID NOs: 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, or 221;
[0018] (c) a nucleic acid sequence encoding a seventeenth polypeptide having Hap3/Lec1-like activity, the seventeenth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a eighteenth polypeptide selected from the group consisting of SEQ ID NOs: 130, 132, 134, or 136.
[0019] Also of interest are the complements of such nucleotide fragment as well as the use of such fragments or a part thereof in antisense inhibition or co-suppression in a transformed plant.
[0020] In a second embodiment, this invention concerns recombinant DNA constructs comprising such fragments, plants comprising such recombinant DNA constructs in their genome, seeds obtained from such plants and oil obtained from these seeds.
[0021] In a third embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises: (a) transforming a plant with a recombinant DNA construct the invention, (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0022] In a fourth embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0023] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0024] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 130 to 148, and SEQ ID NOs: 195 and 196;
[0025] (ii) the complement of the nucleic acid sequence of (i);
[0026] (iii) the sequence of (i) or (ii) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0027] (iv) a nucleic acid sequence encoding a plant Lec1-related CCAAT binding transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 150 to 178, and SEQ ID NOs: 197 to 202;
[0028] (v) the complement of the nucleic acid sequence of (iv);
[0029] (vi) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0030] wherein said nucleic acid sequence is operably linked to at least one regulatory sequence;
[0031] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0032] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0033] In a fifth embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0034] (a) transforming a plant with a recombinant DNA construct comprising an isolated nucleic acid fragment operably linked to at least one regulatory sequence wherein said fragment has a nucleic acid sequence encoding a polypeptide having a sequence identity of at least 60% based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of even SEQ ID NOs: from 2 to 178, and 206 to 214, and SEQ ID NOs: 179 to 202, 216 to 219, 221, and 222;
[0035] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0036] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0037] In a sixth embodiment, this invention concerns method of mapping genetic variations related to altered oil phenotypes in a plant comprising:
[0038] (a) crossing two plant varieties; and
[0039] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0040] In a seventh embodiment, this invention concerns a method of molecular breeding to obtain altered oil phenotypes in a plant comprising:
[0041] (a) crossing two plant varieties; and
[0042] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0043] In an eighth embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0044] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0045] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 70% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of SEQ ID NOs: 130 to 148, and SEQ ID NOs: 195, 196, and 206;
[0046] (ii) the complement of the nucleic acid sequence of (iv);
[0047] (iii) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0048] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0049] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0050] In a ninth embodiment, this invention concerns a method to isolate nucleic acid fragments associated with altering oil phenotype in a plant which comprises:
[0051] (a) comparing even SEQ ID NOs: from 2 to 178, and 206 to 214, and SEQ ID NOs: 179 to 202, 216 to 219, 221, and 222 with other polypeptide sequences for the purpose of identifying polypeptides associated with altering oil phenotype in a plant;
[0052] (b) identifying the conserved sequences(s) or 4 or more amino acids obtained in step (a);
[0053] (c) making region-specific nucleotide probe(s) or oligomer(s) based on the conserved sequences identified in step (b); and
[0054] (d) using the nucleotide probe(s) or oligomer(s) of step (c) to isolate sequences associated with altering oil phenotype by sequence dependent protocols.
BRIEF DESCRIPTION OF THE FIGURES AND SEQUENCE LISTINGS
[0055] The invention can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing which form a part of this application.
[0056]FIG. 1 shows the fatty acid composition of maize somatic embryos over-expressing Hap3/Lec1 (solid bars, “Hap3/Lec1”) compared to control embryos (striped bars, “con”). A ubiquitin promoter was used to drive Hap3/Lec1 expression in maize embryogenic callus. More than ten different events were analyzed by GC for fatty acid content-composition and compared to controls transformed with the selectable marker (BAR gene) plasmid alone. The somatic embryos over-expressing Lec1 contain elevated fatty acid contents averaging 119% over control oil levels.
[0057]FIG. 2 shows the fatty acid composition of maize embryos transformed with additional copies of Hap3/Lec1 (solid bars, “+transgene”) compared to control embryos (cross-hatched bars, “−transgene”). An oleosin promoter was used to direct the expression of a transgenic copy of Hap3/Lec 1. More than twenty events producing segregating T1 seed were analyzed by NMR for embryo oil content. Six to twelve embryos were analyzed for each of five different events. Some embryos within each event contained elevated oil content. The same embryos from these five events were analyzed by PCR to determine the presence or absence of the Lec1 construct. Embryos with high oil were always found to contain the Lec1 construct (darkly shaded bars), whereas embryos with normal levels of oil were typically found not to contain the Lec1 construct (cross-hatched bars). These data demonstrate the presence of the Lec1 gene does lead to increased oil in the embryo. It is believed that embryos containing sharply higher levels of oil were homozygous for the Lec1 construct, as these events were segregating 1:2:1. The oil concentration in the embryos containing the Lec1 construct greatly surpassed any increase previously achieved through enzymatic modification of the fatty acid biosynthetic pathway, with some embryos containing an average increase of 56% in embryo oil content.
[0058] Table 1 lists the polypeptides that are described herein, the designation of the cDNA clones that comprise the nucleic acid fragments encoding polypeptides representing all or a substantial portion of these polypeptides (for the corresponding SEQ ID NO: identifier as used in the attached Sequence Listing see Table 3). The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. §1.821-1.825.
TABLE 1 Genes Involved in Alteration of Oil Traits in Plants Gene Name Clone Plant Hap2a transcription factor ncs.pk0013.c4 Catalpa [ Catalpa speciosa ] Hap2c-like transcription etr1c.pk006.f9 cattail [ Typha latifolia ] factor Hap2a transcription factor vmb1na.pk015.d18:fis grape [Vitis sp.] Hap2a transcription factor vpl1c.pk008.o5:fis grape [Vitis sp.] Hap2c-like transcription vdb1c.pk001.m5:fis grape [Vitis sp.] factor Hap2 transcription factor cho1c.pk004.b19:fis maize [ Zea mays ] Hap2 transcription factor p0015.cdpgu90r:fis maize [ Zea mays ] Hap2a transcription factor cta1n.pk0010.f3:fis maize [ Zea mays ] Hap2a-like transcription cco1n.pk0014.d4:fis maize [ Zea mays ] factor Hap2a-like transcription cco1n.pk086.d20:fis maize [ Zea mays ] factor Hap2b transcription factor p0126.cnlau71r:fis maize [ Zea mays ] Hap2b-like transcription p0104.cabav52r maize [ Zea mays ] factor Hap2c transcription factor cho1c.pk007.l21:fis maize [ Zea mays ] Hap2c-like transcription contig of: maize [ Zea mays ] factor cca.pk0026.d6 cen3n.pk0061.e10:fis cen3n.pk0135.c2 cho1c.pk001.n24 p0092.chwae40r Hap2c-like transcription cpf1c.pk006.e3:fis maize [ Zea mays ] factor Hap2c-like transcription contig of: maize [ Zea mays ] factor cr1n.pk0080.g6 p0003.cgpge51r Hap2c-like transcription p0015.cpdfm55r:fis maize [ Zea mays ] factor Hap2c-like transcription p0083.cldct11r:fis maize [ Zea mays ] factor Hap2c-like transcription p0083.cldeu68r:fis maize [ Zea mays ] factor Hap2a transcription factor pps1c.pk001.h3:fis prickly poppy [ Argemone mexicana ] Hap2c-like transcription pps1c.pk007.j21:fis prickly poppy factor [ Argemone mexicana ] Hap2 transcription factor rr1.pk0030.f7:fis rice [ Oryza sativa ] Hap2a transcription factor r1s72.pk0023.c8:fis rice [ Oryza sativa ] Hap2a-like transcription rca1n.pk002.c15 rice [ Oryza sativa ] factor Hap2a-like transcription rds3c.pk001.g9 rice [ Oryza sativa ] factor Hap2b transcription factor rca1n.pk002.j3:fis rice [ Oryza sativa ] Hap2c-like transcription rca1n.pk029.n22:fis rice [ Oryza sativa ] factor Hap2c-like transcription rl0n.pk131.j17 rice [ Oryza sativa ] factor Hap2a transcription factor sdp3c.pk018.b9:fis soybean [ Glycine max ] Hap2a transcription factor sfl1.pk0102.h8 soybean [ Glycine max ] Hap2a transcription factor srr3c.pk001.l10:fis soybean [ Glycine max ] Hap2a-like transcription sdp2c.pk003.o5:fis soybean [ Glycine factor max ] Hap2b transcription factor sif1c.pk001.m16:fis soybean [ Glycine max ] Hap2c-like transcription src1c.pk003.o16:fis soybean [ Glycine factor max ] Hap2c-like transcription src3c.pk012.m6:fis soybean [ Glycine factor max ] Hap2c-like transcription hss1c.pk011.h10:fis sunflower [Helianthus factor sp.] Hap2 transcription factor wr1.pk0094.f2:fis wheat-common [ Triticum aestivum ] Hap2a-like transcription wre1n.pk0143.h2:fis wheat-common factor [ Triticum aestivum ] Hap2b transcription factor wds1f.pk002.p21:fis wheat-common [ Triticum aestivum ] Hap2c transcription factor contig of: wheat-common wdi1c.pk002.b10 [ Triticum aestivum ] wr1.pk0153.c7:fis Hap2c-like transcription wre1n.pk0066.e4:fis wheat-common factor [ Triticum aestivum ] Hap2c-like transcription ncs.pk0013.c4:fis catalpa [ Catalpa factor speciosa ] Hap2c-like transcription p0117.chc1n94r:fis maize [ Zea mays ] factor Hap2c-like transcription rdi2c.pk011.f19:fis rice [ Oryza sativa ] factor Hap2c-like transcription sfl1.pk0101.g7:fis soybean [ Glycine factor max ] Hap2c-like transcription wdi1c.pk002.b10:fis wheat-common factor [ Triticum aestivum ] Hap5c-like transcription ect1c.pk001.k17:fis Canna [ Canna edulis ] factor Hap5a-like transcription vrr1c.pk004.o20:fis grape [Vitis sp.] factor Hap5a-like transcription clm1f.pk001.k17:fis maize [ Zea mays ] factor Hap5b-like transcription cde1n.pk003.a5:fis maize [ Zea mays ] factor Hap5b-like transcription cen3n.pk0164.a10:fis maize [ Zea mays ] factor Hap5b-like transcription p0118.chsbc77r maize [ Zea mays ] factor Hap5c-like transcription cco1n.pk055.o18:fis maize [ Zea mays ] factor Hap5c-like transcription cho1c.pk001.l23:fis maize [ Zea mays ] factor Hap5c-like transcription cse1c.pk001.h6:fis maize [ Zea mays ] factor Hap5a-like transcription rlm3n.pk005.d20:fis rice [ Oryza sativa ] factor Hap5b-like transcription rr1.pk0003.a3:fis rice [ Oryza sativa ] factor Hap5b-like transcription rr1.pk0039.d4:fis rice [ Oryza sativa ] factor Hap5c-like transcription rca1n.pk021.b20:fis rice [ Oryza sativa ] factor Hap5a-like transcription sdp2c.pk029k17:fis soybean [ Glycine factor max ] Hap5a-like transcription sdp2c.pk044.e5:fis soybean [ Glycine factor max ] Hap5b-like transcription sgs4c.pk004.j2 soybean [ Glycine factor max ] Hap5b-like transcription src3c.pk002.h4:fis soybean [ Glycine factor max ] Hap5b-like transcription src3c.pk009.b15:fis soybean [ Glycine factor max ] Hap5b-like transcription src3c.pk019.d4:fis soybean [ Glycine factor max ] Hap5c-like transcription sls1c.pk032.j4:fis soybean [ Glycine factor max ] Hap5 transcription factor wdk2c.pk009.e4:fis wheat-common [ Triticum aestivum ] Hap5a-like transcription contig of: wheat-common factor w1m96.pk036.j11 [ Triticum aestivum ] w1m96.pk060.d5:fis Hap5c-like transcription wle1n.pk0076.h7:fis wheat-common factor [ Triticum aestivum ] Hap5c-like transcription sgs4c.pk004.j2:fis soybean [ Glycine factor max ] Lec1-embryonic type eas1c.pk003.e16 amaranth [ Amaranthus retroflexus ] Lec1-embryonic type fds1n.pk008.m14 balsam pear [ Momordica charantia ] Lec1-embryonic type p0015.cdpgp75rb:fis maize [ Zea mays ] Lec1-embryonic type p0083.clder12r:fis maize [ Zea mays ] Lec1-embryonic type pps1c.pk002.l19 prickly poppy [ Argemone mexicana ] Lec1-embryonic type Contig of: soybean [ Glycine scb1c.pk004.j10 max ] se1.pk0042.d8:fis Lec1-embryonic type se2.11d12:fis soybean [ Glycine max ] Lec1-embryonic type ses2w.pk0015.a4:fis soybean [ Glycine max ] Lec1-embryonic type vs1n.pk013.m13:fis vernonia [ Vernonia mespilifolia ] Lec1-embryonic type wdk3c.pk023.h15:fis wheat-common [ Triticum aestivum ] Lec1-related CCAAT binding ect1c.pk007.p18:fis Canna [ Canna edulis ] protein Lec1-related CCAAT binding fds.pk0003.h5:fis balsam pear protein [ Momordica charantia ] Lec1-related CCAAT binding eef1c.pk004.c8:fis eucalyptus protein [ Eucalyptus grandis ] Lec1-related CCAAT binding cbn10.pk0005.e6:fis maize [ Zea mays ] protein Lec1-related CCAAT binding p0006.cbysa51r:fis maize [ Zea mays ] protein Lec1-related CCAAT binding rl0n.pk0061.c8:fis rice [ Oryza sativa ] protein Lec1-related CCAAT binding rsl1n.pk002.g10:fis rice [ Oryza sativa ] protein Lec1-related CCAAT binding ses4d.pk0037.e3:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src2c.pk003.i13:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src2c.pk011.m12:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src2c.pk025.b3:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding src3c.pk028.j21:fis soybean [ Glycine protein max ] Lec1-related CCAAT binding wkm1c.pk0002.d7:fis wheat-common protein [ Triticum aestivum ] Lec1-related CCAAT binding wlk8.pk0001.e10:fis wheat-common protein [ Triticum aestivum ] Lec1-related CCAAT binding w1m96.pk037.k9:fis wheat-common protein [ Triticum aestivum ]
[0059] The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the IUPAC-IUBMB standards described in Nucleic Acids Res. 13:3021-3030 (1985) and in the Biochemical J. 219 (No. 2):345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.
DETAILED DESCRIPTION OF THE INVENTION
[0060] All patents, patent applications and publications which are referred to herein are incorporated by reference in their entirety.
[0061] As used herein, an “isolated nucleic acid fragment” is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. An isolated nucleic acid fragment in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA. Nucleotides (usually found in their 5′-monophosphate form) are referred to by their single letter designation as follows: “A” for adenylate or deoxyadenylate (for RNA or DNA, respectively), “C” for cytidylate or deoxycytidylate, “G” for guanylate or deoxyguanylate, “U” for uridylate, “T” for deoxythymidylate, “R” for purines (A or G), “Y” for pyrimidines (C or T), “K” for g or T, “H” for A or C or T, “I” for inosine, and “N” for any nucleotide.
[0062] The terms “subfragment that is functionally equivalent” and “functionally equivalent subfragment” are used interchangeably herein. These terms refer to a portion or subsequence of an isolated nucleic acid fragment in which the ability to alter gene expression or produce a certain phenotype is retained whether or not the fragment or subfragment encodes an active enzyme. For example, the fragment or subfragment can be used in the design of recombinant DNA constructs to produce the desired phenotype in a transformed plant. Recombinant DNA constructs can be designed for use in co-suppression or antisense by linking a nucleic acid fragment or subfragment thereof, whether or not it encodes an active enzyme, in the appropriate orientation relative to a plant promoter sequence.
[0063] The terms “homology”, “homologous”, “substantially similar” and “corresponding substantially” are used interchangeably herein. They refer to nucleic acid fragments wherein changes in one or more nucleotide bases does not affect the ability of the nucleic acid fragment to mediate gene expression or produce a certain phenotype. These terms also refer to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more nucleotides that do not substantially alter the functional properties of the resulting nucleic acid fragment relative to the initial, unmodified fragment. It is therefore understood, as those skilled in the art will appreciate, that the invention encompasses more than the specific exemplary sequences.
[0064] Moreover, the skilled artisan recognizes that substantially similar nucleic acid sequences encompassed by this invention are also defined by their ability to hybridize, under moderately stringent conditions (for example, 0.5×SSC, 0.1% SDS, 60° C.) with the sequences exemplified herein, or to any portion of the nucleotide sequences reported herein and which are functionally equivalent to the promoter of the invention. Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions. One set of preferred conditions involves a series of washes starting with 6×SSC, 0.5% SDS at room temperature for 15 min, then repeated with 2×SSC, 0.5% SDS at 45° C. for 30 min, and then repeated twice with 0.2×SSC, 0.5% SDS at 50° C. for 30 min. A more preferred set of stringent conditions involves the use of higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2×SSC, 0.5% SDS was increased to 60° C. Another preferred set of highly stringent conditions involves the use of two final washes in 0.1×SSC, 0.1% SDS at 65° C.
[0065] With respect to the degree of substantial similarity between the target (endogenous) mRNA and the RNA region in the construct having homology to the target mRNA, such sequences should be at least 25 nucleotides in length, preferably at least 50 nucleotides in length, more preferably at least 100 nucleotides in length, again more preferably at least 200 nucleotides in length, and most preferably at least 300 nucleotides in length; and should be at least 80% identical, preferably at least 85% identical, more preferably at least 90% identical, and most preferably at least 95% identical.
[0066] Sequence alignments and percent similarity calculations may be determined using a variety of comparison methods designed to detect homologous sequences including, but not limited to, the Megalign program of the LASARGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wis.). Multiple alignment of the sequences are performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal method are KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4.
[0067] A “substantial portion” of an amino acid or nucleotide sequence comprises an amino acid or a nucleotide sequence that is sufficient to afford putative identification of the protein or gene that the amino acid or nucleotide sequence comprises. Amino acid and nucleotide sequences can be evaluated either manually by one skilled in the art, or by using computer-based sequence comparison and identification tools that employ algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/). In general, a sequence of ten or more contiguous amino acids or thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene-specific oligonucleotide probes comprising 30 or more contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12 or more nucleotides may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a “substantial portion” of a nucleotide sequence comprises a nucleotide sequence that will afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. The instant specification teaches amino acid and nucleotide sequences encoding polypeptides that comprise one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.
[0068] “Codon degeneracy” refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the “codon-bias” exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell, it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell
[0069] “Synthetic nucleic acid fragments” can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form larger nucleic acid fragments which may then be enzymatically assembled to construct the entire desired nucleic acid fragment. “Chemically synthesized”, as related to a nucleic acid fragment, means that the component nucleotides were assembled in vitro. Manual chemical synthesis of nucleic acid fragments may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines. Accordingly, the nucleic acid fragments can be tailored for optimal gene expression based on optimization of the nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available.
[0070] “Gene” refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5′ non-coding sequences) and following (3′ non-coding sequences) the coding sequence. “Native gene” refers to a gene as found in nature with its own regulatory sequences. The term “recombinant DNA construct” and “recombinant DNA construct” are used interchangeably herein. A recombinant DNA construct comprises an artificial combination of nucleic acid fragments, e.g., regulatory and coding sequences that are not found together in nature. For example, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. A “foreign” gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or recombinant DNA constructs. A “transgene” is a gene that has been introduced into the genome by a transformation procedure.
[0071] “Coding sequence” refers to a DNA sequence that codes for a specific amino acid sequence. “Regulatory sequences” refer to nucleotide sequences located upstream (5′ non-coding sequences), within, or downstream (3′ non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
[0072] “Promoter” refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. The promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an “enhancer” is a DNA sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as “constitutive promoters”. New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg, (1989) Biochemistry of Plants 15:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity.
[0073] An “intron” is an intervening sequence in a gene that does not encode a portion of the protein sequence. Thus, such sequences are transcribed into RNA but are then excised and are not translated. The term is also used for the excised RNA sequences. An “exon” is a portion of the sequence of a gene that is transcribed and is found in the mature messenger RNA derived from the gene, but is not necessarily a part of the sequence that encodes the final gene product.
[0074] The “translation leader sequence” refers to a DNA sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D. (1995) Molecular Biotechnology 3:225).
[0075] The “3′ non-coding sequences” refer to DNA sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3′ end of the mRNA precursor. The use of different 3′ non-coding sequences is exemplified by Ingelbrecht et al, (1989) Plant Cell 1:671-680.
[0076] “RNA transcript” refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA. “Messenger RNA (mRNA)” refers to the RNA that is without introns and that can be translated into protein by the cell. “cDNA” refers to a DNA that is complementary to and synthesized from a mRNA template using the enzyme reverse transcriptase. The cDNA can be single-stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase I. “Sense” RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. “Antisense RNA” refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Pat. No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5′ non-coding sequence, 3′ non-coding sequence, introns, or the coding sequence. “Functional RNA” refers to antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes. The terms “complement” and “reverse complement” are used interchangeably herein with respect to mRNA transcripts, and are meant to define the antisense RNA of the message.
[0077] The term “endogenous RNA” refers to any RNA which is encoded by any nucleic acid sequence present in the genome of the host prior to transformation with the recombinant construct of the present invention, whether naturally-occurring or non-naturally occurring, i.e., introduced by recombinant means, mutagenesis, etc.
[0078] The term “non-naturally occurring” means artificial, not consistent with what is normally found in nature.
[0079] The term “operably linked” refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is regulated by the other. For example, a promoter is operably linked with a coding sequence when it is capable of regulating the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in a sense or antisense orientation. In another example, the complementary RNA regions of the invention can be operably linked, either directly or indirectly, 5′ to the target mRNA, or 3′ to the target mRNA, or within the target mRNA, or a first complementary region is 5′ and its complement is 3′ to the target mRNA.
[0080] The term “expression”, as used herein, refers to the production of a functional end-product. Expression of a gene involves transcription of the gene and translation of the mRNA into a precursor or mature protein. “Antisense inhibition” refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein. “Co-suppression” refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Pat. No. 5,231,020).
[0081] “Mature” protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed. “Precursor” protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.
[0082] “Stable transformation” refers to the transfer of a nucleic acid fragment into a genome of a host organism, including both nuclear and organellar genomes, resulting in genetically stable inheritance. In contrast, “transient transformation” refers to the transfer of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without integration or stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as “transgenic” organisms. The preferred method of cell transformation of rice, corn and other monocots is the use of particle-accelerated or “gene gun” transformation technology (Klein et al, (1987) Nature (London) 327:70-73; U.S. Pat. No. 4,945,050), or an Agrobacterium-mediated method using an appropriate Ti plasmid containing the transgene (Ishida Y. et al, 1996, Nature Biotech. 14:745-750). The term “transformation” as used herein refers to both stable transformation and transient transformation.
[0083] Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter “Sambrook”).
[0084] The term “recombinant” means, for example, that a nucleic acid sequence is made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated nucleic acids by genetic engineering techniques. A “recombinant DNA construct” comprises an isolated polynucleotide operably linked to at least one regulatory sequence. The term also embraces an isolated polynucleotide comprising a region encoding all or part of a functional RNA and at least one of the naturally occurring regulatory sequences directing expression in the source (e.g., organism) from which the polynucleotide was isolated, such as, but not limited to, an isolated polynucleotide comprising a nucleotide sequence encoding a herbicide resistant target gene and the corresponding promoter and 3′ end sequences directing expression in the source from which sequences were isolated.
[0085] A “transgene” is a recombinant DNA construct that has been introduced into the genome by a transformation procedure.
[0086] As used herein, “contig” refers to a nucleotide sequence that is assembled from two or more constituent nucleotide sequences that share common or overlapping regions of sequence homology. For example, the nucleotide sequences of two or more nucleic acid fragments can be compared and aligned in order to identify common or overlapping sequences. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences (and thus their corresponding nucleic acid fragments) can be assembled into a single contiguous nucleotide sequence.
[0087] “PCR” or “Polymerase Chain Reaction” is a technique for the synthesis of large quantities of specific DNA segments, consists of a series of repetitive cycles (Perkin Elmer Cetus Instruments, Norwalk, Conn.). Typically, the double stranded DNA is heat denatured, the two primers complementary to the 3′ boundaries of the target segment are annealed at low temperature and then extended at an intermediate temperature. One set of these three consecutive steps is referred to as a cycle.
[0088] The terms “recombinant construct”, “expression construct”, “recombinant expression construct”, “recombinant DNA construct” and “recombinant DNA construct” are used interchangeably herein. Such construct may be itself or may be used in conjunction with a vector. If a vector is used then the choice of vector is dependent upon the method that will be used to transform host plants as is well known to those skilled in the art. For example, a plasmid vector can be used. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells comprising any of the isolated nucleic acid fragments of the invention. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al, (1985) EMBO J. 4:2411-2418; De Almeida et al, (1989) Mol. Gen. Genetics 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.
[0089] Co-suppression constructs in plants previously have been designed by focusing on overexpression of a nucleic acid sequence having homology to an endogenous mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see Vaucheret et al (1998) Plant J 16:651-659; and Gura (2000) Nature 404:804-808). The overall efficiency of this phenomenon is low, and the extent of the RNA reduction is widely variable. Recent work has described the use of “hairpin” structures that incorporate all, or part, of an mRNA encoding sequence in a complementary orientation that results in a potential “stem-loop” structure for the expressed RNA (PCT Publication WO 99/53050 published on Oct. 21, 1999). This increases the frequency of co-suppression in the recovered transgenic plants. Another variation describes the use of plant viral sequences to direct the suppression, or “silencing”, of proximal mRNA encoding sequences (PCT Publication WO 98/36083 published on Aug. 20, 1998). Both of these co-suppressing phenomena have not been elucidated mechanistically, although recent genetic evidence has begun to unravel this complex situation (Elmayan et al (1998) Plant Cell 10:1747-1757).
[0090] Alternatively, a recombinant DNA construct designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in reverse orientation to plant promoter sequences. Either the co-suppression or antisense recombinant DNA constructs could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.
[0091] Molecular genetic solutions to the generation of plants with altered gene expression have a decided advantage over more traditional plant breeding approaches. Changes in plant phenotypes can be produced by specifically inhibiting expression of one or more genes by antisense inhibition or cosuppression (U.S. Pat. Nos. 5,190,931, 5,107,065 and 5,283,323). An antisense or cosuppression construct would act as a dominant negative regulator of gene activity. While conventional mutations can yield negative regulation of gene activity these effects are most likely recessive. The dominant negative regulation available with a transgenic approach may be advantageous from a breeding perspective. In addition, the ability to restrict the expression of a specific phenotype to the reproductive tissues of the plant by the use of tissue specific promoters may confer agronomic advantages relative to conventional mutations which may have an effect in all tissues in which a mutant gene is ordinarily expressed.
[0092] The person skilled in the art will know that special considerations are associated with the use of antisense or cosuppression technologies in order to reduce expression of particular genes. For example, the proper level of expression of sense or antisense genes may require the use of different recombinant DNA constructs utilizing different regulatory elements known to the skilled artisan. Once transgenic plants are obtained by one of the methods described above, it will be necessary to screen individual transgenics for those that most effectively display the desired phenotype. Accordingly, the skilled artisan will develop methods for screening large numbers of transformants. The nature of these screens will generally be chosen on practical grounds. For example, one can screen by looking for changes in gene expression by using antibodies specific for the protein encoded by the gene being suppressed, or one could establish assays that specifically measure enzyme activity. A preferred method will be one which allows large numbers of samples to be processed rapidly, since it will be expected that a large number of transformants will be negative for the desired phenotype.
[0093] Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer (1989) Proc. Natl. Acad. Sci USA 86:9402-9406; Koes et al (1995) Proc. Natl. Acad. Sci USA 92:8149-8153; Bensen et al (1995) Plant Cell 7:75-84). The latter approach may be accomplished in two ways. First, short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, supra). The amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the instant polypeptides. Alternatively, the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor. With either method, a plant containing a mutation in the endogenous gene encoding the instant polypeptides can be identified and obtained. This mutant plant can then be used to determine or confirm the natural function of the instant polypeptides disclosed herein.
[0094] The terms Hap3, Lec1, and Hap3/Lec1 are used interchangeably herein and refer to a class of transcription factors. The Hap3/Lec1 class is part of a broader family that includes other transcription factors such as Hap5, Hap2, and Lec1-CCAAT. The terms Hap3-like, Lec1-like, Hap3/Lec1-like, Hap5-like, Hap2-like, Lec1-CCAAT-like, etc. refer to any transcription factors that share sequence identity as disclosed herein and/or functionality with the nucleotide sequences and the corresponding amino acid sequences encoded by such nucleotide sequences disclosed in the present invention.
[0095] Surprisingly and unexpectedly, it has been found that there are a variety of regulatory/structural nucleic acid fragments, which heretofore have not been associated with altering oil phenotype in plants, that appear to be useful in altering oil phenotype in plants. In addition to the CCAAT-binding transcription factors, other proteins which heretofore have not been associated with altering oil phenotype in plants, have been identified. The nucleic acids identified encode a diverse class of regulatory and structural polypeptides whose expression correlates with altered oil phenotypes in plants. Altering the expression of these polypeptides would be expected to have an effect in altering oil accumulation in plants.
[0096] Other protein classes identified herein include:
[0097] a Hap2 transcription factor;
[0098] a Hap5 transcription factor;
[0099] a Hap3/Lec1 or Lec 1- CCAAT binding transcription factor.
[0100] They can be characterized as an isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0101] (a) a nucleic acid sequence encoding a fifth polypeptide having Hap2-like transcription factor activity, the fifth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a sixth polypeptide selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, or 208, 210, 212, 214, or 216; or
[0102] (b) a nucleic acid sequence encoding a seventh polypeptide having Hap5-like transcription factor activity, the seventh polypeptide having at least 80% identity based on the Clustal method of alignment when compared to an eighth polypeptide selected from the group consisting of SEQ ID NOs: 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, or 221; or
[0103] (c) a nucleic acid sequence encoding a seventeenth polypeptide having Hap3/Lec1-like activity, the seventeenth polypeptide having at least 70% identity based on the Clustal method of alignment when compared to a eighteenth polypeptide selected from the group consisting of SEQ ID NOs: 130, 132, 134, or 136.
[0104] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned characterization. Useful percent identities would include, but not be limited to, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0105] The complement of the nucleotide fragments of this inventions are encompassed within the scope of this invention.
[0106] Those skilled in the art with also appreciate that the nucleotide fragment of this invention and/or the complement thereof can be used in whole or in part in antisense inhibition or co-suppression of a transformed plant.
[0107] In a more preferred embodiment, the first polypeptide mentioned above is as follows with respect to each part, the first polypeptide in
[0108] part (a) is a Hap2 transcription factor;
[0109] part (b) is a Hap5 transcription factor;
[0110] part (c) is a Hap3/Lec1 or Lec 1- CCAAT binding transcription factor
[0111] Lec1 homologs may be further identified by using conserved sequence motifs. The following amino acid sequence (given in single letter code, with “x” representing any amino acid). Under lined amino acids are those that are conserved in Lec1 but not found in Lec1-related proteins.
[0112] REQDxx M PxANVxRIMRxxLPxxAKIS D DAKEx I QECVSExISFxTxEA N x R Cxxxx RKTxxxE
[0113] In a further embodiment, this invention encompasses recombinant DNA construct comprising any of the isolated nucleic acid fragments of the invention or complement thereof operably linked to at least one regulatory sequence. It is also understood that recombinant DNA constructs comprising such fragments or complements thereof or parts of either can be used in antisense inhibition or suppression of a transformed plant.
[0114] Also within the scope of this invention is a plant comprising in its genome a recombinant DNA construct as described herein. Recombinant DNA constructs designed for plant expression such as those described herein can be introduced into a plant cell in a number of art-recognized ways. Those skilled in the art will appreciate that the choice of method might depend on the type of plant (i.e, monocot or dicot) and/or organelle (i.e., nucleus, chloroplast, mitochondria) targeted for transformation. Suitable methods for transforming plant cells include microinjection, electroporation, Agrobacterium mediated transformation, direct gene transfer and particle-accelerated or “gene gun” transformation technology as is discussed above.
[0115] Examples of plants which can be transformed include, but are not limited to, corn, soybean, wheat, rice, canola, Brassica, sorghum, sunflower, and coconut.
[0116] The regeneration, development and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, In, Methods for Plant Molecular Biology, (Eds.), Academic Press, Inc., San Diego, Calif. (1988)). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
[0117] The development or regeneration of plants containing the foreign, exogenous gene that encodes a protein of interest is well known in the art. Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
[0118] There are a variety of methods for the regeneration of plants from plant tissue. The particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated. Methods for transforming dicots, primarily by use of Agrobacterium tumefaciens, and obtaining transgenic plants have been published for cotton (U.S. Pat. Nos. 5,004,863, 5,159,135, 5,518,908); soybean (U.S. Pat. Nos. 5,569,834 5,416,011, McCabe et. al., BiolTechnology 6:923 (1988), Christou et al., Plant Physiol. 87:671-674 (1988)); Brassica (U.S. Pat. No. 5,463,174); peanut (Cheng et al., Plant Cell Rep. 15:653-657 (1996), McKently et al., Plant Cell Rep. 14:699-703 (1995)); papaya; and pea (Grant et al., Plant Cell Rep. 15:254-258, (1995)).
[0119] Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacterium have also been reported. Transformation and plant regeneration have been achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. (USA) 84:5354, (1987)); barley (Wan and Lemaux, Plant Physiol 104:37 (1994)); Zea mays (Rhodes et al., Science 240:204 (1988), Gordon-Kamm et al., Plant Cell 2:603-618 (1990), Fromm et al., BiolTechnology 8:833 (1990), Koziel et al., BiolTechnology 11: 194, (1993), Armstrong et al., Crop Science 35:550-557 (1995)); oat (Somers et al., BiolTechnology 10: 15 89 (1992)); orchard grass (Horn et al., Plant Cell Rep. 7:469 (1988)); rice (Toriyama et al., TheorAppl. Genet. 205:34, (1986); Part et al., Plant Mol. Biol. 32:1135-1148, (1996); Abedinia et al., Aust. J. Plant Physiol. 24:133-141 (1997); Zhang and Wu, Theor. Appl. Genet. 76:835 (1988); Zhang et al. Plant Cell Rep. 7:379, (1988); Battraw and Hall, Plant Sci. 86:191-202 (1992); Christou et al., Bio/Technology 9:957 (1991)); rye (De la Pena et al., Nature 325:274 (1987)); sugarcane (Bower and Birch, Plant J. 2:409 (1992)); tall fescue (Wang et al., BiolTechnology 10:691 (1992)), and wheat (Vasil et al., Bio/Technology 10:667 (1992); U.S. Pat. No. 5,631,152).
[0120] Assays for gene expression based on the transient expression of cloned nucleic acid constructs have been developed by introducing the nucleic acid molecules into plant cells by polyethylene glycol treatment, electroporation, or particle bombardment (Marcotte et al., Nature 335:454-457 (1988); Marcotte et al., Plant Cell 1:523-532 (1989); McCarty et al., Cell 66:895-905 (1991); Hattori et al., Genes Dev. 6:609-618 (1992); Goff et al., EMBO J. 9:2517-2522 (1990)).
[0121] Transient expression systems may be used to functionally dissect gene constructs (see generally, Maliga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995)). It is understood that any of the nucleic acid molecules of the present invention can be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements such as vectors, promoters, enhancers etc.
[0122] In addition to the above discussed procedures, practitioners are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolating of clones, (see for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989); Maliga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995); Birren et al., Genome Analysis: Detecting Genes, 1, Cold Spring Harbor, N.Y. (1998); Birren et al., Genome Analysis: Analyzing DNA, 2, Cold Spring Harbor, N.Y. (1998); Plant Molecular Biology: A Laboratory Manual, eds. Clark, Springer, N.Y. (1997)).
[0123] Seeds obtained from such plants and oil obtained from these seeds constitute another aspect of the present invention.
[0124] In an even further aspect, the invention concerns a method for altering oil phenotype in a plant which comprises:
[0125] (a) transforming a plant with a recombinant DNA construct of the invention;
[0126] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0127] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0128] In a more specific embodiment, the invention concerns a method for altering oil phenotype in a plant which comprises:
[0129] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0130] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 130 to 148, and SEQ ID NOs: 195 and 196;
[0131] (ii) the complement of the nucleic acid sequence of (i);
[0132] (iii) the sequence of (i) or (ii) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0133] (iv) a nucleic acid sequence encoding a plant Lec -related CCAAT binding transcription factor having at least 60% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of even SEQ ID NOs: from 150 to 178, and SEQ ID NOs: 197 to 202;
[0134] (v) the complement of the nucleic acid sequence of (vii);
[0135] (vi) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0136] wherein said nucleic acid sequence is operably linked to at least one regulatory sequence;
[0137] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0138] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0139] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned method. Useful percent identities would include, but not be limited to, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0140] In an even further aspect, this invention concerns a method to isolate nucleic acid fragments associated with altering oil phenotype in a plant which comprises:
[0141] (a) comparing even SEQ ID NOs: from 2 to 178, and 206 to 214, and SEQ ID NOs: 179 to 202, 216 to 219, 221, and 222 with other polypeptide sequences fort he purpose of identifying polypeptides associated with altering oil phenotype in a plant;
[0142] (b) identifying the conserved sequences(s) or 4 or more amino acids obtained in step (a);
[0143] (c) making region-specific nucleotide probe(s) or oligomer(s) based on the conserved sequences identified in step (b); and
[0144] (d) using the nucleotide probe(s) or oligomer(s) of step (c) to isolate sequences associated with altering oil phenotype by sequence dependent protocols.
[0145] In a most preferred aspect, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0146] (a) transforming a plant with a recombinant DNA construct comprising an isolated nucleic acid fragment operably linked to at least one regulatory sequence wherein said fragment has a nucleic acid sequence encoding a polypeptide having a sequence identity of at least 60% based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of even;
[0147] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0148] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0149] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned method. Useful percent identities would include, but not be limited to, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0150] In another aspect, this invention also concerns a method of mapping genetic variations related to altered oil phenotypes in a plant comprising:
[0151] (a) crossing two plant varieties; and
[0152] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0153] In another embodiment, this invention concerns a method of molecular breeding to obtain altered oil phenotypes in a plant comprising:
[0154] (a) crossing two plant varieties; and
[0155] (b) evaluating genetic variations with respect to nucleic acid sequences set forth in any one of the odd SEQ ID NOs: from 1 to 177, or 207 to 215, or SEQ ID NO: 220 in progeny plants resulting from the cross of step (a) wherein the evaluation is made using a method selected from the group consisting of: RFLP analysis, SNP analysis, and PCR-based analysis.
[0156] The genetic variability at a particular locus (gene) due to even minor base changes can alter the pattern of restriction enzyme digestion fragments that can be generated. Pathogenic alterations to the genotype can be due to deletions or insertions within the gene being analyzed or even single nucleotide substitutions that can create or delete a restriction enzyme recognition site. RFLP analysis takes advantage of this and utilizes Southern blotting with a probe corresponding to the gene of interest.
[0157] Thus, if a polymorphism (i.e., a commonly occurring variation in a gene or segment of DNA; also, the existence of several forms of a gene (alleles) in the same species) creates or destroys a restriction endonuclease cleavage site, or if it results in the loss or insertion of DNA (e.g., a variable nucleotide tandem repeat (VNTR) polymorphism), it will alter the size or profile of the DNA fragments that are generated by digestion with that restriction endonuclease. As such, individuals that possess a variant sequence can be distinguished from those having the original sequence by restriction fragment analysis. Polymorphisms that can be identified in this manner are termed “restriction fragment length polymorphisms: (“RFLPs”). RFLPs have been widely used in human and plant genetic analyses (Glassberg, UK Patent Application 2135774; Skolnick et al, Cytogen. Cell Genet. 32:58-67 (1982); Botstein et al, Ann. J. Hum. Genet. 32:314-331 (1980); Fischer et al (PCT Application WO 90/13668; Uhlen, PCT Appliction WO 90/11369).
[0158] A central attribute of “single nucleotide polymorphisms” or “SNPs” is that the site of the polymorphism is at a single nucleotide. SNPs have certain reported advantages over RFLPs or VNTRs. First, SNPs are more stable than other classes of polymorphisms. Their spontaneous mutation rate is approximately 10 −9 (Kornberg, DNA Replication, W. H. Freeman & Co., San Francisco, 1980), approximately, 1,000 times less frequent than VNTRs (U.S. Pat. No. 5,679,524). Second, SNPs occur at greater frequency, and with greater uniformity than RFLPs and VNTRs. As SNPs result from sequence variation, new polymorphisms can be identified by sequencing random genomic or cDNA molecules. SNPs can also result from deletions, point mutations and insertions. Any single base alteration, whatever the cause, can be a SNP. The greater frequency of SNPs means that they can be more readily identified than the other classes of polymorphisms.
[0159] SNPs can be characterized using any of a variety of methods. Such methods include the direct or indirect sequencing of the site, the use of restriction enzymes where the respective alleles of the site create or destroy a restriction site, the use of allele-specific hybridization probes, the use of antibodies that are specific for the proteins encoded by the different alleles of the polymorphism or by other biochemical interpretation. SNPs can be sequenced by a number of methods. Two basic methods may be sued for DNA sequencing, the chain termination method of Sanger et al, Proc. Natl. Acad. Sci. (U.S.A.) 74:5463-5467 (1977), and the chemical degradation method of Maxam and Gilbert, Proc. Natl.,Acad. Sci. (U.S.A.) 74: 560-564 (1977).
[0160] Polymerase chain reaction (“PCR”) is a powerful technique used to amplify DNA millions of fold, by repeated replication of a template, in a short period of time. (Mullis et al, Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al, European Patent Application 50,424; European Patent Application 84,796; European Patent Application 258,017, European Patent Application 237,362; Mullis, European Patent Application 201,184, Mullis et al U.S. Pat. No. 4,683,202; Erlich, U.S. Pat. No. 4,582,788; and Saiki et al, U.S. Pat. No. 4,683,194). The process utilizes sets of specific in vitro synthesized oligonucleotides to prime DNA synthesis. The design of the primers is dependent upon the sequences of DNA that are desired to be analyzed. The technique is carried out through many cycles (usually 20-50) of melting the template at high temperature, allowing the primers to anneal to complementary sequences within the template and then replicating the template with DNA polymerase.
[0161] The products of PCR reactions are analyzed by separation in agarose gels followed by ethidium bromide staining and visualization with UV transillumination. Alternatively, radioactive dNTPs can be added to the PCR in order to incorporate label into the products. In this case the products of PCR are visualized by exposure of the gel to x-ray film. The added advantage of radiolabeling PCR products is that the levels of individual amplification products can be quantitated.
[0162] Furthermore, single point mutations can be detected by modified PCR techniques such as the ligase chain reaction (“LCR”) and PCR-single strand conformational polymorphisms (“PCR-SSCP”) analysis. The PCR technique can also be sued to identify the level of expression of genes in extremely small samples of material, e.g., tissues or cells from a body. The technique is termed reverse transcription-PCR (“RT-PCR”).
[0163] In another embodiment, this invention concerns a method for altering oil phenotype in a plant which comprises:
[0164] (a) transforming a plant with a recombinant DNA construct comprising isolated nucleotide fragment comprising a nucleic acid sequence selected from the group consisting of:
[0165] (i) a nucleic acid sequence encoding a plant Hap3/Lec1 transcription factor having at least 70% identity based on the Clustal method of alignment when compared to a second polypeptide selected from the group consisting of SEQ ID NOs: 130 to 148, and SEQ ID NOs: 195 and 196;
[0166] (ii) the complement of the nucleic acid sequence of (iv);
[0167] (iii) the sequence of (iv) or (v) or a part thereof which is useful in antisense inhibition or co-suppression in a transformed plant;
[0168] (b) growing the transformed plant under conditions suitable for expression of the recombinant DNA construct; and
[0169] (c) selecting those transformed plants whose oil phenotype has been altered compared to the oil phenotype of an untransformed plant.
[0170] It is understood by one skilled in the art that other percent identity ranges may be useful in the above mentioned method. Useful percent identities would include, but not be limited to, 45%, 50%, 55%, 60%, 65%, 75%, 80%, 85%, 90%, 95% and all integer percentages from 45 to 100%.
[0171] In another aspect this invention concerns a method to isolate nucleic acid fragments associated with altering oil phenotype in a plant which comprises:
[0172] (a) comparing SEQ ID NOs: 130 to 148, and SEQ ID NOs: 195, 196, and 206 with other polypeptide sequences for the purpose of identifying polypeptides associated with altering oil phenotype in a plant;
[0173] (b) identifying the conserved sequences(s) or 4 or more amino acids obtained in step (a);
[0174] (c) making region-specific nucleotide probe(s) or oligomer(s) based on the conserved sequences identified in step (b); and
[0175] (d) using the nucleotide probe(s) or oligomer(s) of step (c) to isolate sequences associated with altering oil phenotype by sequence dependent protocols.
EXAMPLES
[0176] The present invention is further defined in the following Examples, in which parts and percentages are by weight and degrees are Celsius, unless otherwise stated. The disclosure of each reference set forth herein is incorporated herein by reference in its entirety.
Example 1
[0177] Composition of cDNA Libraries; Isolation and Sequencing of cDNA Clones
[0178] cDNA libraries representing mRNAs from various plant tissues were prepared. The characteristics of the libraries are described below.
TABLE 2 cDNA Libraries from Various Plants Library Tissue Clone cbn10 Corn Developing Kernel (Embryo and cbn10.pk0005.e6:fis Endosperm); 10 Days After Pollination cbn10.pk0064.e6 cc71se-a Corn Callus Type II Tissue, Somatic Embryo cc71se-a.pk0002.e11:fis Formed cc71se-b Corn Callus Type II Tissue, Somatic Embryo cc71se-b.pk0018.e4:fis Formed cca Corn Callus Type II Tissue, Undifferentiated, cca.pk0026.d6 Highly Transformable ccase-b Corn Callus Type II Tissue, Somatic Embryo ccase-b.pk0003.b9:fis Formed, Highly Transformable cco1n.pk062.j7 cco1n.pk086.d20:fis cco1n Corn Cob of 67 Day Old Plants Grown in cco1n.pk0014.d4:fis Green House* cco1n.pk055.o18 cco1n.pk089.g17 cco1n.pk068.f18:fis cde1c Corn ( Zea Mays , B73) developing embryo cde1c.pk003.o22:fis 20 DAP ced1n Corn ( Zea mays , B73) developing embryo cde1n.pk003.a5 20 DAP normalized cde1n.pk001.n24:fis cdo1c Corn ( Zea mays L.) ovary, 5 days after cdolc.pk001.c1:fis silking (includes pedicel and glumes) ceb3 Corn Embryo 20 Days After Pollination ceb3.pk0012.a7 ceb5 Corn Embryo 30 Days After Pollination ceb5.pk0081.b4 cen3n.pk0164.a10 cen3n Corn Endosperm 20 Days After Pollination* cen3n.pk0044.b8:fis cen3n.pk0112.e10:fis cho1c.pk003.p17:fis cho1c.pk003.n23 cho1c Corn ( Zea mays L., Alexho Synthetic High Oil) cho1c.pk004.b19:f15 embryo 20 DAP cho1c.pk007.l21:fis cho1c.pk001.l23:fis cho1c.pk009.g10 clm1f Corn ( Zea mays , B73) leaf at V6-VT (full length) clm1f.pk001.k17 clm1f.pk002.o13:fis cpd1c Corn ( Zea mays L.) pooled BMS treated with cpd1c.pk011.15:fis chemicals related to protein kinases cpd1c.pk008.e21 cpf1c Corn ( Zea mays L.) pooled BMS treated with cpf1c.pk006.e3:fis chemicals related to protein synthesis cpj1c Corn ( Zea mays L.) pooled BMS treated with cpj1c.pk005.m20:fis chemicals related to membrane ionic force cr1n Corn Root From 7 Day Old Seedlings* cr1n.pk0080.g6 cse1c Corn ( Zea mays L.) seedling at V2 stage treated cse1c.pk001.h6 with Ethylene collected at 6 hr, 23 hr, 72 hr cta1n Corn Tassel* cta1n.pk0070.f3:fis cta1n.pk0074.h11 ctn1c Corn ( Zea mays L., B73) night harvested tassel ctn1c.pk002.o4 ect1c Canna edulis Tubers ect1c.pk001.k17:fis ect1c.pk007.p18:fis eef1c Eucalyptus tereticornis flower buds from adult eef1c.pk004.c8:fis tree etr1c Cattail ( Typha latifolia ) root etr1c.pk006.f9 fds Momordica charantia Developing Seed fds.pk0003.h5:fis hss1c Scierotinia infected sunflower plants hss1c.pk011.h10:fis ncs Catalpa speciosa Developing Seed ncs.pk0013.c4 p0006 Young shoot p0006.cbysa51r:fis p0015 13 DAP embryo p0015.cdpgu90r:fis p0015.cdpfm55r:fis p0016 Tassel shoTassel shoots, pooled, 0.1-1.4 cm p0016.ctsbf56rb p0026 Regenerating callus 5 days after auxin removal p0026.ccrab39r Hi-II callus 223a, 1129e p0027 GS3 shoot cultures that were transformed with p0027.cgsag51r PHP5869 and were maintained on 273T shoot multiplication medium since 3/17/94 (sample received on 5/29/96 for RNA prep). The original transformation was done on 11/6/93 p0031 CM45 shoot culture. It was initiated on 2/28/96 p0031.ccmau15r:fis from seed derived meristems. The culture was p0031.ccmbc81r maintained on 273N medium. p0032 Regenerating callus, 10 and 14 days after auxin p0032.crcac77r:fis removal. Hi-II callus 223a, 1129e 10 days. Hi-II callus 223a, 1129e 14 days p0037 corn Root Worm infested V5 roots p0037.crwbs90r:fis p0083.cldct11r:fis p0083 7 DAP whole kernels p0083.cldeu68r:fis p0083.clder12r p0086 P0067 screened 1; 11 DAP pericarp p0086.cbsaa24r p0118 Night harvested, pooled stem tissue from the p0118.chsbc77r 4-5 internodes subtending the tassel; V8-V12 p0118.chsbh89r stages, Screened 1 p0125 Anther: Prophase I sceened 1 p0125.czaab60rb:f15 p0126 Night harvested leaf tissue; V8-V10 p0126.cnlau71r:fis p0134 Hi-II callus 223a, 1129e, 10 days hi-II callus p0134.carah47r 233a, 1129e, 14 days pps1c Prickly poppy developing seeds pps1c.pk001.h3:fis pps1c.pk007.j21:fis rbm5c Rice ( Oryza sativa , Cypress) bran 10 days after rbm5c.pk001.a19 milling rca1c Rice Nipponbare Callus. rca1c.pk007.b22:fis rca1n.pk029.n22 rca1n.pk002.j3 rca1n Rice ( Oryza sativa L., Nipponbare) callus rca1n.pk021.b20:fis normalized. rca1n.pk004.j14:fis rca1n.pk026.m9 rca1n.pk008.o5:fis r10n.pk096.h23 r10n.pk0061.c8:fis r10n Rice 15 Day Old Leaf* r10n.pk131.j17 r10n.pk0015.a4:fis rlm3n Rice ( Oryza Sativa , YM) leaf mixture (rsr9) rlm3n.pk005.d20:fis normalized at 45 C. for 24 hrs using 20 fold excess of driver rlr2 Rice ( Oryza sativa L.) leaf (15 DAG) 2 hrs after rlr2.pk0012.d2 infection of strain 4360-R-62 (AVR2-YAMO); Resistant rlr24 Rice Leaf 15 Days After Germination, 24 Hours rlr24.pk0032.e10 After Infection of Strain Magnaporthe grisea 4360-R-62 (AVR2-YAMO); Resistant rls6 Rice Leaf 15 Days After Germination, 6 Hours rls6.pk0033.a9:fis After Infection of Strain Magnaporthe grisea 4360-R-67 (AVR2-YAMO); Susceptible rls72 Rice Leaf 15 Days After Germination, 72 Hours rls72.pk0023.c8:fis After Infection of Strain Magnaporthe grisea 4360-R-67 (AVR2-YAMO); Susceptible rr1 Rice Root of Two Week Old Developing rr1.pk0039.d4:fis rr1.pk0003.a3:fis rr1.pk097.f22:fis rr1.pk0047.g12:fis rsl1n.pk002.g10:fis rsl1n.pk002.j2:fis rsl1n Rice ( Oryza sativa , YM) 15 day old rsl1n.pk006.n24:fis normalized rsl1n.pk013.g2 scb1c Soybean ( Glycine max L., 2872) Embryogenic scb1c.pk004.n19:fis suspension culture subjected to 4 bombardments and collected 12 hrs later. sde4c Soybean Developing Embryo (9-11 mm) sde4c.pk0001.a2:fis sdp2c.pk003.o5:fis sdp2c Soybean ( Glycine max L.) developing pods sdp2c.pk023.n6:fis 6-7 mm sdp2c.pk029.k17:fis sdp2c.pk044.e5:fis sdp3c.pk018.b9:fis sdp3c Soybean Developing Pods (8-9 mm) sdp3c.pk019.n1:fis spd4c Soybean ( Glycine max L.) developing pods sdp4c.pk009.e3s 10-12 mm dp4c.pk016.e10 sdr1f Soybean ( Glycine max , Wye) 10 day old root sdr1f.pk001.p7 sds1f Soybean ( Glycine max , Wye) 11 day old sds1f.pk001.f7:fis seedling full length library using trehalose se1 Soybean Embryo, 6 to 10 Days After Flowering se1.pk0042.d8:fis se2 Soybean Embryo, 13 Days After Flowering se2.11d12:fis ses2w Soybean Embryogenic Suspension 2 Weeks ses2w.pk0015.a4:fis After Subculture ses2w.pk0035.a9:fis ses2w.pk0012.d10:fis ses4d.pk0037.e3:fis ses4d Soybean Embryogenic Suspension 4 Days After ses4d.pk0044.c12 Subculture ses4d.pk0006.a12 ses4d.pk0006.a12:fis ses4d.pk0043.d10:fis sfl1.pk0102.h8 sf11.pk131.j19 sfl1 Soybean Immature Flower sfl1.pk135.g3 sfl1.pk0029.h10:fis sgc5c Soybean ( Glycine max L., Wye) germanating sgc5c.pk001.h16 cotyledon (¾ yellow; 15-24 DAG) sgs1c Soybean Seeds 4 Hours After Germination sgs1c.pk004.f19:fis sgs4c Soybean ( Glycine max L.) seeds 2 days after sgs4c.pk004.j2 germination. sgs4c.pk006.g6 sgs4c.pk006.n21 sic1c Soybean ( Glycine max ) pooled tissue of root, sic1c.pk003.o13:fis stem, and leaf with iron chlorosis conditions sic1c.pk003.o18:fis sif1c Soybean ( Glycine max ) pooled tissue of basal sif1c.pk001.m16:fis stem and root infected with fusarium sls1c Soybean ( Glycine max L., S1990) infected with sls1c.pk010.l1:fis Sclerotinia sclerotiorum mycelium . sls1c.pk032.j4 sls1c Soybean ( Glycine max L., S1990) infected with sls1c.pk010.l1:fis Sclerotinia sclerotiorum mycelium . sls1c.pk020.h24 sls2c Soybean ( Glycine max L., Manta) infected with sls2c.pk007.c23:fis Sclerotinia sclerotiorum mycelium . sr1 Soybean Root sr1.pk0041.a11:fis sr1.pk0049.c2 srb Scarlett runner bean (R. Goldberg) srb.08g04 src1c Soybean 8 Day Old Root Infected With Cyst src1c.pk003.o16:fis Nematode src2c.pk025.b3:fis src2c Soybean ( Glycine max L., 437654) 8 day old src2c.pk011.m12:fis root inoculated with eggs of cyst Nematode src2c.pk009.g9:fis (Race 1) for 4 days. src2c.pk003.i13:fis src3c.pk018.d10:fis sr3c.pk011.g22 src3c Soybean 8 Day Old Root Infected With Cyst src3c.pk012.n16:fis Nematode src3c.pk019.d4:fis src3c.pk009.b15 src3c.pk028.j21:fis srr1c Soybean 8-Day-Old Root srr1c.pk001.i24:fis srr3c Soybean 8-Day-Old Root srr3c.pk001.l10:fis tlw1c Tobacco ( Nicotiana benthamiana ) Leaves tlw1c.pk006.o16 Wounded by Abrasion and Harvested After 1.5 Hour. vdb1c Grape (Vitis sp.) developing bud vdb1c.pk001.m5:fis vmb1na Grape (Vitis sp.) midstage berries normalized vmb1na.pk015.d18:fis vpl1c Grape (Vitis sp.) In vitro plantlets vpl1c.pk008.o5:fis vrr1c Grape (Vitis sp.) resistant roots vrr1c.pk004.o20:fis vs1n Vernonia Seed* vs1n.pk013.m13:fis wdelf Wheat ( Triticum aestivum , Hi Line) developing wde1f.pk003.h2:fis endosperm 2-7 DPA wdk2c Wheat Developing Kernel, 7 Days After Anthesis. wdk2c.pk009.e4 wdk2c Wheat Developing Kernel, 7 Days After Anthesis. wdk2c.pk018.c16:fis wdk3c Wheat Developing Kernel, 14 Days After wdk3c.pk023.h15:fis Anthesis. wdk5c Wheat Developing Kernel, 30 Days After wdk5c.pk006.m13 Anthesis wdk9n Wheat ( Triticum aestivu , Spring Wheat) kernels wdk9n.pk001.k5 3, 7, 14 and 21 days after anthesis wdr1f Wheat ( Triticum aestivum ) developing root (full wdr1f.pk003.b21:fis length) wds1f Wheat developing seedling full length wds1f.pk002.p21:fis wia1c Wheat ( Triticum aestivum , Hi Line) immature wia1c.pk001.d20:fis anthers wkm1c Wheat Kernel malted 55 Hours at 22 Degrees wkm1c.pk0002.d7:fis Celsius wl1n Wheat Leaf From 7 Day Old Seedling* wl1n.pk0114.f9 wle1n Wheat Leaf From 7 Day Old Etiolated Seedling* wle1n.pk0076.h7:fis wlk8 Wheat Seedlings 8 Hours After Treatment With wlk8.pk0001.e10:fis Fungicide** wlm96.pk060.d5 wlm96.pk037.k9:fis wlm96 Wheat Seedlings 96 Hours After Inoculation With wlm96.pk035.j11:fis Erysiphe graminis f. sp tritici wlm96.pk0007.e4:fis wr1 Wheat Root From 7 Day Old Seedling wr1.pk0094.f2:fis wr1.pk0153.c7:fis wr1.pk148.f7:fis wre1n Wheat Root From 7 Day Old Etiolated wre1n.pk0066.e4:fis Seedling* wre1n.pk0143.h2:fis
[0179] cDNA libraries may be prepared by any one of many methods available. For example, the cDNAs may be introduced into plasmid vectors by first preparing the cDNA libraries in Uni-ZAP™ XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, Calif.). The Uni-ZAP™ XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the plasmid vector pBluescript. In addition, the cDNAs may be introduced directly into precut Bluescript II SK(+) vectors (Stratagene) using T4 DNA ligase (New England Biolabs), followed by transfection into DH10B cells according to the manufacturer's protocol (GIBCO BRL Products). Once the cDNA inserts are in plasmid vectors, plasmid DNAs are prepared from randomly picked bacterial colonies containing recombinant pBluescript plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences. Amplified insert DNAs or plasmid DNAs are sequenced in dye-primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or “ESTs”; see Adams et al, (1991) Science 252:1651-1656). The resulting ESTs are analyzed using a Perkin Elmer Model 377 fluorescent sequencer.
[0180] Full-insert sequence (FIS) data is generated utilizing a modified transposition protocol. Clones identified for FIS are recovered from archived glycerol stocks as single colonies, and plasmid DNAs are isolated via alkaline lysis. Isolated DNA templates are reacted with vector primed M13 forward and reverse oligonucleotides in a PCR-based sequencing reaction and loaded onto automated sequencers. Confirmation of clone identification is performed by sequence alignment to the original EST sequence from which the FIS request is made.
[0181] Confirmed templates are transposed via the Primer Island transposition kit (PE Applied Biosystems, Foster City, Calif.) which is based upon the Saccharomyces cerevisiae Ty1 transposable element (Devine and Boeke (1994) Nucleic Acids Res. 22:3765-3772). The in vitro transposition system places unique binding sites randomly throughout a population of large DNA molecules. The transposed DNA is then used to transform DH10B electro-competent cells (Gibco BRL/Life Technologies, Rockville, Md.) via electroporation. The transposable element contains an additional selectable marker (named DHFR; Fling and Richards (1983) Nucleic Acids Res. 11:5147-5158), allowing for dual selection on agar plates of only those subclones containing the integrated transposon. Multiple subclones are randomly selected from each transposition reaction, plasmid DNAs are prepared via alkaline lysis, and templates are sequenced (ABI Prism dye-terminator ReadyReaction mix) outward from the transposition event site, utilizing unique primers specific to the binding sites within the transposon.
[0182] Sequence data is collected (ABI Prism Collections) and assembled using Phred/Phrap (P. Green, University of Washington, Seattle). Phrep/Phrap is a public domain software program which re-reads the ABI sequence data, re-calls the bases, assigns quality values, and writes the base calls and quality values into editable output files. The Phrap sequence assembly program uses these quality values to increase the accuracy of the assembled sequence contigs. Assemblies are viewed by the Consed sequence editor (D. Gordon, University of Washington, Seattle).
[0183] In some of the clones the cDNA fragment corresponds to a portion of the 3′-terminus of the gene and does not cover the entire open reading frame. In order to obtain the upstream information one of two different protocols are used. The first of these methods results in the production of a fragment of DNA containing a portion of the desired gene sequence while the second method results in the production of a fragment containing the entire open reading frame. Both of these methods use two rounds of PCR amplification to obtain fragments from one or more libraries. The libraries some times are chosen based on previous knowledge that the specific gene should be found in a certain tissue and some times are randomly-chosen. Reactions to obtain the same gene may be performed on several libraries in parallel or on a pool of libraries. Library pools are normally prepared using from 3 to 5 different libraries and normalized to a uniform dilution. In the first round of amplification both methods use a vector-specific (forward) primer corresponding to a portion of the vector located at the 5′-terminus of the clone coupled with a gene-specific (reverse) primer. The first method uses a sequence that is complementary to a portion of the already known gene sequence while the second method uses a gene-specific primer complementary to a portion of the 3′-untranslated region (also referred to as UTR). In the second round of amplification a nested set of primers is used for both methods. The resulting DNA fragment is ligated into a pBluescript vector using a commercial kit and following the manufacturer's protocol. This kit is selected from many available from several vendors including Invitrogen (Carlsbad, Calif.), Promega Biotech (Madison, Wis.), and Gibco-BRL (Gaithersburg, Md.). The plasmid DNA is isolated by alkaline lysis method and submitted for sequencing and assembly using Phred/Phrap, as above.
Example 2
[0184] Identification of cDNA Clones
[0185] cDNA clones encoding proteins involved in altering plant oil traits were identified by gene profiling (see Example 7) and by conducting BLAST (Basic Local Alignment Search Tool; Altschul et al (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST “nr” database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the “nr” database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the “nr” database using the BLASTX algorithm (Gish and States (1993) Nat. Genet. 3:266-272) provided by the NCBI. For convenience, the P-value (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as “pLog” values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST “hit” represent homologous proteins.
[0186] ESTs submitted for analysis are compared to the genbank database as described above. ESTs that contain sequences more 5- or 3-prime can be found by using the BLASTn algorithm (Altschul et al (1997) Nucleic Acids Res. 25:3389-3402.) against the DuPont proprietary database comparing nucleotide sequences that share common or overlapping regions of sequence homology. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences can be assembled into a single contiguous nucleotide sequence, thus extending the original fragment in either the 5 or 3 prime direction. Once the most 5-prime EST is identified, its complete sequence can be determined by Full Insert Sequencing as described in Example 1. Homologous genes belonging to different species can be found by comparing the amino acid sequence of a known gene (from either a proprietary source or a public database) against an EST database using the tBLASTn algorithm. The tBLASTn algorithm searches an amino acid query against a nucleotide database that is translated in all 6 reading frames. This search allows for differences in nucleotide codon usage between different species, and for codon degeneracy.
Example 3
[0187] Characterization of cDNA Clones Encoding Proteins Involved in Altering Oil
Phenotypes
[0188] The BLASTX search using the EST sequences from clones listed in Table 3 revealed similarity of the polypeptides encoded by the cDNAs to Hap2 homologs, Hap5 homologs, and Lec1 transcription factors from various species including Arabidopsis thaliana, rice ( Oryza sativa ), corn ( Zea mays ), soybean ( Glycine max ), cucmber ( Cucumis sativus ), Sordaria ( Sordaria macrospora ), sesame ( Sesamum indicum ), grape (Vitis sp.), Brassica ( Brassica napus ), and tobacco ( Nicotiana tabacum ). Shown in Table 3 are the BLAST results for individual ESTs (“EST”), the sequences of the entire cDNA inserts comprising the indicated cDNA clones (“FIS”), the sequences of contigs assembled from two or more ESTs (“Contig”), sequences of contigs assembled from an FIS and one or more ESTs (“Contig*”), or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR (“CGS”):
TABLE 3 BLAST Results for Sequences Encoding Polypeptides Homologous to Proteins Involved in Altering Oil Phenotypes SEQ ID NO. Gene Name Clone Homolog Genbank # pLOG 2 Hap2a ncs.pk0013.c4 No hits — 4 Hap2c etr1c.pk006.f9 No hits — 6 Hap2a vmb1na.pk015.d18 Arabidopsis 11282597 8.1 8 Hap2a vpl1c.pk008.o5:fis Grape 7141243 91.2 10 Hap2c vdb1c.pk001.m5:fis Rice 7489565 38.0 12 Hap2c cho1c.pk004.b19:fis Rice 7489565 94.3 14 Hap2c p0015.cdpgu90r:fis Rice 7489565 96.2 16 Hap2a cta1n.pk0070.f3:fis Rice 7489565 38.1 18 Hap2a cco1n.pk0014.d4:fis Arabidopsis 6634774 37.2 20 Hap2a cco1n.pk086.d20:fis Arabidopsis 6634774 36.3 22 Hap2b p0126.cnlau71r:fis Rice 7489565 23.7 24 Hap2b p0104.cabav52r Rice 7489565 16.7 26 Hap2b cho1c.pk007.l21:fis Rice 7489565 35.0 contig of: cca.pk0026.d6 28 Hap2c cen3n.pk0061.e10:fis Rice 7489565 43.5 cen3n.pk0135.c2 cho1c.pk001.n24 p0092.chwae40r 30 Hap2c cpf1c.pk006.e3:fis Rice 7489565 44.0 contig of: Rice 7489565 32 Hap2c cr1n.pk0080.g6 35.0 p0003.cgpge51r 34 Hap2c p0015.cdpfm55r:fis Arabidopsis 4587559 26.4 36 Hap2 p0083.cldct11r:fis Rice 7489565 91.4 38 Hap2 p0083.cldeu68r:fis Rice 7489565 14.2 40 Hap2a pps1c.pk001.h3:fis Arabidopsis 9293997 45.5 42 Hap2c pps1c.pk007.j21:fis Arabidopsis 5903072 53.7 44 Hap2 rr1.pk0030.f7:fis Rice 7489565 identical 46 Hap2a r1s72.pk0023.c8:fis Arabidopsis 9293997 36.5 48 Hap2a rca1n.pk002.c15 Grape 7141243 7.7 50 Hap2a rds3c.pk001.g9 Rice 7489565 18.2 52 Hap2b rca1n.pk002.j3:fis Rice 7489565 26.0 54 Hap2c rca1n.pk029.n22:fis Arabidopsis 8778470 29.2 56 Hap2b r10n.pk131.j17 Rice 7489565 10.5 58 Hap2a sdp3c.pk018.b9:fiS Arabidopsis 2398521 74.5 60 Hap2a sfl1.pk0102.h8 Grape 7141243 36.7 62 Hap2a srr3c.pk001.l10:fis Brassica 1586551 48.7 64 Hap2a sdp2c.pk003.o5:fiS Arabidopsis 6634774 53.0 66 Hap2b sif1c.pk001.m16:fis Arabidopsis 6714441 180.0 68 Hap2c src1c.pk003.o16:fis Rice 7489565 33.5 70 Hap2c src3c.pk012.m6:fis Rice 7489565 31.5 72 Hap2a hss1c.pk011.h10:fis Arabidopsis 9293997 48.7 74 Hap2c wr1.pk0094.f2:fis Rice 7489565 92.7 76 Hap2a wre1n.pk0143.h2:fis Arabidopsis 6634774 35.0 78 Hap2b wds1f.pk002.p21:fis Arabidopsis 6714441 26.5 contig of: 80 Hap2b wdi1c.pk002.b10 Rice 7489565 38.5 wr1.pk0153.c7:fis 82 Hap2c wre1n.pk0066.e4:fis Rice 7489565 42.7 84 Hap5c ect1c.pk001.k17:fis Rice 5257260 57.0 86 Hap5a vrr1c.pk004.o20:fis Arabidopsis 6523090 93.0 88 Hap5a clm1f.pk001.k17:fis Arabidopsis 6523090 66.7 90 Hap5b cde1n.pk003.a5:fis Arabidopsis 3776575 57.0 92 Hap5b cen3n.pk0164.a10:fis Arabidopsis 3776575 57.0 94 Hapsb p0118.chsbc77r Arabidopsis 3776575 58.5 96 Hap5c cco1n.pk055.o18 Rice 5257260 41.0 98 Hap5c cho1c.pk001.l23:fis Rice 5257260 82.0 100 Hap5c cse1c.pk001.h6:fis Rice 5257260 86.4 102 Hap5a rlm3n.pk005.d20:fis Arabidopsis 6523090 66.7 104 Hap5b rr1.pk0003.a3:fis Arabidopsis 6289057 58.5 106 Hap5b rr1.pk0039.d4:fis Arabidopsis 3776575 57.2 108 Hap5c rca1n.pk021.b20:fis Rice 5257260 74.0 110 Hap5a sdp2c.pk029.k17:fis Arabidopsis 6523090 90.5 112 Hap5a sdp2c.pk044.e5:fis Arabidopsis 6523090 92.4 114 Hap5b sgs4c.pk004.j2 Arabidopsis 3776575 18.5 116 Hap5b src3c.pk002.h4:fis Arabidopsis 6289057 61.1 118 Hap5b src3c.pk009.b15:fis Arabidopsis 6289057 61.5 120 Hap5b src3c.pk019.d4:fis Arabidopsis 6056368 51.5 122 Hap5c sls1c.pk032.j4:fis Arabidopsis 6289057 74.5 124 Hap5 wdk2c.pk009.e4:fis Rice 5257260 20.0 Contig of: 126 Hap5a w1m96.pk036.j11 Arabidopsis 9758288 19.7 w1m96.pk060.d5:fis 128 Hap5c wle1n.pk0076.h7:fis Rice 5257260 82.0 130 Lec1 eas1c.pk003.e16 Arabidopsis 9758795 49.2 132 Lec1 fds1n.pk008.m14 Arabidopsis 9758795 46.1 134 Lec1 p0015.cdpg75rb:fis Arabidopsis 9758795 45.4 136 Lec1 p0083.clder12r:fis Arabidopsis 6552738 35.2 138 Lec1 pps1c.pk002.l19 Arabidopsis 9758795 45.2 Contig of: 140 Lec1 scb1c.pk004.j10 Arabidopsis 9758795 47.4 se1.pk0042.d8:fis 142 Lec1 se2.11d12:fis Arabidopsis 9758795 52.2 144 Lec1 ses2w.pk0015.a4:fis Arabidopsis 9758795 43.7 146 Lec1 vs1n.pk013.m13:fis Arabidopsis 9758795 53.1 148 Lec1 wdk3c.pk023.h15:fis Arabidopsis 9758795 36.7 150 Lec1-CCAAT ect1c.pk007.p18:fis Zea mays 22380 44.7 152 Lec1-CCAAT fds.pk0003.h5:fis Arabidopsis 6729485 57.7 154 Lec1-CCAAT eef1c.pk004.c8:fis Zea mays 22380 61.7 156 Lec1-CCAAT cbn10.pk0005.e6:fis Zea mays 22380 72.2 158 Lec1-CCAAT p0006.cbysa51r:fis Arabidopsis 2244810 55.5 160 Lec1-CCAAT rl0n.pk0061.c8:fis Zea mays 22380 46.5 162 Lec1-CCAAT rsl1n.pk002.g10:fis Zea mays 22380 68.7 164 Lec1-CCAAT ses4d.pk0037.e3:fis Arabidopsis 2398529 49.0 166 Lec1-CCAAT src2c.pk003.i13:fis Arabidopsis 3738293 41.1 168 Lec1-CCAAT src2c.pk011.m12:fis Arabidopsis 6729485 62.0 170 Lec1-CCAAT src2c.pk025.b3:fis Zea mays 22380 45.5 172 LecI-CCAAT src3c.pk028.j21:fis Zea mays 22380 54.3 174 Lec1-CCAAT wkm1c.pk0002.d7:fis Zea mays 22380 79.5 176 Lec1-CCAAT wlk8.pk0001.e10:fis Arabidopsis 2398529 52.7 178 LecI-CCAAT wlm96.pk037.k9:fis Zea mays 22380 73.5 206 Lec1 rice genome seq Oryza sativa 7378310 180 208 Hap2 ncs.pk0013.c4:fis Arabidopsis 9293997 46.7 210 Hap2 p0117.chcln94r:fis Oryza sativa 1489565 26.0 212 Hap2 rdi2c.pk011.f19:fis Oryza sativa 1489565 45.0 214 Hap2 sfl1.pk0101.g7:fis Vitis sp. 7141243 38.4 216 Hap2 wdi1c.pk002.b10:fis Oryza sativa 1489565 40.3 221 Hap5 sgs4c.pk004.j2:fis Arabidopsis 15223482 69.0
[0189] The sequence of the entire cDNA insert in the clones listed in Table 3 was determined. Further sequencing and searching of the DuPont proprietary database allowed the identification of other corn, rice, soybean and/or wheat clones encoding polypetides involved in altering oil phenotypes. The BLASTX search using the sequences from clones listed in Table 4 revealed similarity of the polypeptides encoded by the various cDNAs from plant and fungal species (noted by their NCBI General Identifier No. in Tables 3 and 4). Shown in Table 4 are the BLAST results for individual ESTs (“EST”), the sequences of the entire cDNA inserts comprising the indicated cDNA clones (“FIS”), sequences of contigs assembled from two or more ESTs (“Contig”), sequences of contigs assembled from an FIS and one or more ESTs (“Contig*”), or sequences encoding the entire protein derived from an FIS, a contig, or an FIS and PCR (“CGS”):
TABLE 4 Percent Identity of Amino Acid Sequences Deduced From the Nucleotide Sequences of cDNA Clones Encoding Polypeptides Homologous to Polypeptides Involved in Altering Plant Oil Phenotypes SEQ ID NO. Accession No. (SEQ ID NO) Percent Identity 2 1586551 (187) 23.4% 4 7489565 (181) 27.4% 6 11282597 (179) 22.1% 10 7489565 (181) 36.1% 12 7489565 (181) 67.2% 14 7489565 (181) 70.6% 16 7489565 (181) 33.2% 18 6634774 (182) 40.1% 20 6634774 (182) 39.1% 22 7489565 (181) 28.2% 24 7489565 (181) 53.2% 26 7489565 (181) 34.0% 28 7489565 (181) 39.5% 30 7489565 (181) 39.5% 32 7489565 (181) 35.5% 34 4587559 (202) 54.1% 36 7489565 (181) 67.2% 38 7489565 (181) 29.0% 40 9293997 (217) 31.5% 42 5903072 (184) 35.3% 46 5903072 (184) 33.7% 48 7141243 (180) 34.5% 50 7489565 (181) 35.7% 52 7489565 (181) 27.2% 54 8778470 (185) 40.5% 56 7489565 (181) 22.1% 58 2398521 (186) 49.1% 60 7141243 (180) 40.9% 62 1586551 (187) 37.8% 64 6634774 (182) 49.2% 66 6714441 (188) 32.5% 68 7489565 (181) 32.4% 70 7489565 (181) 31.1% 72 9293997 (217) 40.6% 74 7489565 (181) 68.5% 76 6634774 (182) 36.5% 78 6714441 (188) 23.7% 80 7489565 (181) 34.5% 82 7489565 (181) 37.4% 84 5257260 (189) 62.9% 86 6523090 (190) 77.7% 88 6523090 (190) 53.8% 90 3776575 (191) 50.7% 92 3776575 (191) 51.6% 94 3776575 (191) 60.0% 96 5257260 (189) 62.7% 98 5257260 (189) 75.0% 100 5257260 (189) 77.5% 102 6523090 (190) 53.8% 104 6289057 (192) 60.6% 106 3776575 (191) 52.1% 108 5257260 (189) 77.9% 110 6523090 (190) 70.3% 112 6523090 (190) 70.7% 114 3776575 (191) 35.7% 116 6289057 (192) 53.2% 118 6289057 (192) 52.8% 120 6056368 (193) 73.0% 122 6289057 (192) 57.1% 124 5257260 (189) 27.3% 126 9758288 (194) 46.3% 128 5257260 (189) 74.9% 130 9758795 (196) 49.0% 132 9758795 (196) 49.7% 134 9758795 (196) 49.8% 136 6552738 (195) 38.9% 208 9293997 (217) 34.9% 210 7489565 (218) 28.6% 212 7489565 (218) 35.7% 214 7141243 (219) 42.3% 216 7489565 (218) 34.9% 221 15223482 (222) 64.8%
[0190] Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wis.). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. Sequence alignments and BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones encode a substantial portion of cDNAs to receptor protein kinases, MEK3 homologs, Hap2 homologs, LIP 15 homologs, calcium EF-hand proteins, ATP citrate lyase, glucose metabolism proteins such as SNF1 homologs, Lec1 transcription factors, and seed developmentally regulated transcription factors such as CKC (Aintegumenta-like) homologs.
Example 4
[0191] Expression of Recombinant DNA Constructs in Monocot Cells
[0192] A recombinant DNA construct comprising a cDNA encoding the instant polypeptides in sense orientation with respect to the maize 27 kD zein promoter that is located 5′ to the cDNA fragment, and the 10 kD zein 3′ end that is located 3′ to the cDNA fragment, can be constructed. The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites (Ncol or Smal) can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below. Amplification is then performed in a standard PCR. The amplified DNA is then digested with restriction enzymes Ncol and SmaI and fractionated on an agarose gel. The appropriate band can be isolated from the gel and combined with a 4.9 kb NcoI-SmaI fragment of the plasmid pML103. Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Blvd., Manassas, Va. 20110-2209), and bears accession number ATCC 97366. The DNA segment from pML103 contains a 1.05 kb SaII-NcoI promoter fragment of the maize 27 kD zein gene and a 0.96 kb SmaI-SaII fragment from the 3′ end of the maize 10 kD zein gene in the vector pGem9Zf(+) (Promega). Vector and insert DNA can be ligated at 15° C. overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform E. coli XL 1-Blue (Epicurian Coli XL-1 Blue™; Stratagene). Bacterial transformants can be screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (Sequenase™ DNA Sequencing Kit; U.S. Biochemical). The resulting plasmid construct would comprise a recombinant DNA construct encoding, in the 5′ to 3′ direction, the maize 27 kD zein promoter, a cDNA fragment encoding the instant polypeptides, and the 10 kD zein 3′ region.
[0193] The recombinant DNA construct described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al (1975) Sci. Sin. Peking 18:659-668). The embryos are kept in the dark at 27° C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.
[0194] The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the Pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The pat gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al (1985) Nature 313:810-812) and the 3′ region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
[0195] The particle bombardment method (Klein et al (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μL of a suspension of gold particles (60 mg per ml). Calcium chloride (50 μL of a 2.5 M solution) and spermidine free base (20 μL of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μL of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μL of ethanol. An aliquot (5 μL) of the DNA-coated gold particles can be placed in the center of a Kapton™ flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a Biolistic™ PDS-1000/He (Bio-Rad Instruments, Hercules Calif.), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
[0196] For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covered a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
[0197] Seven days after bombardment the tissue can be transferred to N6 medium that contains bialophos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing bialophos. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialophos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
[0198] Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al (1990) Bio/Technology 8:833-839).
Example 5
[0199] Expression of Recombinant DNA Constructs in Dicot Cells
[0200] A seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the β subunit of the seed storage protein phaseolin from the bean Phaseolus vulgaris (Doyle et al (1986) J. Biol. Chem. 261:9228-9238) can be used for expression of the instant polypeptides in transformed soybean. The phaseolin cassette includes about 500 nucleotides upstream (5′) from the translation initiation codon and about 1650 nucleotides downstream (3′) from the translation stop codon of phaseolin. Between the 5′ and 3′ regions are the unique restriction endonuclease sites Nco I (which includes the ATG translation initiation codon), Sma I, Kpn I and Xba I. The entire cassette is flanked by Hind III sites.
[0201] The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette.
[0202] Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides. To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26° C. on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.
[0203] Soybean embryogenic suspension cultures can be maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26° C. with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium.
[0204] Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al (1987) Nature (London) 327:70-73, U.S. Pat. No. 4,945,050). A DuPont Biolistic™ PDS1000/HE instrument (helium retrofit) can be used for these transformations.
[0205] A selectable marker gene which can be used to facilitate soybean transformation is a recombinant DNA construct composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al (1985) Nature 313:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al(1983) Gene 25:179-188) and the 3′ region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. The seed expression cassette comprising the phaseolin 5′ region, the fragment encoding the instant polypeptides and the phaseolin 3′ region can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.
[0206] To 50 μL of a 60 mg/mL 1 μm gold particle suspension is added (in order): 5 μL DNA (1 μg/μL), 20 μL spermidine (0.1 M), and 50 μL CaCl 2 (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μL 70% ethanol and resuspended in 40 μL of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five μL of the DNA-coated gold particles are then loaded on each macro carrier disk.
[0207] Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60×15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
[0208] Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
Example 6
[0209] Expression Vector for Plant Transformation by Particle Gun Bombardment.
[0210] A seed specific gene expression cassette was used for making recombinant DNA constructs for expression of candidate genes in corn. The expression cassette is composed of the 0.9 kb oleosin promoter, the intron 1 of the maize shrunken 1 gene and adjacent exon (Vasil et al, 1989, Plant Physiol 91: 1575-1579; Mascarenhas et al, 1990, Plant Mol Biol 15:913-920) and 3′ transcription termination region from the nopaline synthase (Nos) gene. In between the exon adjacent to the shrunken 1 gene and the nopaline synthase (Nos) gene are unique restriction endonuclease sites MfeI and XmaI. This vector has been designated pBN256 (REF. Jennie Shen's patent). pMUT256 refers to a pBN256 plasmid in which a EcoRI site has been removed by site directed mutagenesis. A modified version of pMUT256, designated pMUT256e was modified by additon of a synthetic multiple cloning site. The synthetic polylinker was generated by annealing of oligos (5′-acagtacagtacagtacagtacagt-3′) and (5′-actgtactgtactgtacgtgactgt-3′) [SEQ ID NOs: 430 and 431, respectively] and subsequent subcloning into the pMut256 open with MfeI and XmaI. Additional expression cassettes/vectors will be described in reference to specific examples where they have been used (see below).
Example 7
[0211] Isolation and Cloning of Candidate Genes into Embryo-specific Plant Expression Vectors.
[0212] HAP3/LEC1 (Heme-Activated Protein 3/Leafy Cotyledon 1):
[0213] A full length clone (p0015.cdpgp75rb, SEQ ID NOs: 263) for the corn homolog of the HAP3/Lec1 gene was obtained from Dupont/Pioneer EST Database. The ORF of maize HAP3/Lec1 (a 1 kb SaII/HpaI fragment, PCT Application No. WO 00/28058, published on May 18, 2000) was moved into an expression cassette containing a maize oleosin promoter (a 0.9 kb BamHI/XhoI fragment, PCT Application No. WO 99/64579, published on Dec. 16, 1999) and a polyadenylation sequence from the Agrobacterium nopaline synthase gene. This expression cassette was then subcloned adjacent to a 35S::Bar expression cassette (Sidorenko et al (2000) Plant J 22:471-482). The resulting expression cassettes flanked by T-DNA border sequences were then mobilized into the Agrobacterium “super-binary” vector (Komari, 1990) using electroporation. Additional constructs were made to confer expression patterns different from those obtained with the oleosin promoter. A ubiquitin promoter (UBI, Christensen et al (1992) Plant Mol Biol 18:675-680), a lipid transfer protein (LTP) promoter (U.S. Pat. No. 5,525,716), and a gamma zein promoter (GZP) (Boronat et al (1986) Plant Science 47: 95-102) were each fused to Lec1 as described above for the oleosin promoter. The two transcription units, LTP-Lec1 and GZP-Lec1, were combined into one expression construct next to the 35S:Bar expression construct and flanked by T-DNA border sequences (as described above).
[0214] HAP2 (Heme-Activated Protein 2):
[0215] A full length clone (cho1c.pk006.b14, a 30 nucleotide shorter cDNA than cho1c.pk004.b19:fis, shown in SEQ ID NO: 27) for the corn homolog of the HAP2 gene was obtained from Dupont/Pioneer EST Database. The ApoI/ApaI 1.1 kb fragment of cho1c.pk006.b14 was isolated and subcloned into pMUT256e opened by digestion with EcoRI/ApaI. One clone was selected for corn transformation by restriction digestion analysis for correct insert size. Subcloning artifacts were excluded by 5′ and 3′ sequence of the vector-insert boundaries.
[0216] HAP5 (Heme-Activated Protein 5):
[0217] A full length clone (cho1c.pk001.I23, shown in SEQ ID NO: 113) for the corn homolog of HAP5 gene was obtained from Dupont/Pioneer EST Database. The EcoRI/ApaI 1.1 kb fragment of cho1c.pk001.I23 was isolated and subcloned into pMUT256e opened by digestion with EcoRI/ApaI. One clone was selected for corn transformation after restriction digestion analysis for correct insert size. Subcloning artifacts were excluded by 5′ and 3′ sequence of the vector-insert boundaries.
Example 8
[0218] Transformation of Immature Embryos BY Particle Bombardment and Regeneration of Corn Plants
[0219] Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing the gene of the invention operably linked to a weak promoter, such as the nos promoter, or an inducible promoter, such as ln2, plus a plasmid containing the selectable marker gene PAT (Wohileben et al (1988) Gene 70:25-37) that confers resistance to the herbicide Bialaphos. Transformation is performed as follows. The ears are surface sterilized in 30% Chloral bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate. These are cultured on 560 L medium 4 days prior to bombardment in the dark. Medium 560 L is an N6-based medium containing Eriksson's vitamins, thiamine, sucrose, 2,4-D, and silver nitrate. The day of bombardment, the embryos are transferred to 560 Y medium for 4 hours and are arranged within the 2.5-cm target zone. Medium 560Y is a high osmoticum medium (560 L with high sucrose concentration). A plasmid vector comprising the gene of the invention operably linked to the selected promoter is constructed. This plasmid DNA plus plasmid DNA containing a PAT selectable marker is precipitated onto 1.1 μm (average diameter) tungsten pellets using a CaCl 2 precipitation procedure as follows: 100 μl prepared tungsten particles in water, 10 μl (1 μg) DNA in TrisEDTA buffer (1 μg total), 100 μl 2.5 M CaCl 2 , 10 μl 0.1 M spermidine. Each reagent is added sequentially to the tungsten particle suspension, while maintained on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 ml 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 μl 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated and 10 μl spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment. The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2. All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA. Following bombardment, the embryos are kept on 560Y medium, an N6 based medium, for 2 days, then transferred to 560R selection medium, an N6 based medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are sampled for PCR and activity of the gene of interest. Positive lines are transferred to 288J medium, an N6 based medium with lower sucrose and hormone levels, to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5″ pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored for expression of the gene of interest.
Example 9
[0220] Transformation of Callus and Regeneration of Corn Plants—Particle Gun.
[0221] Type II Callus Isolation and Maintenance.
[0222] After 10-21 days, type II callus is initiated from the scutellum and appears as a friable, embryogenic outgrowth of rapidly dividing cells. Callus is subcultured every 5-10 days and maintained on N6 medium supplemented with 1 mg/L 2,4-D (CM). These cultures are used in transformation experiments from 5 to 12 weeks after initiation.
[0223] Preparation of Callus for Transformation.
[0224] Proembryogenic type II callus is transferred to #4 Whatman filter paper on CM media. The CM plates with callus is wrapped with parafilm and incubated in the dark Conviron growth chamber (45% humidity, 27-28° C.) for two days before bombardment. Prior to bombardment, the osmotic plates are left partially ajar for thirty minutes in the laminar flow hood to allow moisture on the tissue to dissipate.
[0225] Gold Particle Preparation
[0226] Sixty mg of 0.6 micron gold is weighed out in a siliconized eppendorf tube (Axgen Microtubes—1.7 ml clear tube). The tube is left stationary for 15 minutes and spun down. The pellet is rinsed with sterile water three more times. Subsequently, one ml of sterile water is added to the gold pellet and vortexed for 10 minutes. The gold particles are divided into 50 ul aliquots.
[0227] DNA/Gold Preparation
[0228] Fifty μL of 0.6 micron gold in sterile dd H2O. A 2:1 molar ratio of trait gene:bar gene (usually ˜5-10 ug in total DNA) is added and vortexed. Subsequently, fifty μL of 2.5 M CaCl 2 is added quickly into the suspension and vortexed followed by the addition of 20 μL of 0.1 M spermidine and vortexed and spun down. The pellet is rinsed 3× in 100% ethanol. The pellet is gently resuspended by tapping the side of the eppendorf tube several times. The DNA prep is stored in the 20° C. freezer.
[0229] Loading of the Macrocarrier
[0230] The DNA/gold prep is thawed and sonicated (2 strokes) in the Branson 200 Ultrasonic cleaner prior to the addition to macrocarriers. The suspension is mixed well by pipetting in and out. Immediately, 6 μl of DNA/gold suspension is dispensed quickly to the center of each macrocarrier. Once the DNA prep is dried onto the macrocarrier, the PDS-100/He Gun is used to bombard the maize callus cells with the DNA-coated gold particles.
[0231] Particle Gun Parameters.
[0232] Plates containing callus are the bombarded with the PDS-1000/He Gun using the following parameters: 1) DNA precipitated onto 0.6 μM Gold particles; 2) 8 cm distance from stopping screen; 3) 27-29 inches Hg vacuum; 4) 1050-1100 PSI He pressure.
[0233] Selection of Transgenic Callus Lines.
[0234] After 3-4 days of incubation in the dark chamber the callus is transferred (3-4 mm clumps) onto media containing 3-5 ppm bialaphos (SM3 or SM5). The SM plates are incubated in the dark at 27° C. for ˜7-14 days. Thereafter, all callus is transferred onto SM (5 ppm bialaphos) keeping track of unique lines as above. Each clump may be split into several pieces at this transfer.
[0235] Regeneration of Transgenic Maize Plants.
[0236] Callus events are isolated onto fresh SM medium, sampled for PCR (polymerase chain reaction) and placed on first-stage regeneration media (RM31). After 10-14 days, the proembryogenic callus are transferred onto fresh RM3 plates and placed in the light chamber at 26° C. Plantlets approximately 2-3 cm are removed and transfer to RM4 media tubs. After 1-2 weeks plants from RM4 are potted to a maximum of two plantlets per pot. The pots are then placed in the Conviron growth chamber (photolight=20 hours, humidity=65%, temperature=24° C.) and watered with Roots2 solution. Plants (˜20 cm tall) are tested for expression of the bar gene by performing a 2% basta swipe test.
Example 10
[0237] Analysis of Fatty Acid Content and Composition by Gas Chromatography (GC)
[0238] Fatty acid (FA) determination was done from a total of 300-400 mg of tissue lyophilized for 24 hours. The tissue was then ground using a FastPrep mill (Biol101) at 4.5 speed and 20 seconds in the presence of 0.5 ml of 2.5% Sulfuric Acid+97.5% Methanol and Heptadecanoic acid (17:0, stock 10 mg/ml in Tuloene) as an external standard. Thereafter, another 0.5 ml 2.5% Sulfuric Acid +97.5% Methanol was used to wash each tube and incubate in 95° C. for 1 hour for transesterification. The tubes were removed from the water bath and allowed to cool down to RT. FAs were extracted in one volume of heptane:H 2 O (1:1) and cleared by centrifugation. The supernatant (50 ul) containing the fatty acid methyl esters were loaded into a Hewlett Packard 6890 gas chromatograph fitted with a 30 m×0.32 mm Omegawax column and the separated peaks were analyzed and characterized.
Example 11
[0239] Lec 1 Over-Expression Leads to Altered Fatty Acid Accumulation in Maize Somatic Embryos
[0240] The ubiquitin promoter (Christensen et al (1992) Plant Mol Biol 18:675-89) was used to drive Hap3/Lec1 expression (outlined in Example 7) in maize embryogenic callus to test what phenotype would arise from over-expression of Lec1 in somatic embryos. Transformation of the construct into maize embryogenic callus and generation of somatic embryos is outlined in Example 9.
[0241] More than ten different events were analysed by GC for fatty acid content/composition and compared to controls transformed with the selectable marker (BAR gene) plasmid alone. A pool of three embryos each from XX different events showed that the somatic embryos overexpressing Lec1 contain elevated fatty acid content (average 119% increase over control) with no significant alteration in fatty acid composition when compared to the control somatic embryos (FIG. 1).
Example 12
[0242] Nuclear Magnetic Resonance (NMR) ANALYSIS
[0243] Seed are imbibed in distilled water for 12-24 hours at 4° C. The embryo is dissected away and stored in a 48 well plate. The samples are lyophilized over-night in a Virtis 24×48 lyophilizer. The NMR (Process Control Technologies—PCT (Ft. Collins, Colo.) is set up as per the manufacturer's instructions. The NMR is calibrated using a series of 5 mm NMR tubes containing precisely measured amounts of corn oil (Mazola). The calibration standards are 3, 6, 9, 12, 15, 18, 21, 27, 33, and 40 mg of oil.
Example 13
[0244] Lec 1 Over-Expression Leads to Altered Oil Accumulation in Maize Kernels
[0245] The Hap3/Lec1 expression construct with the oleosin promoter (outlined in Example 7) was introduced into maize to test what phenotype would arise from seed specific over-expression. Transformation of the construct into maize was accomplished using Agrobacterium tumefaciens as follows.
[0246] Freshly isolated immature embryos of maize, about 10 days after pollination (DAP), are incubated with the Agrobacterium. The preferred genotype for transformation is the highly transformable genotype Hi-II (Armstrong, C. L., 1991, Development and Availability of Germplasm with High Type II Culture Formation Response, Maize Genetics Cooperation Newsletter, 65:92-93). An F 1 hybrid created by crossing with an Hi-II with an elite inbred may also be used. After Agrobacterium treatment of immature embryos, the embryos are cultured on medium containing toxic levels of herbicide. Only those cells which receive the herbicide-resistance gene, and the linked gene(s), grow on selective medium. Transgenic events so selected are propagated and regenerated to whole plants, produce seed, and transmit transgenes to progeny.
[0247] The engineered Agrobacterium tumefaciens LBA4404 is constructed as per U.S. Pat. No. 5,591,616 to contain the linked gene(s) and the selectable marker gene. Typically either BAR (D'Halluin et al (1992) Methods Enzymol. 216:415-426) or PAT (Wohileben et al (1988) Gene 70:25-37) may be used.
[0248] To use the engineered vector in plant transformation, a master plate of single bacterial colonies is first prepared by inoculating the bacteria on minimal AB medium and then incubating the bacteria plate inverted at 28° C. in darkness for about 3 days. A working plate is then prepared by selecting a single colony from the plate of minimal A medium and streaking it across a plate of YP medium. The YP-medium bacterial plate is then incubated inverted at 28° C. in darkness for 1-2 days.
[0249] Agrobacterium for plant transfection and co-cultivation is prepared 1 day prior to transformation. Into 30 ml of minimal A medium in a flask is placed 50 μg/ml spectinomycin (or appropriate bacterial antibiotic depending on marker in co-integrate), 100 μM acetosyringone, and about a ⅛ loopful of Agrobacterium from a 1 to 2-day-old working plate. The Agrobacterium is then grown at 28° C. at 200 rpm in darkness overnight (about 14 hours). In mid-log phase, the Agrobacterium is harvested and resuspended at 3 to 5×10 8 CFU/ml in 561 Q medium+100 μM acetosyringone using standard microbial techniques and standard curves.
[0250] Immature Embryo Preparation
[0251] Nine to ten days after controlled pollination of a corn plant, developing immature embryos are opaque and 1-1.5 mm long and are the appropriate size for Agro-infection. The husked ears are sterilized in 50% commercial bleach and 1 drop Tween for 30 minutes, and then rinsed twice with sterile water. The immature embryos are aseptically removed from the caryopsis and placed into 2 ml of sterile holding solution comprising of 561Q+100 μM acetosyringone.
[0252] Agrobacterium Infection and Co-cultivation of Embryos
[0253] Holding solution is decanted from excised immature embryos and replaced with prepared Agrobacterium. Following gentle mixing and incubation for about 5 minutes, the Agrobacterium is decanted from the immature embryos. Immature embryos are then moved to a plate of 562P medium, scutellum surface upwards, and incubated at 20° C. for 3 days in darkness followed by incubation at 28° C. for 3 days in darkness on medium 562P+100 mg/ml carbenecillin (see U.S. Pat. No. 5,981,840).
[0254] Selection of Transgenic Events
[0255] Following incubation, the immature embryos are transferred to 563O medium for selection of events. The transforming DNA possesses a herbicide-resistance gene, in this example the PAT gene, which confers resistance to bialaphos. At 10- to 14-day intervals, embryos are transferred to 5630 medium. Actively growing putative transgenic embryogenic tissue is visible in 6-8 weeks.
[0256] Regeneration of T 0 Plants
[0257] Transgenic embryogenic tissue is transferred to 288W medium and incubated at 28° C. in darkness until somatic embryos matured, or about 10 to 18 days. Individual matured somatic embryos with well-defined scutellum and coleoptile are transferred to 272 embryo germination medium and incubated at 28° C. in the light. After shoots and roots emerge, individual plants are potted in soil and hardened-off using typical horticultural methods.
[0258] Confirmation of Transformation
[0259] Putative transgenic events are subjected to analysis to confirm their transgenic nature. Events are tested for the presence of Lec1 by PCR amplification. Additionally, T 0 plants are painted with bialaphos herbicide. The subsequent lack of a herbicide-injury lesion indicates the presence and action of the herbicide resistance gene. The plants are monitored and scored for altered Lec1 expression and/or phenotype such as increased organic sulfur compounds.
[0260] Media Recipes
[0261] Medium 561 Q contains the following ingredients: 950.000 ml of D-I Water, Filtered; 4.000 g of Chu (N6) Basal Salts (Sigma C-1416); 1.000 ml of Eriksson's Vitamin Mix (1000+Sigma-1511); 1.250 ml of Thiamine.HCL.4 mg/ml; 3.000 ml of 2, 4-D 0.5 mg/ml (No. 2A); 0.690 g of L-proline; 68.500 g of Sucrose; and 36.000 g of Glucose. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 5.2 w/KOH; Q.S. to volume with polished deionized water after adjusting pH; and filter sterilize (do not autoclave).
[0262] Medium 562 P contains the following ingredients: 950.000 ml of D-I Water, Filtered; 4.000 g of Chu (N6) Basal Salts (Sigma C-1416); 1.000 ml of Eriksson's Vitamin Mix (1000×Sigma-1511); 1.250 ml of Thiamine.HCL.4 mg/ml; 4.000 ml of 2, 4-D 0.5 mg/ml; 0.690 g of L-proline; 30.000 g of Sucrose; 3.000 g of Gelrite, which is added after Q.S. to volume; 0.425 ml of Silver Nitrate 2 mg/ml #; and 1.000 ml of Aceto Syringone 100 mM #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 5.8 w/KOH; Q.S. to volume with polished deionized water after adjusting pH; and sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0263] Medium 563 O contains the following ingredients: 950.000 ml of D-I Water, Filtered; 4.000 g of Chu (N6) Basal Salts (Sigma C-1416); 1.000 ml of Eriksson's Vitamin Mix (1000×Sigma-1511); 1.250 ml of Thiamine.HCL.4 mg/ml; 30.000 g of Sucrose; 3.000 ml of 2, 4-D 0.5 mg/ml (No. 2A); 0.690 g of L-proline; 0.500 g of Mes Buffer; 8.000 g of Agar (Sigma A-7049, Purified), which is added after Q.S. to volume; 0.425 ml of Silver Nitrate 2 mg/ml #; 3.000 ml of Bialaphos 1 mg/ml #; and 2.000 ml of Agribio Carbenicillin 50 mg/ml #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust to pH 5.8 w/koh; Q.S. to volume with polished deionized water after adjusting pH; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0264] Medium 288 W contains the following ingredients: 950.000 ml of D-I H 2 O; 4.300 g of MS Salts; 0.100 g of Myo-Inositol; 5.000 ml of MS Vitamins Stock Solution (No. 36J); 1.000 ml of Zeatin.5 mg/ml; 60.000 g of Sucrose; 8.000 g of Agar (Sigma A-7049, Purified), which is added after Q.S. to volume; 2.000 ml of IAA 0.5 mg/ml #; 1.000 ml of 0.1 Mm ABA #; 3.000 ml of Bialaphos 1 mg/ml #; and 2.000 ml of Agribio Carbenicillin 50 mg/ml #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust to pH 5.6; Q.S. to volume with polished deionized water after adjusting pH; sterilize and cool to 60° C. Add 3.5 g/L of Gelrite for cell biology. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0265] Medium 272 contains the following ingredients: 950.000 ml of deionized water; 4.300 g of MS Salts; 0.100 g of Myo-Inositol; 5.000 of MS Vitamins Stock Solution; 40.000 g of Sucrose; and 1.500 g of Gelrite, which is added after Q.S. to volume. Directions are: dissolve ingredients in polished deionized water in sequence; adjust to pH 5.6; Q.S. to volume with polished deionized water after adjusting pH; and sterilize and cool to 60° C.
[0266] Medium minimal A contains the following ingredients: 950.000 ml of deionized water; 10.500 g of potassium phosphate dibasic K2HPO4; 4.500 g of potassium phosphate monobasic KH2PO4; 1.000 g of ammonium sulfate; 0.500 g of sodium citrate dihydrate; 10.000 ml of sucrose 20% solution #; and 1.000 ml of 1 M magnesium sulfate #. Directions are: dissolve ingredients in polished deionized water in sequence; Q.S. to volume with deionized water; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0267] Medium minimal AB contains the following ingredients: 850.000 ml of deionized water; 50.000 ml of stock solution 800A; 9 g of Phytagar which is added after Q.S. to volume; 50.000 ml of stock solution 800B #; 5.000 g of glucose #; and 2.000 ml of spectinomycin 50/mg/ml stock #. Directions are: dissolve ingredients in polished deionized water in sequence; Q.S. to volume with polished deionized water less 100 ml per liter; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature. Stock solution 800A contains the following ingredients: 950.000 ml of deionized water; 60.000 g of potassium phosphate dibasic K2HPO4; and 20.000 g of sodium phos. monobasic, hydrous. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 7.0 with potassium hydroxide; Q.S. to volume with polished deionized water after adjusting pH; and sterilize and cool to 60° C. Stock solution 800B contains the following ingredients: 950.000 ml of deionized water; 20.000 g of ammonium chloride; 6.000 g of magnesium sulfate 7-H 2 O, MgSO 4 , 7 H 2 O; 3.000 g of potassium chloride; 0.200 g of calcium chloride (anhydrate); and 0.050 g of ferrous sulfate 7-hydrate. Directions are: dissolve ingredients in polished deionized water in sequence; Q.S. to volume with polished deionized water; and sterilize and cool to 60° C.
[0268] Medium minimal YP contains the following ingredients: 950.000 ml of deionized water; 5.000 g of yeast extract (Difco); 10.000 g of peptone (Difco); 5.000 g of sodium chloride; 15.000 g of bacto-agar, which is added after Q.S. to volume; and 1.000 ml of spectinomycin 50 mg/ml stock #. Directions are: dissolve ingredients in polished deionized water in sequence; adjust pH to 6.8 with potassium hydroxide; Q.S. to volume with polished deionized water after adjusting pH; sterilize and cool to 60° C. Ingredients designated with a # are added after sterilizing and cooling to temperature.
[0269] More than twenty events producing segregating T1 seed were analyzed by NMR for embryo oil content (see Example 12). Six to twelve embryos analyzed for each of five different events showed that some embryos within each event contained elevated oil content. These results are shown in FIG. 2. The same embryos from these five events were analyzed by PCR to determine the presence or absence of the Lec1 construct. Embryos with high oil are always found to contain the Lec1 construct (darkly shaded bars), whereas embryos with normal levels of oil were typically found not to contain the Lec1 construct (cross-hatched bars). These data demonstrate the presence of the Lec1 gene does lead to increased oil in the embryo. It is believed that embryos containing sharply higher levels of oil were homozygous for the Lec1 construct, as these events were segregating 1:2:1. For these events, the oil concentration in the embryos containing the Lec1 construct greatly surpassed any increase previously achieved through enzymatic modification of the fatty acid biosynthetic pathway, with some embryos containing an average increase of 56% in embryo oil content (FIG. 2, Event 277267). Plants derived from seed that contained high oil exhibit some phenotypic changes in growth and development. There is an accumulation of additional leaves during early growth and development phase, and strong leaf curling throughout plant growth and development.
Example 14
[0270] Additional Promoters Coupled to Lec1 Also Result in Altered Maize Kernel Oil Accumulation
[0271] Other types of seed-specific promoters, the lipid transfer protein promoter and the gamma zein promoter, were also tested for their ability to alter oil accumulation in maize kernels when expressing Lec1. Transformation and analysis of these constructs was essentially the same as protocols outlined in Example 13. More than twenty events producing segregating T1 seed are analyzed by NMR for embryo oil content (see Example 12). Six to twelve embryos were analyzed for each event. Events containing embryos with high oil content were analyzed further. The same embryos from these events are analyzed by PCR to determine the presence or absence of the Lec1 construct. As with the oleosin promoter containing construct, all embryos with high oil contents are found to contain the Lec1 construct, whereas embryos with lower or normal oil contents are typically found not to contain the Lec1 construct. Like the events containing Lec1 and the oleosin promoter, the oil concentration in the embryo for these events also greatly surpass any increase previously achieved through enzymatic modification, with some embryos containing an average increase of more than 50% in embryo oil content.
[0272] Surprisingly, plants derived from seed containing high oil using this construct do not show the abnormal phenotype found for plants expressing Lec1 under the control of the oleosin promoter. It is believed that these data demonstrate that high oil can be achieved in the embryo without negative agronomic effects when the appropriate expression is employed.
1
222
1
638
DNA
Catalpa speciosa
unsure
(402)
n = A, C, G, or T
1
gtgctcttta aaattcacaa gtacatctga cctctacatc aacacacatt gactctaaat 60
tctctctcta aattctgtca acccccaaat tctagggttt tgttttaatt gtcatcagat 120
ttcgccttaa caggacacat tggttgattt ctttgggaga aattagggga gcatgcaatc 180
caagtcccag agcggcaacc aaggagaatc caacctttat aatgttccta actccaaagt 240
aaatccggat tcttggtgga ataatactgg gatataatcc ttttcctcaa caatgatggg 300
gtgggaaatg catcaagatt catcatccct agaacaatct gtgggatgga caagtcgcag 360
tctaaaggtg gtataaatga ggaagatgat gatactacca anacgatcac aaagttagta 420
cacctccggc tgccaagata gaaactatag gcaggagggc cgagctccag caagctccac 480
ctaccaatac atccaaagaa acaatgggat cgttaatcan ggccanagtt gagctgggng 540
gnatcagtag ctgggggnca aancctaaga tcatatacgg nggaagatgg aactaaggca 600
gcatggtcnc ccaattaang anagcacann anggtgga 638
2
77
PRT
Catalpa speciosa
UNSURE
(35)
Xaa = any amino acid
2
Met Gln Ser Lys Ser Gln Ser Gly Asn Gln Gly Glu Ser Asn Leu Tyr
1 5 10 15
Asn Val Pro Asn Ser Lys Val Asn Pro Asp Ser Trp Trp Asn Asn Thr
20 25 30
Gly Ile Xaa Ser Phe Ser Ser Thr Met Met Gly Gly Asn Ala Ser Arg
35 40 45
Phe Ile Ile Pro Arg Thr Ile Cys Gly Met Asp Lys Ser Gln Ser Lys
50 55 60
Gly Gly Ile Asn Glu Glu Asp Asp Asp Thr Thr Xaa Thr
65 70 75
3
441
DNA
Typha latifolia
unsure
(378)
n = A, C, G, or T
3
atttaggaga gagcttgagg tcgagaggag cagcagagga ggaaggaggc aggagaagca 60
aagggtttcg agaaagggga catgctcccc ttataaggac atggaaacca gaaagcaact 120
aggtcatcca ttgctgaagc aagactcatt ttcaaatgtc aactaatctg ttccaccaag 180
aagcatcggt aatgggtgaa gaccacctta gtgagaagca tacttcaaca caatctggga 240
atgctggtag ttatggaaat ataagggatg gttatccaaa atcagtatta tccttggcaa 300
atccagaagc tgcctttgta cctccgaaac ttgattgtag ccagtctttt acttgcatgc 360
catacccttt tgctgatnca tgctttggtg gtgtcatggc tgcatatggt tcgcnatgcc 420
tttattcaac aacaaatggt g 441
4
95
PRT
Typha latifolia
UNSURE
(75)
Xaa = any amino acid
4
Met Ser Thr Asn Leu Phe His Gln Glu Ala Ser Val Met Gly Glu Asp
1 5 10 15
His Leu Ser Glu Lys His Thr Ser Thr Gln Ser Gly Asn Ala Gly Ser
20 25 30
Tyr Gly Asn Ile Arg Asp Gly Tyr Pro Lys Ser Val Leu Ser Leu Ala
35 40 45
Asn Pro Glu Ala Ala Phe Val Pro Pro Lys Leu Asp Cys Ser Gln Ser
50 55 60
Phe Thr Cys Met Pro Tyr Pro Phe Ala Asp Xaa Cys Phe Gly Gly Val
65 70 75 80
Met Ala Ala Tyr Gly Ser Xaa Cys Leu Tyr Ser Thr Thr Asn Gly
85 90 95
5
849
DNA
Vitis sp.
5
ctgaggttgc agagacacca tggattccca ccaacggcca tgatttcctt ccaaactcct 60
accttttagg gtttattcct ctgctctcat cccacattag atttggggct aggggatttt 120
tgtttttctt ggtggaaaag aataatgccg actaaaccca aaattgagga tcggcggata 180
gaacctggtg gtaagagcaa tccgtcatca acagtctact cccaaccttg gtggcatggt 240
gttgggaaca atgccatctc cccagctgcc ttgggtggaa gcccatcaaa atcaacttca 300
gttgaacacc ttaacagtca tatcacgagc aatggtttcc aattacaagc taatggcagg 360
ctggatgatg gaactacctt taataaagga acacaaccta cggtagccct gcaatctgat 420
ggaaggaatg gacaggaaca ccagcacctc aatcctactg cttcctcaac actgccaatt 480
atgagtgaac atcttgaacc aaattcccaa atggaacttg ttggtcactc aattgtgttg 540
acatcatatc cgtatcaaga tccacataat gtggggatta tgacttctta tgggccacag 600
gctatggtat gcaaagaagt tggttgcatt tctgtgtgtt gtggtaacat tactgttggt 660
ggcactacca cttctgaaag tgatgcctca accttgaaaa ctagattctc ctgtactagg 720
gcctgcccct cttatagggg aggtcagcca ctgtagtgaa taatctgttt cataagaaaa 780
tcatcagttt ttatgtgaag gttccttctt ctagatttgg tctcgcccaa gaaaaaaaaa 840
aaaaaaaaa 849
6
154
PRT
Vitis sp.
6
Met Pro Thr Lys Pro Lys Ile Glu Asp Arg Arg Ile Glu Pro Gly Gly
1 5 10 15
Lys Ser Asn Pro Ser Ser Thr Val Tyr Ser Gln Pro Trp Trp His Gly
20 25 30
Val Gly Asn Asn Ala Ile Ser Pro Ala Ala Leu Gly Gly Ser Pro Ser
35 40 45
Lys Ser Thr Ser Val Glu His Leu Asn Ser His Ile Thr Ser Asn Gly
50 55 60
Phe Gln Leu Gln Ala Asn Gly Arg Leu Asp Asp Gly Thr Thr Phe Asn
65 70 75 80
Lys Gly Thr Gln Pro Thr Val Ala Leu Gln Ser Asp Gly Arg Asn Gly
85 90 95
Gln Glu His Gln His Leu Asn Pro Thr Ala Ser Ser Thr Leu Pro Ile
100 105 110
Met Ser Glu His Leu Glu Pro Asn Ser Gln Met Glu Leu Val Gly His
115 120 125
Ser Ile Val Leu Thr Ser Tyr Pro Tyr Gln Asp Pro His Asn Val Gly
130 135 140
Ile Met Thr Ser Tyr Gly Pro Gln Ala Met
145 150
7
1334
DNA
Vitis sp.
7
ctcatttgaa aatccgtaga ccgaaccatg gacttcgtat ccatcattct tctctctcca 60
tagctcctca attctagggt ttctctcact cttcttcctc tctgaatgga agctgtggac 120
aagaacaaaa gcatcctcag caagctgtat caatgatgcc tatgactatg gctgaatacc 180
accttgcacc accttcccag ctggaacttg ttggccactc aattgcgtgt gcatcatatc 240
catattctga accttattac acgggagtca ttcctgctta tggacctcag ggtttggtac 300
aatctcaatt tcttggtgtg aatgtggcta gaatggcttt gcctattgaa atggcagagg 360
aacctgttta tgtgaatgca aaacagtatc atgggattct gaggcgaaga caatcacggg 420
cgaaggccga gctggaaaaa aaactgataa aagttaggaa gccatatctt catgaatcaa 480
ggcaccagca tgctatgaga agggcaagag gatgtggagg ccgttttctc aacacaaaga 540
agcttgattc taatgcatcg tatgacatgc ctgacaaggg ctctgatcca gatgtaaacc 600
tttcaacacg acccatcagc tcatcagtct ctgaatctct gccctccaat tcttcccgaa 660
atgaggattc ccccaccagt catctagatg caagaggtcc ctctgtgcag gaattgcaca 720
ataggcaaac agcctcccat ggaaatggca acagctgtta tccacacaac cagggatttc 780
agttgtcgac ataccattcc cttaaagatg atcgcgtgga agaaggagac cacgcagggc 840
ggcagcatga gagaattctg gtgaataggg ccccccacag ggccctaacc atcaaatgaa 900
accttcgttg ctaagggatg aagggtcttt ccagcattgc tctgatctat tgcagatggc 960
atcagcttcc atgtgggctt gagggtgtca cagaagtggg ctagttcaaa tacaaaaata 1020
agtgaggagc atccttctgt gacttctact caagtatctg gtaacggatc cggatggcag 1080
cattgcaggg caaagctgga agcattaccc caaccaatca gagggggggg ggacccctgg 1140
cctatgtgtt gtattttcag gcaaatcatt cttggcttgt atttttcata ttcctgtgtt 1200
tgttggaccg ggggggaaag acagagagat tgggaatcgt ctaatttcac tcattacctt 1260
tttggaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1320
aaaaaaaaaa aaaa 1334
8
261
PRT
Vitis sp.
8
Cys Gly Gln Glu Gln Lys His Pro Gln Gln Ala Val Ser Met Met Pro
1 5 10 15
Met Thr Met Ala Glu Tyr His Leu Ala Pro Pro Ser Gln Leu Glu Leu
20 25 30
Val Gly His Ser Ile Ala Cys Ala Ser Tyr Pro Tyr Ser Glu Pro Tyr
35 40 45
Tyr Thr Gly Val Ile Pro Ala Tyr Gly Pro Gln Gly Leu Val Gln Ser
50 55 60
Gln Phe Leu Gly Val Asn Val Ala Arg Met Ala Leu Pro Ile Glu Met
65 70 75 80
Ala Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu
85 90 95
Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile
100 105 110
Lys Val Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met
115 120 125
Arg Arg Ala Arg Gly Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu
130 135 140
Asp Ser Asn Ala Ser Tyr Asp Met Pro Asp Lys Gly Ser Asp Pro Asp
145 150 155 160
Val Asn Leu Ser Thr Arg Pro Ile Ser Ser Ser Val Ser Glu Ser Leu
165 170 175
Pro Ser Asn Ser Ser Arg Asn Glu Asp Ser Pro Thr Ser His Leu Asp
180 185 190
Ala Arg Gly Pro Ser Val Gln Glu Leu His Asn Arg Gln Thr Ala Ser
195 200 205
His Gly Asn Gly Asn Ser Cys Tyr Pro His Asn Gln Gly Phe Gln Leu
210 215 220
Ser Thr Tyr His Ser Leu Lys Asp Asp Arg Val Glu Glu Gly Asp His
225 230 235 240
Ala Gly Arg Gln His Glu Arg Ile Leu Val Asn Arg Ala Pro His Arg
245 250 255
Ala Leu Thr Ile Lys
260
9
987
DNA
Vitis sp.
9
gcacgaggga aggtcaaagt caaatgaagc cagttttctt tatggctaat ccagatgttg 60
tcttcaatcc ttcacaagtt gactatggcc attctgtgac tcatgttgca tatccttatg 120
ctgatcctta ccatgggggg ttagtggctg catatggtcc acatgctgtt attcagcccc 180
agctggtggg gatagcacct accagagtcc cactgccctt tgatattgca gaggatggac 240
ctatttttgt caatgcaaaa cagtatcatg gaattctcag gaggaggcag tcacgagcaa 300
agatggaggc ccagaacaaa cttgtcaaag cccgaaagcc atatctgcac gagtctcggc 360
atcttcatgc cctaaatagg gttagaggat ctggtggacg cttcctcagc acgaaaaagc 420
tccaagaacc ggactcaact tccaatgctg gctgtcatag tgtatctggc tctggtcatt 480
ttcaccagaa gggagacaca actgagcagc cggagcacag gttctcaggc atgtctcccc 540
acatgggtgg agccatgcaa ggtggtggcg gtgggactta tgggcaatgg agtcctgctc 600
ctggttgtcc ggtgagaagt cgataggaac aagatcgatg gagtcactgg tctgggcaat 660
tcatccttgg ctttgttact ttcgtttcat gcgtgttaag aagataaaca catcaaactt 720
catggtgtag tagaaatact ctgcctttcc catttccaaa tgcatacatt ttggctctgt 780
aaacatggtt gagaagaggc tatgcttgaa actctctgtt tgtgaaccat tgttttgttt 840
tttcaagaca atgtgagata ttggttcacc ggtattttgt ttgttgctta cagaaagcaa 900
accctgcctt ttgtgcttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 960
aaaaaaaaaa aaaaaaaaaa aaaaaaa 987
10
205
PRT
Vitis sp.
10
Glu Gly Gln Ser Gln Met Lys Pro Val Phe Phe Met Ala Asn Pro Asp
1 5 10 15
Val Val Phe Asn Pro Ser Gln Val Asp Tyr Gly His Ser Val Thr His
20 25 30
Val Ala Tyr Pro Tyr Ala Asp Pro Tyr His Gly Gly Leu Val Ala Ala
35 40 45
Tyr Gly Pro His Ala Val Ile Gln Pro Gln Leu Val Gly Ile Ala Pro
50 55 60
Thr Arg Val Pro Leu Pro Phe Asp Ile Ala Glu Asp Gly Pro Ile Phe
65 70 75 80
Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser Arg
85 90 95
Ala Lys Met Glu Ala Gln Asn Lys Leu Val Lys Ala Arg Lys Pro Tyr
100 105 110
Leu His Glu Ser Arg His Leu His Ala Leu Asn Arg Val Arg Gly Ser
115 120 125
Gly Gly Arg Phe Leu Ser Thr Lys Lys Leu Gln Glu Pro Asp Ser Thr
130 135 140
Ser Asn Ala Gly Cys His Ser Val Ser Gly Ser Gly His Phe His Gln
145 150 155 160
Lys Gly Asp Thr Thr Glu Gln Pro Glu His Arg Phe Ser Gly Met Ser
165 170 175
Pro His Met Gly Gly Ala Met Gln Gly Gly Gly Gly Gly Thr Tyr Gly
180 185 190
Gln Trp Ser Pro Ala Pro Gly Cys Pro Val Arg Ser Arg
195 200 205
11
1256
DNA
Zea mays
11
gcacgagctc tgtctgtgtg cgagcgcaag agaaagggag tcagagagag agggaggaga 60
ccttgcagag gagcgaagca agcaaggtgg gaaagaggca gcaagggcgg cgggctgccg 120
gaaggggaac atgctccctc ctcatctcac agtacgaact gaaaaacaag agtaaagaat 180
ttccgtgaga tgagacagaa tggcgcggtg atgattcagt ttggccatca gatgcctgat 240
tacgactccc cggctaccca gtcaaccagt gagacgagcc atcaagaagc gtctggaatg 300
agcgaaggga gcctcaacga gcataataat gaccattcag gcaaccttga tgggtactcg 360
aagagtgacg aaaacaagat gatgtcagcg ttatccctgg gcaatccgga aacagcttac 420
gcacataatc cgaagcctga ccgtactcag tccttcgcca tatcataccc atatgccgat 480
ccatactacg gtggcgcggt ggcagcagct tatggcccgc atgctatcat gcaccctcag 540
ctggttggca tggttccgtc ctctcgagtg ccactgccga tcgagccagc cgctgaagag 600
cccatctatg tcaacgcgaa gcagtaccac gctattctcc ggaggagaca gctccgtgca 660
aagctagagg cggaaaacaa gctcgtgaaa agccgcaagc cgtacctcca cgagtctcgg 720
cacctgcacg cgatgaagag agctcgggga acaggcgggc ggttcctgaa cacgaagcag 780
cagccggagt cccccggcag cggcggctcc tcggacgcgc aacgcgtgcc cgcgaccgcg 840
agcggcggcc tgttcacgaa gcatgagcac agcctgccgc ccggcggtcg ccaccactat 900
cacgcgagag ggggcggtga gtagggagcc ccgacactgg caactcatcc ttggcttatc 960
agcgattcga ctcggctctc gctcgtctga aactgaactc tctgcaacta ctgtaactgt 1020
aactaaactg ggtgtgcccg gattggcggt cgttctgttc tactactact agtaccttag 1080
tacctgctac gcgtcgttgg gtctggacta gagagccgtg ctggttcttt gatgaacttg 1140
gctggacttg aggtgttgac tagcgcgaaa ctgagttcca tgtaaacttt tgcttcaaga 1200
ccgatgactg gcggcataat aagtagcagt aataaccaaa aaaaaaaaaa aaaaaa 1256
12
244
PRT
Zea mays
12
Met Arg Gln Asn Gly Ala Val Met Ile Gln Phe Gly His Gln Met Pro
1 5 10 15
Asp Tyr Asp Ser Pro Ala Thr Gln Ser Thr Ser Glu Thr Ser His Gln
20 25 30
Glu Ala Ser Gly Met Ser Glu Gly Ser Leu Asn Glu His Asn Asn Asp
35 40 45
His Ser Gly Asn Leu Asp Gly Tyr Ser Lys Ser Asp Glu Asn Lys Met
50 55 60
Met Ser Ala Leu Ser Leu Gly Asn Pro Glu Thr Ala Tyr Ala His Asn
65 70 75 80
Pro Lys Pro Asp Arg Thr Gln Ser Phe Ala Ile Ser Tyr Pro Tyr Ala
85 90 95
Asp Pro Tyr Tyr Gly Gly Ala Val Ala Ala Ala Tyr Gly Pro His Ala
100 105 110
Ile Met His Pro Gln Leu Val Gly Met Val Pro Ser Ser Arg Val Pro
115 120 125
Leu Pro Ile Glu Pro Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys
130 135 140
Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
145 150 155 160
Ala Glu Asn Lys Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser
165 170 175
Arg His Leu His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe
180 185 190
Leu Asn Thr Lys Gln Gln Pro Glu Ser Pro Gly Ser Gly Gly Ser Ser
195 200 205
Asp Ala Gln Arg Val Pro Ala Thr Ala Ser Gly Gly Leu Phe Thr Lys
210 215 220
His Glu His Ser Leu Pro Pro Gly Gly Arg His His Tyr His Ala Arg
225 230 235 240
Gly Gly Gly Glu
13
1203
DNA
Zea mays
13
ccacgcgtcc ggcaagagaa agggagtcag agagagagag agagggagga gaccttgcag 60
aggagcgaag caagcaaggt gggaaagagg cagcagcaag ggcggcgggc tgccggaagg 120
ggaacatgct ccctcctcat ctcacagaga atggcgcggt gatgattcag tttggccatc 180
agatgcctga ttacgactcc ccggctaccc agtcaaccag tgagacgagc catcaagaag 240
cgtctggaat gagcgaaggg agcctcaacg agcataataa tgaccattca ggcaaccttg 300
atgggtactc gaagagtgac gaaaacaaga tgatgtcagc gttatccctg ggcaatccgg 360
aaacagctta cgcacataat ccgaagcctg accgtactca gtccttcgcc atatcatacc 420
catatgccga tccatactac ggtggcgcgg tggcagcagc ttatggcccg catgctatca 480
tgcaccctca gctggttggc atggttccgt cctctcgagt gccactgccg atcgagccag 540
ccgctgaaga gcccatctat gtcaacgcga agcagtacca cgctattctc cggaggagac 600
agctccgtgc aaagctagag gcggaaaaca agctcgtgaa aagccgcaag ccgtacctcc 660
acgagtctcg gcacctgcac gcgatgaaga gagctcgggg aacaggcggg cggttcctga 720
acacgaagca gcagccggag tcccccggca gcggcggctc ctcggacgcg caacgcgtgc 780
ccgcgaccgc gagcggcggc ctgttcacga agcatgagca cagcctgccg cccggcggtc 840
gccaccacta tcacgcgaga gggggcggtg agtagggagc cccgacactg gcaactcatc 900
cttggcttat cagcgattcg actcggctct ccctcgtctg aaactgaact ctctgcaact 960
actgtaactg taactaaact gggtgtgccc ggattggcgg tcgttctgtt ctactactag 1020
tacctgctac gcgtcgttgg gttgggtctg gactagagag cgtgctggtt ctttgatgaa 1080
cttggctgga cttgagggtg ttgactagcg cgaagctgag ttccatgtaa aacttttgct 1140
tcaagaccga tgactggcgg cataataagt agcagtaata accaaaaaaa aaaaaaaaaa 1200
aag 1203
14
288
PRT
Zea mays
14
Pro Ala Arg Glu Arg Glu Ser Glu Arg Glu Arg Glu Gly Gly Asp Leu
1 5 10 15
Ala Glu Glu Arg Ser Lys Gln Gly Gly Lys Glu Ala Ala Ala Arg Ala
20 25 30
Ala Gly Cys Arg Lys Gly Asn Met Leu Pro Pro His Leu Thr Glu Asn
35 40 45
Gly Ala Val Met Ile Gln Phe Gly His Gln Met Pro Asp Tyr Asp Ser
50 55 60
Pro Ala Thr Gln Ser Thr Ser Glu Thr Ser His Gln Glu Ala Ser Gly
65 70 75 80
Met Ser Glu Gly Ser Leu Asn Glu His Asn Asn Asp His Ser Gly Asn
85 90 95
Leu Asp Gly Tyr Ser Lys Ser Asp Glu Asn Lys Met Met Ser Ala Leu
100 105 110
Ser Leu Gly Asn Pro Glu Thr Ala Tyr Ala His Asn Pro Lys Pro Asp
115 120 125
Arg Thr Gln Ser Phe Ala Ile Ser Tyr Pro Tyr Ala Asp Pro Tyr Tyr
130 135 140
Gly Gly Ala Val Ala Ala Ala Tyr Gly Pro His Ala Ile Met His Pro
145 150 155 160
Gln Leu Val Gly Met Val Pro Ser Ser Arg Val Pro Leu Pro Ile Glu
165 170 175
Pro Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala
180 185 190
Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu Ala Glu Asn Lys
195 200 205
Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His
210 215 220
Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys
225 230 235 240
Gln Gln Pro Glu Ser Pro Gly Ser Gly Gly Ser Ser Asp Ala Gln Arg
245 250 255
Val Pro Ala Thr Ala Ser Gly Gly Leu Phe Thr Lys His Glu His Ser
260 265 270
Leu Pro Pro Gly Gly Arg His His Tyr His Ala Arg Gly Gly Gly Glu
275 280 285
15
1301
DNA
Zea mays
15
gcacgagcca gtgcgacggc cacggcctga gcggcgctgc cagcaaggcg gctagtatga 60
gcagcatgga gtcgcggccg ggccgaacga acctggtgga gcccataggg cacggcgccg 120
cgctgccgtc cggcggccag gcagtgcagc cgtggtggac gagctccggg gctgtgctcg 180
gtgcagtctc gccagccgtc gtggcggtgg cgcccgggag cgggacgggg attagcctgt 240
cgagcagccc ggcaggtggt agtggtggtg gcggcgcggc taaaggagcc gcgagtgacg 300
agagcagcga ggattcacgg agatctgggg aaccaaaaga tggaagcgct agtcaagaaa 360
agaaccatgc cacatcgcag atacccgctc tggcgccaga gtatttggca ccatactcgc 420
agctggaact gaaccaatca attgcttctg cagcatatca gtacccagat ccttactatg 480
caggcatggt tgctccctat ggaagtcatg ctgtggctca ttttcagcta cctggactaa 540
ctcaatctcg aatgccatta cctcttgaag tatccgagga gcctgtttat gtaaatgcca 600
agcagtacca tggtatctta agacgacggc agtcccgtgc taaggctgaa cttgagaaaa 660
aggtggtcaa agccagaaag ccataccttc acgagtctcg tcatcagcac gcgatgagga 720
gggcaagagg aaacggggga cgcttcctga acacaaagaa aagtgacagt ggtgctccca 780
atggaggcga aaacgccgag catctccatg tccctcccga cttactacag ctacgacaga 840
acgaggcttg aagtagcggt atggctctgg catccttgaa cagcagttcc tgtccacggg 900
cgtaggcatt cgagaccgga ttcatatagc tctccacagc atacgcgcag ccatctctgc 960
ggtaacgcac gttctcctga acgagctttg tagcgagata ggtatgcaag tgcaatctgg 1020
gcgcaggaat ccatcatcaa gtgcccaatg cccatggggt aggtacgctg tttcaggcaa 1080
ttcattcttg gctttcacgt tccacccttg tgtaactggt gtgttgtaaa tgtgtggaaa 1140
actaagcttg tgctctgtat cgggccgttc agcggaactg caaaacgcct gtataattaa 1200
gatcgaactt tggattaact cggtaatgct ttgtctggtt ttcttttaaa aaaaaaaaaa 1260
aaaaaaaaaa aaaaaaaaaa aacaaaaaaa aaaaaaaaaa a 1301
16
264
PRT
Zea mays
16
Met Ser Ser Met Glu Ser Arg Pro Gly Arg Thr Asn Leu Val Glu Pro
1 5 10 15
Ile Gly His Gly Ala Ala Leu Pro Ser Gly Gly Gln Ala Val Gln Pro
20 25 30
Trp Trp Thr Ser Ser Gly Ala Val Leu Gly Ala Val Ser Pro Ala Val
35 40 45
Val Ala Val Ala Pro Gly Ser Gly Thr Gly Ile Ser Leu Ser Ser Ser
50 55 60
Pro Ala Gly Gly Ser Gly Gly Gly Gly Ala Ala Lys Gly Ala Ala Ser
65 70 75 80
Asp Glu Ser Ser Glu Asp Ser Arg Arg Ser Gly Glu Pro Lys Asp Gly
85 90 95
Ser Ala Ser Gln Glu Lys Asn His Ala Thr Ser Gln Ile Pro Ala Leu
100 105 110
Ala Pro Glu Tyr Leu Ala Pro Tyr Ser Gln Leu Glu Leu Asn Gln Ser
115 120 125
Ile Ala Ser Ala Ala Tyr Gln Tyr Pro Asp Pro Tyr Tyr Ala Gly Met
130 135 140
Val Ala Pro Tyr Gly Ser His Ala Val Ala His Phe Gln Leu Pro Gly
145 150 155 160
Leu Thr Gln Ser Arg Met Pro Leu Pro Leu Glu Val Ser Glu Glu Pro
165 170 175
Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln
180 185 190
Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val Lys Ala Arg Lys
195 200 205
Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala Arg
210 215 220
Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys Lys Ser Asp Ser Gly Ala
225 230 235 240
Pro Asn Gly Gly Glu Asn Ala Glu His Leu His Val Pro Pro Asp Leu
245 250 255
Leu Gln Leu Arg Gln Asn Glu Ala
260
17
1258
DNA
Zea mays
17
gcacgaggcc acgccgccgg ccacgcccca gacgaccccg cccgccgccg ccgcctcccg 60
ctccctccgc gcgcagccct cgtccggccg cccgggtccg agcgcgctcg ctcctcctcc 120
ccacgtcgga cagtttaagt gtggcttcat tgcatgagta gttgcagtta gcgtggcttt 180
tctccgtgct tgctcctggt cgtgctttgc cttgcaaagg aaggaatcat gacatctgtt 240
gttcacagtg tttcaggtga ccacagggct gaggatcaaa atcaacagaa gaagcaagct 300
gaacctgggg accagcaaga agccccagtt actagttcag atagccaacc aacagtaggc 360
acaccatcaa cagattatgt ggcaccctat gcccctcatg acatgagcca tgcaatgggt 420
caatacgctt atccaaatat tgacccatac tatggaagcc tttatgcagc agcttacggt 480
ggacagccat tgatgcatcc accgttagtt ggaatgcatc cggctggctt acctttgcct 540
accgatgcaa ttgaagagcc tgtgtatgta aatgcaaagc aatacaatgc catattaaga 600
cggcgtcaat ctcgggctaa agctgaatca gaacgaaagc ttatcaaggg gcgtaagccc 660
tatctccatg agtcacgtca tcagcatgcc ttgaaaaggg ccaggggagc tggaggtcgg 720
tttctcaact caaagtcaga tgacaaggaa gagaactccg actcgagtca caaagagaat 780
cagaacggag ttgcgcccca caggagcggc caaccgtcaa cccctccgtc tcccaacggt 840
gcatcgtcag ctaatcaggg caggcagtcg tgaatgatgg atgattcaaa actcacagct 900
gaagagattt cagcccctga gctagatatg gcagcagttt tgtacagaaa acgctagcaa 960
catggtgtcg gtcggtcggt cggttgttgt aggacatgtt ccatagaaaa agcatagacg 1020
agtctacagg ttttggagcc ttggtttggt cctctgtgta ttcacctttc tgtacaatct 1080
tagtagcgtt gtgtaccttc ccctggaagg aaggatagct tcagttagcg cttcagaaag 1140
tcaagtgtgt agcatattgg cttattgttt gctttgcttg gacaatggag atttgggagt 1200
ggagttcata accctgctga ataaatactc ttagctggct aaaaaaaaaa aaaaaaaa 1258
18
214
PRT
Zea mays
18
Met Thr Ser Val Val His Ser Val Ser Gly Asp His Arg Ala Glu Asp
1 5 10 15
Gln Asn Gln Gln Lys Lys Gln Ala Glu Pro Gly Asp Gln Gln Glu Ala
20 25 30
Pro Val Thr Ser Ser Asp Ser Gln Pro Thr Val Gly Thr Pro Ser Thr
35 40 45
Asp Tyr Val Ala Pro Tyr Ala Pro His Asp Met Ser His Ala Met Gly
50 55 60
Gln Tyr Ala Tyr Pro Asn Ile Asp Pro Tyr Tyr Gly Ser Leu Tyr Ala
65 70 75 80
Ala Ala Tyr Gly Gly Gln Pro Leu Met His Pro Pro Leu Val Gly Met
85 90 95
His Pro Ala Gly Leu Pro Leu Pro Thr Asp Ala Ile Glu Glu Pro Val
100 105 110
Tyr Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln Ser
115 120 125
Arg Ala Lys Ala Glu Ser Glu Arg Lys Leu Ile Lys Gly Arg Lys Pro
130 135 140
Tyr Leu His Glu Ser Arg His Gln His Ala Leu Lys Arg Ala Arg Gly
145 150 155 160
Ala Gly Gly Arg Phe Leu Asn Ser Lys Ser Asp Asp Lys Glu Glu Asn
165 170 175
Ser Asp Ser Ser His Lys Glu Asn Gln Asn Gly Val Ala Pro His Arg
180 185 190
Ser Gly Gln Pro Ser Thr Pro Pro Ser Pro Asn Gly Ala Ser Ser Ala
195 200 205
Asn Gln Gly Arg Gln Ser
210
19
1170
DNA
Zea mays
19
gcacgagcca cgccgtcggc cacgccccga cgaccaacac ctgctccctc cgccgccgcc 60
cgtgtcctcc cgctccgtcc gcgcgccgcc ctcatacctc caagcgcggt tggatctgct 120
ctgggtccaa gtccgctcga tcctcctctc gtcggaaact ttatgtgtgc cttcatccac 180
gaagagctga agatatcaca tgactagttg cagttagtgt ggcttttctc cctgcttggt 240
cctgattgtg tgctttgcct tgcaaaggaa ggaatcatga cctctgttgt tcagagcgtt 300
tcaggtgacc acagggctga ggatcaaagt catcagaaga agcaaactga acctggggac 360
cagcaagaag ccccagttac tagttcagat agccaaccaa cagtgggcac accatcaaca 420
gattatgtgg caccctatgc ccctcatgac atgagccatg caatgggtca atatgcttat 480
ccaaatattg atccatacta tggaagtctt tatgcggcgg cttatggtgg acatccattg 540
atgcatccaa cattagtcgg aatgcatccg gctggcttac ctttgcctac cgatgcaatt 600
gaagagccag tgtatgtaaa tgcaaagcaa tacaatgcca tattaagacg gcgtcaatct 660
cgggctaaag ctgaatcaga acggaagctt gtcaagggcc gcaagcccta tctccatgag 720
tcacggcatc agcatgcctt gaaaagggcc aggggagctg gaggtcggtt tctcaattcg 780
aagtcagatg acaaggaaga gaactccgac tcaagtcaaa aagagattca gaacggagtt 840
gcgccccaaa agggtggcca accgtcaacc cctccgtctc ccaacggtgc gtcgtcagct 900
tatcaggcgc ctagtcgtga atgatgattc ggaactcaca actgaagaga ttttagtccc 960
tgacgctagt tgtggcagca gctttgtaca gtaagtgcta gcgggcagca gcgaaatggt 1020
gtcatagaaa aacgttgacg agtcagacag gttttggagt cttggttttt tttcctctgt 1080
ttattttacc tgtctgcaat tttagtagct ttgtgtccct tcccctggat agttttttgg 1140
tcagcgctta agaaaaaaaa aaaaaaaaaa 1170
20
215
PRT
Zea mays
20
Met Thr Ser Val Val Gln Ser Val Ser Gly Asp His Arg Ala Glu Asp
1 5 10 15
Gln Ser His Gln Lys Lys Gln Thr Glu Pro Gly Asp Gln Gln Glu Ala
20 25 30
Pro Val Thr Ser Ser Asp Ser Gln Pro Thr Val Gly Thr Pro Ser Thr
35 40 45
Asp Tyr Val Ala Pro Tyr Ala Pro His Asp Met Ser His Ala Met Gly
50 55 60
Gln Tyr Ala Tyr Pro Asn Ile Asp Pro Tyr Tyr Gly Ser Leu Tyr Ala
65 70 75 80
Ala Ala Tyr Gly Gly His Pro Leu Met His Pro Thr Leu Val Gly Met
85 90 95
His Pro Ala Gly Leu Pro Leu Pro Thr Asp Ala Ile Glu Glu Pro Val
100 105 110
Tyr Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln Ser
115 120 125
Arg Ala Lys Ala Glu Ser Glu Arg Lys Leu Val Lys Gly Arg Lys Pro
130 135 140
Tyr Leu His Glu Ser Arg His Gln His Ala Leu Lys Arg Ala Arg Gly
145 150 155 160
Ala Gly Gly Arg Phe Leu Asn Ser Lys Ser Asp Asp Lys Glu Glu Asn
165 170 175
Ser Asp Ser Ser Gln Lys Glu Ile Gln Asn Gly Val Ala Pro Gln Lys
180 185 190
Gly Gly Gln Pro Ser Thr Pro Pro Ser Pro Asn Gly Ala Ser Ser Ala
195 200 205
Tyr Gln Ala Pro Ser Arg Glu
210 215
21
1892
DNA
Zea mays
21
ccacgcgtcc gcccgctggg gctgggctac ctcgttcgct tcgctgcctc tgcctactcc 60
tctctcccct ctttctccgc tcatgtgctg gtccatcgtc tgcctcctcg gtttgtcctg 120
aatccttgga cagacgcaca caggctcagc tcaggcggtt gctggatcct ttggcgttcc 180
ccatccggcc aagaatcctg caagagcctg cttggagttg gagccggcca aacctgctgc 240
cgtcgacgtc tcgggcgagg cagccttgag catcagtctc cttgacgagg caagcaggcc 300
atgatgagct tcaagggaca cgaggggttc ggtcaggtgt ccggagccgg gatgagccag 360
gcctcccatg gcgccgcgcc tgccggagcc ccgctgccgt ggtgggctgg ggcccagctg 420
ctgtccggcg agccggcgcc cctgtccccg gaggaggcgc cccgggacac ccagttccag 480
gtcgtgccgg gggcctctca gggcacgccg gatccagcgc cgcccaaggg agggacacct 540
aaggtcctca agttctctgt gttccaaggg aatttggagt cgggtggtaa aggagagaaa 600
accccaaaga actctaccgc tgtcgttctg cagtcgccat tcgcggaata caatggtcgt 660
ttcgagatcg gtctcggtca atctatgctg gtcccttcca gttattcttg tgctgaccag 720
tgctatggca tgcttacgac ttatggaatg agatccatgt ctggtgggag aatgctgttg 780
ccactaattg cgccagccga tgcacccgtt tatgtgaacc cgaaacagta cgaaggcatc 840
ctccgtcgtc gccgtgctcg cgctaaggcg gagagcgaga acaggctcac caaaggcaga 900
aagccttatc tccatgagtc gcgccacctc cacgcgatgc gccgggtgag aggctccggc 960
gggcgcttcc tcaacacgaa taaaggaggg cacggcacgg acgttgctgc aaacgggggc 1020
agcaagatgg cggcggcggc ggcaccatcc cgtctcgcca tgccccctag cgctgagcct 1080
ccatggctgt cagggctcag cgacggcagc aacccgtgct gccactcccg gagtagtgtc 1140
tccagcttgt ccgggtccta cgtggcgagc atctacggtg gcttggagca gcacctccgg 1200
gcgccgccct tcttcacccc gctgccgccc gtcatggacg gcgaccacgg cggccccacg 1260
gccgccacca tctcctcctt caagtgggcg gccagcgacg gctgctgcga gctcctcagg 1320
gcgtgaaccg aggagggagg ggatggctac tcagacgaac ggccttctcc ccgatggctg 1380
gttgtctgta ggcaaatcat tcttggctgt tctgcattgg ggtgcgacct acacatcatc 1440
cgcctaccgt acctacccca cccgtgtccc tgaaattcca gggtgcttgg gttacttaca 1500
ggggtcttgt gtggtgatgt ggctccccca tatgcatttg ctgtaacata gcgtacccaa 1560
accactgttg cttggtactt ctcgctatca ctgcctcatc agtatggatt ctgcatttct 1620
gcgttgtcac agtgtatgaa taattgaggc gtcagacttc agggttgctc cagttcttgg 1680
agataggtct gggtttgttt gaagcttgcc tggaggtctg aaactttgtg tttggtgaag 1740
atgctacgtt attgcagttt gaatctgtaa gtttgggatc agcattcagt tgttgcatcg 1800
tctgtgctct ggtgccgagg tgttcgttct gaatatttga ttcaattcaa aatcttcagc 1860
taagttacta ctgggacaaa aaaaaaaaaa aa 1892
22
341
PRT
Zea mays
22
Met Met Ser Phe Lys Gly His Glu Gly Phe Gly Gln Val Ser Gly Ala
1 5 10 15
Gly Met Ser Gln Ala Ser His Gly Ala Ala Pro Ala Gly Ala Pro Leu
20 25 30
Pro Trp Trp Ala Gly Ala Gln Leu Leu Ser Gly Glu Pro Ala Pro Leu
35 40 45
Ser Pro Glu Glu Ala Pro Arg Asp Thr Gln Phe Gln Val Val Pro Gly
50 55 60
Ala Ser Gln Gly Thr Pro Asp Pro Ala Pro Pro Lys Gly Gly Thr Pro
65 70 75 80
Lys Val Leu Lys Phe Ser Val Phe Gln Gly Asn Leu Glu Ser Gly Gly
85 90 95
Lys Gly Glu Lys Thr Pro Lys Asn Ser Thr Ala Val Val Leu Gln Ser
100 105 110
Pro Phe Ala Glu Tyr Asn Gly Arg Phe Glu Ile Gly Leu Gly Gln Ser
115 120 125
Met Leu Val Pro Ser Ser Tyr Ser Cys Ala Asp Gln Cys Tyr Gly Met
130 135 140
Leu Thr Thr Tyr Gly Met Arg Ser Met Ser Gly Gly Arg Met Leu Leu
145 150 155 160
Pro Leu Ile Ala Pro Ala Asp Ala Pro Val Tyr Val Asn Pro Lys Gln
165 170 175
Tyr Glu Gly Ile Leu Arg Arg Arg Arg Ala Arg Ala Lys Ala Glu Ser
180 185 190
Glu Asn Arg Leu Thr Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg
195 200 205
His Leu His Ala Met Arg Arg Val Arg Gly Ser Gly Gly Arg Phe Leu
210 215 220
Asn Thr Asn Lys Gly Gly His Gly Thr Asp Val Ala Ala Asn Gly Gly
225 230 235 240
Ser Lys Met Ala Ala Ala Ala Ala Pro Ser Arg Leu Ala Met Pro Pro
245 250 255
Ser Ala Glu Pro Pro Trp Leu Ser Gly Leu Ser Asp Gly Ser Asn Pro
260 265 270
Cys Cys His Ser Arg Ser Ser Val Ser Ser Leu Ser Gly Ser Tyr Val
275 280 285
Ala Ser Ile Tyr Gly Gly Leu Glu Gln His Leu Arg Ala Pro Pro Phe
290 295 300
Phe Thr Pro Leu Pro Pro Val Met Asp Gly Asp His Gly Gly Pro Thr
305 310 315 320
Ala Ala Thr Ile Ser Ser Phe Lys Trp Ala Ala Ser Asp Gly Cys Cys
325 330 335
Glu Leu Leu Arg Ala
340
23
323
DNA
Zea mays
unsure
(201)
n = A, C, G, or T
23
acgccatcat gcgtcggcgc tgtgcccgtg ccaaagcaga gagggaaaat aggctggtca 60
aaggcaggaa gccatatctc catgagtcac gccatcagca tgcactgcgt cgcccgcgag 120
gctctggcgg acgcttcctg aacacaaaga aagaatccag cgggaaggat gctggtggtg 180
gcagcaaggc aatgtttcaa ncaaccccct catgcgccag gtggcgttct cccaagctcc 240
aaanatccac cagtccagac ctgggccaac cccgancanc gttttccacc tgttcnggtt 300
tccaaagttt tttcaacctn ttt 323
24
77
PRT
Zea mays
UNSURE
(67)
Xaa = any amino acid
24
Ala Ile Met Arg Arg Arg Cys Ala Arg Ala Lys Ala Glu Arg Glu Asn
1 5 10 15
Arg Leu Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln
20 25 30
His Ala Leu Arg Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr
35 40 45
Lys Lys Glu Ser Ser Gly Lys Asp Ala Gly Gly Gly Ser Lys Ala Met
50 55 60
Phe Gln Xaa Thr Pro Ser Cys Ala Arg Trp Arg Ser Pro
65 70 75
25
1195
DNA
Zea mays
25
gcaccagacc agaggaaggg acggcgggga ggtggcaagg cgcagagagc aggttcgctt 60
ggcggacgca ccgagggagg cgtgtgggag ccatgcttct tccgtcttcg tcttcgtctt 120
ccgcttccgc ttccgcttcc aaaggtaact cctttgggaa aaccgttaac gatcatctga 180
ggtcaacttt gagttttgat aacaagcaac ctccatttgc aagtcaaaac tttgactacg 240
gtcaaacaat agcttgcatt tcatacccgt acaatcattc tggctcagga gatgtctggg 300
cagcctatga gtcacgcacc agcgctgcca ctgtgttccg ttcccaaatt gctggtgggg 360
gtacatccac aagaattccc ttgcctttgg aattagcaga gaatgaaccc atatatgtga 420
atcccaaaca atatcacggg atacttcgca gaagacagtt acgtgccaag ttagaggctc 480
agaacaagct agtcagagcc cgaaagcctt accttcatga gtctaggcat cttcatgcaa 540
tgaagagggc acgaggttcc ggtggacgat tcctcaacac taagcagctc cagcagtctc 600
acactgccct caccaggtcc accaccacaa gtggcacaag ctcctcaggc tcaactcatc 660
tgcggcttgg tggtggcgca gccgcagctg gagatcgatc tgtgctggca cccaaaacaa 720
tggcctcaca agacagtagc aagaaggccg tttcttcagc cctcgccttc actgcgactc 780
caatgctgcg cagagatgac ggcttcttgc agcacccaag ccatcttttc agtttttctg 840
gtcattttgg gcaggcaagc gcgcaagctg gcgtccataa tggaagtcag catagggttc 900
cagttatgag atgaccggtt tgcgaaccat agctggtgat ccaggcgtct agggtcaact 960
tcgctgtggt gtcttagtct ctcaggcaat tcatccttgg cttaatttct ggctttttat 1020
tagaaggtac caaaatgtgt tccataccgt tgtggccaca gagcccataa accagggggt 1080
ttgatggttg gcactcctac ccaaactatt gtcttgttgc agtggtgttt gttagaataa 1140
accttgacta ttattctgta caaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 1195
26
273
PRT
Zea mays
26
Met Leu Leu Pro Ser Ser Ser Ser Ser Ser Ala Ser Ala Ser Ala Ser
1 5 10 15
Lys Gly Asn Ser Phe Gly Lys Thr Val Asn Asp His Leu Arg Ser Thr
20 25 30
Leu Ser Phe Asp Asn Lys Gln Pro Pro Phe Ala Ser Gln Asn Phe Asp
35 40 45
Tyr Gly Gln Thr Ile Ala Cys Ile Ser Tyr Pro Tyr Asn His Ser Gly
50 55 60
Ser Gly Asp Val Trp Ala Ala Tyr Glu Ser Arg Thr Ser Ala Ala Thr
65 70 75 80
Val Phe Arg Ser Gln Ile Ala Gly Gly Gly Thr Ser Thr Arg Ile Pro
85 90 95
Leu Pro Leu Glu Leu Ala Glu Asn Glu Pro Ile Tyr Val Asn Pro Lys
100 105 110
Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
115 120 125
Ala Gln Asn Lys Leu Val Arg Ala Arg Lys Pro Tyr Leu His Glu Ser
130 135 140
Arg His Leu His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe
145 150 155 160
Leu Asn Thr Lys Gln Leu Gln Gln Ser His Thr Ala Leu Thr Arg Ser
165 170 175
Thr Thr Thr Ser Gly Thr Ser Ser Ser Gly Ser Thr His Leu Arg Leu
180 185 190
Gly Gly Gly Ala Ala Ala Ala Gly Asp Arg Ser Val Leu Ala Pro Lys
195 200 205
Thr Met Ala Ser Gln Asp Ser Ser Lys Lys Ala Val Ser Ser Ala Leu
210 215 220
Ala Phe Thr Ala Thr Pro Met Leu Arg Arg Asp Asp Gly Phe Leu Gln
225 230 235 240
His Pro Ser His Leu Phe Ser Phe Ser Gly His Phe Gly Gln Ala Ser
245 250 255
Ala Gln Ala Gly Val His Asn Gly Ser Gln His Arg Val Pro Val Met
260 265 270
Arg
27
1376
DNA
Zea mays
27
tctctatcta tctatacggt tcaagggact gaagaaggta gagagagaaa ctcgaagggg 60
agaggacaga agagggagat acaggttaat ttttaggtac cagatcatct gatttctcag 120
aagcaaaatg ttgtttggag ctcagtgaca ccatcttgta atgcctgtga ttttacggga 180
aatggaggat cattctgtcc atcccatgtc taagtctaac catggctcct tgtcaggaaa 240
tggttatgag atgaaacatt caggccataa agtttgcgat agggattcat catcggagtc 300
tgatcggtct caccaagaag catcagcagc aagtgaaagc agtccaaatg aacacacatc 360
aactcaatca gacaatgatg aagatcatgg gaaagataat caggacacaa tgaagccagt 420
attgtccttg gggaaggaag gctctgcctt tttggcccca aaattacatt acagcccatc 480
ttttgcttgt attccttata ctgctgatgc ttattatagt gcggttgggg tcttgacagg 540
atatcctcca catgccattg tccatcccca gcaaaatgat acaacgaaca ctccgggtat 600
gttacctgtg gaacctgcag aagaaccaat atatgttaat gcaaaacaat accatgcaat 660
ccttaggagg aggcaaacac gtgctaaatt ggaggcccag aacaagatgg tgaaaaatcg 720
gaagccatat cttcatgagt cccgacatcg tcatgccatg aaacgggctc gtggatcagg 780
aggacggttc ctcaacacaa agcagctcca ggagcagaac cagcagtatc aggcatcgag 840
tggttcattg tgctcaaaga tcattgccaa cagcataatc tcccaaagtg gccccacctg 900
cacgccctct tctggcactg caggtgcttc aacagccggc caggaccgca gctgcttgcc 960
ctcagttggc ttccgcccca cgacaaactt cagtgaccaa ggtcgaggag gcttgaagct 1020
ggccgtgatc ggcatgcagc agcgtgtttc caccataagg tgaagagaag tgggcacaac 1080
accattccca ggcacactgc ctgtggcaac tcatccttgg ctcttggaac tttgaatatg 1140
caatcgacat gtagcttgag atcctcagaa taaaccaaac cttcagttat atgcaagcct 1200
tttttgaggt tgctgttgct gtacctgaga actgtggtta ggttatgagt ttgttcctca 1260
aaactgaccc atacatgaca tgctaccttg tgctgagttt ctgagacaaa gccatcgaaa 1320
catgatcttg tggttcagta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 1376
28
300
PRT
Zea mays
28
Met Pro Val Ile Leu Arg Glu Met Glu Asp His Ser Val His Pro Met
1 5 10 15
Ser Lys Ser Asn His Gly Ser Leu Ser Gly Asn Gly Tyr Glu Met Lys
20 25 30
His Ser Gly His Lys Val Cys Asp Arg Asp Ser Ser Ser Glu Ser Asp
35 40 45
Arg Ser His Gln Glu Ala Ser Ala Ala Ser Glu Ser Ser Pro Asn Glu
50 55 60
His Thr Ser Thr Gln Ser Asp Asn Asp Glu Asp His Gly Lys Asp Asn
65 70 75 80
Gln Asp Thr Met Lys Pro Val Leu Ser Leu Gly Lys Glu Gly Ser Ala
85 90 95
Phe Leu Ala Pro Lys Leu His Tyr Ser Pro Ser Phe Ala Cys Ile Pro
100 105 110
Tyr Thr Ala Asp Ala Tyr Tyr Ser Ala Val Gly Val Leu Thr Gly Tyr
115 120 125
Pro Pro His Ala Ile Val His Pro Gln Gln Asn Asp Thr Thr Asn Thr
130 135 140
Pro Gly Met Leu Pro Val Glu Pro Ala Glu Glu Pro Ile Tyr Val Asn
145 150 155 160
Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys
165 170 175
Leu Glu Ala Gln Asn Lys Met Val Lys Asn Arg Lys Pro Tyr Leu His
180 185 190
Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly
195 200 205
Arg Phe Leu Asn Thr Lys Gln Leu Gln Glu Gln Asn Gln Gln Tyr Gln
210 215 220
Ala Ser Ser Gly Ser Leu Cys Ser Lys Ile Ile Ala Asn Ser Ile Ile
225 230 235 240
Ser Gln Ser Gly Pro Thr Cys Thr Pro Ser Ser Gly Thr Ala Gly Ala
245 250 255
Ser Thr Ala Gly Gln Asp Arg Ser Cys Leu Pro Ser Val Gly Phe Arg
260 265 270
Pro Thr Thr Asn Phe Ser Asp Gln Gly Arg Gly Gly Leu Lys Leu Ala
275 280 285
Val Ile Gly Met Gln Gln Arg Val Ser Thr Ile Arg
290 295 300
29
1492
DNA
Zea mays
29
gcacgagctc acttgcttcg acgtatttct caatctatct atacggttca agggaccgaa 60
gaaggtagag agagaaactt gaaggggaga ggaaggagat acaggttcat gttcatttag 120
gtgtcagttc atctgatttc tcagaagcaa aatgttgttt ggagctcagt gacaccatct 180
tgtaatgcat gtgcctttta cgggaaatgg aggatcattc tgtccatcca aagtctaagt 240
ctaaccatgg ttccttgtca ggaaatggtt atgagatgaa aaatccaggc catgaagttt 300
gtgataggga ttcatcatca gagtctgatc gatctcaccc agaagcatca gcagtgagtg 360
aaagcagtct agatgaacac acatcaactc aatcagacaa tgatgaagat catgggaagg 420
ataatcagga cacattgaag ccagtattgt ccttggggaa ggaagggtct gcctttttgg 480
ccccaaaaat agattacaac ccgtcttttc cttatattcc ttatactgct gacgcttact 540
atggtggcgt tggggtcttg acaggatatg ctccgcatgc cattgtccat ccccagcaaa 600
atgatacaac aaatagtccg gttatgttgc ctgcggaacc tgcagaagaa gaaccaatat 660
atgtcaatgc aaaacaatac catgcaatcc ttaggaggag gcagacacgt gctaaactgg 720
aggcgcagaa caagatggtg aaaggtcgga agccatacct tcatgagtct cgacaccgtc 780
atgccatgaa gcgggcccgt ggctcaggag ggcggttcct caacacaaag cagcagctcc 840
aggagcagaa ccagcggtac caggcgtcga gtggttcaat gtgctcaaag accattggca 900
acagcgtaat ctcccaaagt ggccccattt gcacgccctc ttctgacgct gcaggtgctt 960
cagcagccag ccaggaccgc ggctgcttgc cctcggttgg cttccgcccc acagccaact 1020
tcagtgagca aggtggaggc ggctcgaagc tggtcatgaa cggcatgcag cagcgtgttt 1080
ccaccataag gtgaagagaa gtgggcacga caccattccc aggcgcgcac tgcctgtggc 1140
aactcatcct tggcttttga aactatggat atgcaatgga catgtagctt cgagttcctc 1200
agaataacca aacgtgaaga atatgcaaag tccttttgag atttgctgta gctgaaagaa 1260
ctgtggttag gttgagtttc ttcctggaga ctgatccata catgacatgc tacctcgtgc 1320
tgagtttctg aggtgaagcc atcgaaacat gaccgtgtgg ttcagtaaaa aaaaaaaaaa 1380
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1440
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 1492
30
301
PRT
Zea mays
30
Met Cys Leu Leu Arg Glu Met Glu Asp His Ser Val His Pro Lys Ser
1 5 10 15
Lys Ser Asn His Gly Ser Leu Ser Gly Asn Gly Tyr Glu Met Lys Asn
20 25 30
Pro Gly His Glu Val Cys Asp Arg Asp Ser Ser Ser Glu Ser Asp Arg
35 40 45
Ser His Pro Glu Ala Ser Ala Val Ser Glu Ser Ser Leu Asp Glu His
50 55 60
Thr Ser Thr Gln Ser Asp Asn Asp Glu Asp His Gly Lys Asp Asn Gln
65 70 75 80
Asp Thr Leu Lys Pro Val Leu Ser Leu Gly Lys Glu Gly Ser Ala Phe
85 90 95
Leu Ala Pro Lys Ile Asp Tyr Asn Pro Ser Phe Pro Tyr Ile Pro Tyr
100 105 110
Thr Ala Asp Ala Tyr Tyr Gly Gly Val Gly Val Leu Thr Gly Tyr Ala
115 120 125
Pro His Ala Ile Val His Pro Gln Gln Asn Asp Thr Thr Asn Ser Pro
130 135 140
Val Met Leu Pro Ala Glu Pro Ala Glu Glu Glu Pro Ile Tyr Val Asn
145 150 155 160
Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys
165 170 175
Leu Glu Ala Gln Asn Lys Met Val Lys Gly Arg Lys Pro Tyr Leu His
180 185 190
Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly
195 200 205
Arg Phe Leu Asn Thr Lys Gln Gln Leu Gln Glu Gln Asn Gln Arg Tyr
210 215 220
Gln Ala Ser Ser Gly Ser Met Cys Ser Lys Thr Ile Gly Asn Ser Val
225 230 235 240
Ile Ser Gln Ser Gly Pro Ile Cys Thr Pro Ser Ser Asp Ala Ala Gly
245 250 255
Ala Ser Ala Ala Ser Gln Asp Arg Gly Cys Leu Pro Ser Val Gly Phe
260 265 270
Arg Pro Thr Ala Asn Phe Ser Glu Gln Gly Gly Gly Gly Ser Lys Leu
275 280 285
Val Met Asn Gly Met Gln Gln Arg Val Ser Thr Ile Arg
290 295 300
31
725
DNA
Zea mays
unsure
(546)
n = A, C, G, or T
31
gcagcaaaca ctagggtacc attgccagtt gggcctgcag cagaggaacc catatttgtc 60
aatgcaaagc aatacaatgc tatcctccgg aggaggcaaa aacgcgcaaa actggaggcc 120
caaaataaac tggtgaaagg tcggaagcca tatctccatg aatctcggca tcgtcatgca 180
atgaagcgag tccgtggacc agggcgtttc ctcaacaaaa aggagctcca ggagcagcag 240
ctgaaggcac tgccttcact tcagactcca acaggtgggg tcagcaaaat ggcctttggc 300
aggaacctat gccctgaaag cagcacatct cactcgcctt cgacgagctc tacaatctcg 360
agtgcttcaa actggagtgg cacgctagct catcaagagc acgttagctt cgcatctgct 420
aataaattcc tccccagcat gaacttccac gcggagaatg gagtgaaaag atggccatca 480
atggcgtccg ccaccacacc cctgtcctga gtgaacaacc ttcaactgtg ggggtgctgt 540
gctggnacca tcantgggcg cgctccgtgt gcccgtggca attcatcttg gcttatgatg 600
tatcttatag ttaatttgct ttcactttca tatggnactt gtctcagatt aaactcgtga 660
tatttattgc nactgggatg actggaaata atctcangtt tcttaccaaa aaaaaaaaaa 720
aaaaa 725
32
169
PRT
Zea mays
32
Ala Ala Asn Thr Arg Val Pro Leu Pro Val Gly Pro Ala Ala Glu Glu
1 5 10 15
Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg
20 25 30
Gln Lys Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Val Lys Gly Arg
35 40 45
Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys Arg Val
50 55 60
Arg Gly Pro Gly Arg Phe Leu Asn Lys Lys Glu Leu Gln Glu Gln Gln
65 70 75 80
Leu Lys Ala Leu Pro Ser Leu Gln Thr Pro Thr Gly Gly Val Ser Lys
85 90 95
Met Ala Phe Gly Arg Asn Leu Cys Pro Glu Ser Ser Thr Ser His Ser
100 105 110
Pro Ser Thr Ser Ser Thr Ile Ser Ser Ala Ser Asn Trp Ser Gly Thr
115 120 125
Leu Ala His Gln Glu His Val Ser Phe Ala Ser Ala Asn Lys Phe Leu
130 135 140
Pro Ser Met Asn Phe His Ala Glu Asn Gly Val Lys Arg Trp Pro Ser
145 150 155 160
Met Ala Ser Ala Thr Thr Pro Leu Ser
165
33
831
DNA
Zea mays
33
ccacgcgtcc gcatatatgt gaatcccaaa caatatcacg ggatacttcg cagaagacag 60
ttacgtgcca agctagaggc tcagaacaag ctagtcagag cccgaaagtc ttaccttcat 120
gagtctaggc atcttcatgc aatgaagagg gcacgaggtt ccggtggacg attcctcaac 180
actaagcagc tccagcagtc tcacacagcc ctcaccaggt ccaccaccac aagtggcaca 240
agctcctcag gctcaactca tctgcggctt ggtggtggcg cagccgcagc tggagatcga 300
tctgtgctgg cacccaaaac aatggcctca caagacagta gcaagaaggc cgtttcttca 360
gccctcgcct tcactgcgac tccaatgctg cgcagagatg acggcttctt gcagcaccca 420
agccatcttt tcagtttttc tggtcatttt gggcaggcaa gcgcgcaagc tggcgtccat 480
aatggaagtc agcatagggt tccagttatg agatgaccgg tttgcgaacc atagctggtg 540
atccaggcgt ctagggtcaa cttcgctgtg gtgtcttagt ctctcaggca attcatcctt 600
ggcttaattt ctggcttttt attagaaggt accaaaatgt gttccatacc gttgtggcca 660
cagagcccat aaaccagggg gtttgatggt tggcactcct acccaaacta ttgttgcagt 720
ggtgtttgtt agaataaacc ttgactatta ttctgtacaa tttgccttta tcttgtactg 780
ccaattattg tgtagtggtc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa g 831
34
98
PRT
Zea mays
34
Ile Tyr Val Asn Pro Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln
1 5 10 15
Leu Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Val Arg Ala Arg Lys
20 25 30
Ser Tyr Leu His Glu Ser Arg His Leu His Ala Met Lys Arg Ala Arg
35 40 45
Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Gln Gln Ser His
50 55 60
Thr Ala Leu Thr Arg Ser Thr Thr Thr Ser Gly Thr Ser Ser Ser Gly
65 70 75 80
Ser Thr His Leu Arg Leu Gly Gly Gly Ala Ala Ala Ala Gly Asp Arg
85 90 95
Ser Val
35
1307
DNA
Zea mays
35
ccacgcgtcc gctgtctgtg tgcgagcgca agagaaaggg agtcagagag agagagagag 60
ggaggagacc ttgcagagga gcgaagcaag caaggtggga aagaggcagc agcaagggcg 120
gcgggctgcc ggaaggggaa catgctccct cctcatctca cagtacgaac tgaaaaacaa 180
gagtaaagaa tttccgtgag atgagacaga atggcgcggt gatgattcag tttggccatc 240
agatgcctga ttacgactcc ccggctaccc agtcaaccag tgagacgagc catcaagaag 300
cgtctggaat gagcgaaggg agcctcaacg agcataataa tgaccattca ggcaaccttg 360
atgggtactc gaagagtgac gaaaacaaga tgatgtcagc gttatccctg ggcaatccgg 420
aaacagctta cgcacataat ccgaagcctg accgtactca gtccttcgcc atatcatacc 480
catatgccga tccatactac ggtggcgcgg tggcagcagc ttatggcccg catgctatca 540
tgcaccctca gctggttggc atggttccgt cctctcgagt gccactgccg atcgagccag 600
ccgctgaaga gcccatctat gtcaacgcga agcagtacca cgctattctc cggaggagac 660
agctccgtgc aaagctagag gcggaaaaca agctcgtgaa aagccgcaag ccgtacctcc 720
acgagtctcg gcacctgcac gcgatgaaga gagctcgggg aacaggcggg cggttcctga 780
acacgaagca gcagccggag tcccccggca gcggcggctc ctcggacgcg caacgcgtgc 840
ccgcgaccgc gagcggcggc ctgttcacga agcatgagca cagcctgccg cccggcggtc 900
gccaccacta tcacgcgaga gggggcggtg agtagggagc cccgacactg gcaactcatc 960
cttggcttat cagcgattcg actcggctct ccctcgtctg aaactgaact ctctgcaact 1020
actgtaactg taactaaact gggtgtgccc ggattggcgg tcgttctgtt ctactactag 1080
tacctgctac gcgtcgttgg gttgggtctg gactagagag cgtgctggtt ctttgatgaa 1140
cttggctgga cttgagggtg ttgactagcg cgaagctgag ttccatgtaa aacttttgct 1200
tcaagaccga tgactggcgg cataataagt agcagtaata cccaaaaaaa aaaaaaaaaa 1260
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaag 1307
36
244
PRT
Zea mays
36
Met Arg Gln Asn Gly Ala Val Met Ile Gln Phe Gly His Gln Met Pro
1 5 10 15
Asp Tyr Asp Ser Pro Ala Thr Gln Ser Thr Ser Glu Thr Ser His Gln
20 25 30
Glu Ala Ser Gly Met Ser Glu Gly Ser Leu Asn Glu His Asn Asn Asp
35 40 45
His Ser Gly Asn Leu Asp Gly Tyr Ser Lys Ser Asp Glu Asn Lys Met
50 55 60
Met Ser Ala Leu Ser Leu Gly Asn Pro Glu Thr Ala Tyr Ala His Asn
65 70 75 80
Pro Lys Pro Asp Arg Thr Gln Ser Phe Ala Ile Ser Tyr Pro Tyr Ala
85 90 95
Asp Pro Tyr Tyr Gly Gly Ala Val Ala Ala Ala Tyr Gly Pro His Ala
100 105 110
Ile Met His Pro Gln Leu Val Gly Met Val Pro Ser Ser Arg Val Pro
115 120 125
Leu Pro Ile Glu Pro Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys
130 135 140
Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
145 150 155 160
Ala Glu Asn Lys Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser
165 170 175
Arg His Leu His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe
180 185 190
Leu Asn Thr Lys Gln Gln Pro Glu Ser Pro Gly Ser Gly Gly Ser Ser
195 200 205
Asp Ala Gln Arg Val Pro Ala Thr Ala Ser Gly Gly Leu Phe Thr Lys
210 215 220
His Glu His Ser Leu Pro Pro Gly Gly Arg His His Tyr His Ala Arg
225 230 235 240
Gly Gly Gly Glu
37
816
DNA
Zea mays
37
ccacgcgtcc gcgcagaaca agatggtgaa aggccggaag ccataccttc atgagtctcg 60
acaccgtcat gccatgaagc gggcccgtgg ctcaggaggg cggttcctca acacaaagca 120
gcagccccag gagcagaacc agcagtacca ggcgtcgagt ggttcaatgt gctcaaagac 180
cattggcaac agcgtaatct cccaaagtgg ccccatttgc acgccctctt ctgacgctgc 240
aggtgcttca gcagccagcc aggaccgcgg ctgcttgccc tcggtgggct tccgccccac 300
agccaacttc agtgagcaag gtggaggcgg ctcgaagctg gtcgtgaacg gcatgcagca 360
gcgtgtttcc accataaggt gaagagaagt gggcacgaca ccattcccag gcgcgcactg 420
cctgtggcaa ctcatccttg gcttttgaaa ctatggatat gcaatggaca tgtagcttcg 480
agttcctcag aataaccaaa cgtgaagaat atgcaaagtc cttttgagat ttgctgtagc 540
tgaaagaact gtggttaggt tatgagtttc ttcctggaga ctgatccata catgacatgc 600
tacctcgtgc tgagtttctg aggtgaagcc atcgaaacat gaccgtgtgg ttcagtaccc 660
ttgctgcctt cagtgtctga taagctagct ctccagtttg cagtttctct gaattccagc 720
atgtctagtc tctgcttatc ttttgcatgt aacgtgatgg tgacttagca tacacatcta 780
ttcatccatc tatgttctca aaaaaaaaaa aaaaag 816
38
78
PRT
Zea mays
38
His Ala Ser Ala Gln Asn Lys Met Val Lys Gly Arg Lys Pro Tyr Leu
1 5 10 15
His Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly
20 25 30
Gly Arg Phe Leu Asn Thr Lys Gln Gln Pro Gln Glu Gln Asn Gln Gln
35 40 45
Tyr Gln Ala Ser Ser Gly Ser Met Cys Ser Lys Thr Ile Gly Asn Ser
50 55 60
Val Ile Ser Gln Ser Gly Pro Ile Cys Thr Pro Ser Ser Asp
65 70 75
39
1630
DNA
Argemone mexicana
39
gcacgagtgc agacaagagt agattttatg aaatcgatgg ctctaaaatc tctaaaaagt 60
gagtgttcta gggtttattc ttttactgtt ctcaataaca attggatagg agattgattg 120
tttttgaagt aatttgaacc atgcactcga ttcctgggaa tgtgaatgca acagaatcgg 180
acgtgcaacg tactccgcaa tcaactattt gttctcaacc ttggtggtgt ggtactgtgt 240
ataacactgg ttcgtcagct gagttgggag aaagcacaat aaaatcgtct tcaatggaac 300
agccagacgg tggaatgggt attgatacca gagaatcaca tggtgatggt ggtcctaatg 360
agggggatgg tattacgaga aagatgcaca ccaccatggc ctcccaatct gggccagatg 420
gaaactatgg acatgaacat gggaatctgc agcatgctgc atctgcaatg ccccaaacta 480
gtggtgaata cgtcataccg cgtccacagt ttgagcttgt tggtcactca gttgcatgtg 540
caacgtaccc gtattctgat atgtattata ctggaatgat ggctgctttg ggaactcagg 600
ctcaggtaca tcctcattta tttggtgtac aacacaccag aatgccttta cctcttgaaa 660
tggctgaaga gcctgtctat gtaaatgcga agcaatatca tggaattctg agacgaaggc 720
agtcgcgtgc aaaggctgag ctagaaagga aactgattaa atctagaaag ccgtaccttc 780
atgaatctcg gcaccaacat gctatgagaa gggcaagggg ttgtggaggc cgttttctca 840
acacaaaaaa actcgaaaac gggtcatcta agcatacaac tgagaacagc atggcttctg 900
attgtaatgg taaccggaac tccccaagtg gtcaacaaga aatagaaggt tccaacgtgc 960
aggaatcaca ttcctacttt aacagcaatg ataaaagctg ctaccaacat aatcagggtc 1020
tgcagttatc aagtttccat ccattatctg gtgagagagg agaggaagga gactgttcag 1080
gcctgcagcg aggaagcatc tcggtgaacc aggcccagaa cagggccctc accatccagt 1140
gaacctctga gtaggggaat agggtttctc catcgtcagt atcccgtttg ctgttactgc 1200
tctgggactt caaataccat gtaagcaacg gaaagcagca atggcgctga agggatggac 1260
gcaaaccaga aacggattcc ccccaaggta attggtgttt ctcaggcaat tcattcttgg 1320
cttggttctt gtgtttgatg gggaaagagg agtgtaggtt ctatttggtt ctgtggtgtc 1380
cttacaactt ctctactctt tccctcttgt ttttttttta tcccttgttg tacaaaggaa 1440
atgatagtgg ctgttttaga atctaagtag tgagaagaaa ccaaaccaaa cccttttttc 1500
ttcaaaattt cgtgaaacat tgttttaact ctgtagacat caaaattttc taggcatgta 1560
aaatattcgt cttttttttt ttccatgaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1620
aaaaaaaaaa 1630
40
333
PRT
Argemone mexicana
40
Met His Ser Ile Pro Gly Asn Val Asn Ala Thr Glu Ser Asp Val Gln
1 5 10 15
Arg Thr Pro Gln Ser Thr Ile Cys Ser Gln Pro Trp Trp Cys Gly Thr
20 25 30
Val Tyr Asn Thr Gly Ser Ser Ala Glu Leu Gly Glu Ser Thr Ile Lys
35 40 45
Ser Ser Ser Met Glu Gln Pro Asp Gly Gly Met Gly Ile Asp Thr Arg
50 55 60
Glu Ser His Gly Asp Gly Gly Pro Asn Glu Gly Asp Gly Ile Thr Arg
65 70 75 80
Lys Met His Thr Thr Met Ala Ser Gln Ser Gly Pro Asp Gly Asn Tyr
85 90 95
Gly His Glu His Gly Asn Leu Gln His Ala Ala Ser Ala Met Pro Gln
100 105 110
Thr Ser Gly Glu Tyr Val Ile Pro Arg Pro Gln Phe Glu Leu Val Gly
115 120 125
His Ser Val Ala Cys Ala Thr Tyr Pro Tyr Ser Asp Met Tyr Tyr Thr
130 135 140
Gly Met Met Ala Ala Leu Gly Thr Gln Ala Gln Val His Pro His Leu
145 150 155 160
Phe Gly Val Gln His Thr Arg Met Pro Leu Pro Leu Glu Met Ala Glu
165 170 175
Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg
180 185 190
Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Arg Lys Leu Ile Lys Ser
195 200 205
Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg
210 215 220
Ala Arg Gly Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Glu Asn
225 230 235 240
Gly Ser Ser Lys His Thr Thr Glu Asn Ser Met Ala Ser Asp Cys Asn
245 250 255
Gly Asn Arg Asn Ser Pro Ser Gly Gln Gln Glu Ile Glu Gly Ser Asn
260 265 270
Val Gln Glu Ser His Ser Tyr Phe Asn Ser Asn Asp Lys Ser Cys Tyr
275 280 285
Gln His Asn Gln Gly Leu Gln Leu Ser Ser Phe His Pro Leu Ser Gly
290 295 300
Glu Arg Gly Glu Glu Gly Asp Cys Ser Gly Leu Gln Arg Gly Ser Ile
305 310 315 320
Ser Val Asn Gln Ala Gln Asn Arg Ala Leu Thr Ile Gln
325 330
41
1565
DNA
Argemone mexicana
41
caagaaagaa aagagagaag aaagaaaatt ttttgaaggt gggtttgaac agaggagaca 60
tgaccagatc tatcccaaca tctcttctcc ttatttctct cactttacca aatcccaaag 120
taaattcact ccagaagcgc gtaatatagg ttttcaaaaa cagttctgag gattttagat 180
tgttttcatc ttggtttgga atttacatag tgaagttaag tgaacaagaa tgcaagacaa 240
gtcaatttca catagtgttg ttagttgtcc aatttggtgg acttctactg gatcccaagt 300
tccacagagt tgtttatcaa agagtttaag cgtaaccttc gactcttctc gtcaagattg 360
cggtagtttg aagcagctag gttttcaact tcaagatcag gattcatcct cgactcaatc 420
aactggtcag tcgcatcatg aagtgggaaa tatgtctgga agcaacccta ctgggcaatg 480
catttcagct cagtgcgaaa aagttactta cgggaaacaa ggagatgttc aaacgaaatc 540
aattctatca cttggagctc cagaagttgt tctccctcaa caagttgatt ataaccacca 600
ctcagtggct cgtataccct atcattacgt tgatccgtat tacggtggca taatggcgtc 660
ttatggacca caggctatta ttcacccaca aatgatgggt ataacacctg cacgagtccc 720
attgcctctt gatcttgcag aaaatgagcc catgtatgtt aatgcaaaac agtaccgagc 780
aattcttaga cggaggcagt cccgtgctaa gcttgaggct caaaataaac ttatcaaaga 840
tcgcaagcct tatctacatg aatctcggca tcttcatgca ttgaagaggg ctaggggatc 900
tggtggacgt tttctcaaca cgaagcagct gcaagagttg aaacaaaaca actctaatgg 960
ccaaaatacc tccgagtcag cttatctaca gttgggagga aatctatctg aatcagaatt 1020
tggcaacggt ggcggtgctt ccaccacatc ctgctctgac atcactacag cctcaaacag 1080
cgaccacatt ttccgtcaac agaatctcag gtttgcgggt tacactcaca tgggtgggac 1140
catgcaagat ggaggtggag ggggcattat gagtaacggg tctcaccacc gtgttcccgt 1200
tacacagtaa aaaacatggg gagaaaaaca actttgtcag ccttttcgat tttggtgtga 1260
agaatggtgt gtactctcag ggtggaactg gagaactggc tggcttgtgt tgtttaccca 1320
tgggcaaatc atccttggct ttgttacctt ttatttatca ctatactttt tatatgatgt 1380
ttcttgctat atatgttttg ttgattttaa cttccataga tggacaatga tgaatttctg 1440
atactggatt gtccttgaaa ctcttcgctt ttattatata ttttgcgaaa aaaaaaaaaa 1500
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1560
aaaaa 1565
42
326
PRT
Argemone mexicana
42
Met Gln Asp Lys Ser Ile Ser His Ser Val Val Ser Cys Pro Ile Trp
1 5 10 15
Trp Thr Ser Thr Gly Ser Gln Val Pro Gln Ser Cys Leu Ser Lys Ser
20 25 30
Leu Ser Val Thr Phe Asp Ser Ser Arg Gln Asp Cys Gly Ser Leu Lys
35 40 45
Gln Leu Gly Phe Gln Leu Gln Asp Gln Asp Ser Ser Ser Thr Gln Ser
50 55 60
Thr Gly Gln Ser His His Glu Val Gly Asn Met Ser Gly Ser Asn Pro
65 70 75 80
Thr Gly Gln Cys Ile Ser Ala Gln Cys Glu Lys Val Thr Tyr Gly Lys
85 90 95
Gln Gly Asp Val Gln Thr Lys Ser Ile Leu Ser Leu Gly Ala Pro Glu
100 105 110
Val Val Leu Pro Gln Gln Val Asp Tyr Asn His His Ser Val Ala Arg
115 120 125
Ile Pro Tyr His Tyr Val Asp Pro Tyr Tyr Gly Gly Ile Met Ala Ser
130 135 140
Tyr Gly Pro Gln Ala Ile Ile His Pro Gln Met Met Gly Ile Thr Pro
145 150 155 160
Ala Arg Val Pro Leu Pro Leu Asp Leu Ala Glu Asn Glu Pro Met Tyr
165 170 175
Val Asn Ala Lys Gln Tyr Arg Ala Ile Leu Arg Arg Arg Gln Ser Arg
180 185 190
Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys Asp Arg Lys Pro Tyr
195 200 205
Leu His Glu Ser Arg His Leu His Ala Leu Lys Arg Ala Arg Gly Ser
210 215 220
Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Gln Glu Leu Lys Gln Asn
225 230 235 240
Asn Ser Asn Gly Gln Asn Thr Ser Glu Ser Ala Tyr Leu Gln Leu Gly
245 250 255
Gly Asn Leu Ser Glu Ser Glu Phe Gly Asn Gly Gly Gly Ala Ser Thr
260 265 270
Thr Ser Cys Ser Asp Ile Thr Thr Ala Ser Asn Ser Asp His Ile Phe
275 280 285
Arg Gln Gln Asn Leu Arg Phe Ala Gly Tyr Thr His Met Gly Gly Thr
290 295 300
Met Gln Asp Gly Gly Gly Gly Gly Ile Met Ser Asn Gly Ser His His
305 310 315 320
Arg Val Pro Val Thr Gln
325
43
1187
DNA
Oryza sativa
43
gcacgaggca gaggagagaa gcaaggtgag aagtgaggag gcagcaaggg aggaggtttg 60
ccggagaggg gacatgctcc ctcctcatct cacagaaaat ggcacagtaa tgattcagtt 120
tggtcataaa atgcctgact acgagtcatc agctacccaa tcaactagtg gatctcctcg 180
tgaagtgtct ggaatgagcg aaggaagcct caatgagcag aatgatcaat ctggtaatct 240
tgatggttac acgaagagtg atgaaggtaa gatgatgtca gctttatctc tgggcaaatc 300
agaaactgtg tatgcacatt cggaacctga ccgtagccaa ccctttggca tatcatatcc 360
atatgctgat tcgttctatg gtggtgctgt agcgacttat ggcacacatg ctattatgca 420
tccccagatt gtgggcgtga tgtcatcctc ccgagtcccg ctaccaatag aaccagccac 480
cgaagagcct atttatgtaa atgcaaagca ataccatgcg attctccgaa ggagacagct 540
ccgtgcaaag ttagaggctg aaaacaagct ggtgaaaaac cgcaagccgt acctccatga 600
atcccggcat caacacgcga tgaagagagc tcggggaaca ggggggagat tcctcaacac 660
aaagcagcag cctgaagctt cagatggtgg caccccaagg ctcgtctctg caaacggcgt 720
tgtgttctca aagcacgagc acagcttgtc gtccagtgat ctccatcatc gtcgtgtgaa 780
agagggcgct tgagatcctc gccgtttctg tcatggcaaa tcatccttgg cttatgtgtg 840
gtgcccagca aaaaaaaatc tgactgaacc tgtgtgtaaa ctgatgggta tgggtgggtt 900
ttgtgcaact gtaactaggg tgcttgacat ctgtgtctgt tgttcctctg cctccttagt 960
ttggagacgg tgcagctgca gctggtacca gtaatctgat catgctagac ttgtgacaag 1020
gacaaaacta gcaccccgtt atgtttcctg gcttctgaat ttggtggtca ttcagtaagc 1080
aagcactcga cgtcagcggg agggggttgc ttcgattgat ctagttcttt cgcgataaac 1140
ttatttaatt ttgaacaaag gttggtttca aaaaaaaaaa aaaaaaa 1187
44
239
PRT
Oryza sativa
44
Met Leu Pro Pro His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe
1 5 10 15
Gly His Lys Met Pro Asp Tyr Glu Ser Ser Ala Thr Gln Ser Thr Ser
20 25 30
Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu Asn Glu
35 40 45
Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu
50 55 60
Gly Lys Met Met Ser Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr
65 70 75 80
Ala His Ser Glu Pro Asp Arg Ser Gln Pro Phe Gly Ile Ser Tyr Pro
85 90 95
Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr His
100 105 110
Ala Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val
115 120 125
Pro Leu Pro Ile Glu Pro Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala
130 135 140
Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu
145 150 155 160
Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu
165 170 175
Ser Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg
180 185 190
Phe Leu Asn Thr Lys Gln Gln Pro Glu Ala Ser Asp Gly Gly Thr Pro
195 200 205
Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys His Glu His Ser
210 215 220
Leu Ser Ser Ser Asp Leu His His Arg Arg Val Lys Glu Gly Ala
225 230 235
45
1442
DNA
Oryza sativa
45
gcacgagtac agcgctccgc attagggctc gcctctcgtt ggctagagcg cgagagccag 60
tagccgcagc tgcagcaagc agcagcagca gcgaagagcc tgagccccag aggaggcgtg 120
caccgcctcc gattggccgg cctctcggag agagagagag agagagagat cgatcgagtc 180
ctattggccg ccgcctccgc gccctggctg ctcactggtg agcgagcatg gagtcgaggc 240
cggggggaac caacctcgtg gagccgaggg ggcagggcgc gctgccgtcc ggcataccga 300
tccagcagcc gtggtggacg acctccgccg gggtcggggc ggtgtcgccc gccgtcgtgg 360
cgccggggag cggtgcgggg atcagcctgt cgggcaggga tggcggcggc gacgacgcgg 420
cagaggagag cagcgatgac tcacgaagat caggggagac caaagatgga agcactgatc 480
aagaaaagca tcatgcaaca tcgcagatga ctgctttggc atcagactat ttaacaccat 540
tttcacagct ggaactaaac caaccaattg cttcggcagc ataccagtac cctgactctt 600
actatatggg catggttggt ccctatggac ctcaagctat gtccgcacag actcatttcc 660
agctacctgg attaactcac tctcgtatgc cgttgcctct tgaaatatct gaggagcctg 720
tttatgtaaa tgctaagcaa tatcatggaa ttttaagacg gaggcagtca cgtgcgaagg 780
ctgaacttga gaaaaaagtt gttaaatcaa gaaagcccta tcttcatgag tctcgtcatc 840
aacatgctat gcgaagggca agaggaacgg gtggacgctt cctgaacaca aagaaaaatg 900
aagatggtgc tcccagtgag aaagccgaac caaacaaagg agagcagaac tccgggtatc 960
gccggatccc tcctgactta cagctcctac agaaggaaac atgaagtagc ggctcgaaac 1020
ctagaacagt ggcttctgtc caccggcatt cactcttgag gtgattcttg ctccagaatt 1080
gtgctccatc tttcaaatga tcttcatcga gcaaagtaat tatatgtaca ttcctctgaa 1140
tgatctatgc accaattgtt gatcctggca gggtaataat ctggatgtat tgagtccatc 1200
acagtgcgaa tgtcacgggt agatctgctg ttttcaggca attcattctt ggctttctat 1260
cccacccgtt gttgttgcaa gttaagctag cagtacttgt ctcagtgtcc gtgagacgtt 1320
tgtgtaagat taggttaaac tagaagttgt aatgctgtat taagtgtttg tatttctaat 1380
atgaaccgta acaaggccag agcagaactc gttatacata caaaaaaaaa aaaaaaaaaa 1440
aa 1442
46
258
PRT
Oryza sativa
46
Met Glu Ser Arg Pro Gly Gly Thr Asn Leu Val Glu Pro Arg Gly Gln
1 5 10 15
Gly Ala Leu Pro Ser Gly Ile Pro Ile Gln Gln Pro Trp Trp Thr Thr
20 25 30
Ser Ala Gly Val Gly Ala Val Ser Pro Ala Val Val Ala Pro Gly Ser
35 40 45
Gly Ala Gly Ile Ser Leu Ser Gly Arg Asp Gly Gly Gly Asp Asp Ala
50 55 60
Ala Glu Glu Ser Ser Asp Asp Ser Arg Arg Ser Gly Glu Thr Lys Asp
65 70 75 80
Gly Ser Thr Asp Gln Glu Lys His His Ala Thr Ser Gln Met Thr Ala
85 90 95
Leu Ala Ser Asp Tyr Leu Thr Pro Phe Ser Gln Leu Glu Leu Asn Gln
100 105 110
Pro Ile Ala Ser Ala Ala Tyr Gln Tyr Pro Asp Ser Tyr Tyr Met Gly
115 120 125
Met Val Gly Pro Tyr Gly Pro Gln Ala Met Ser Ala Gln Thr His Phe
130 135 140
Gln Leu Pro Gly Leu Thr His Ser Arg Met Pro Leu Pro Leu Glu Ile
145 150 155 160
Ser Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu
165 170 175
Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val
180 185 190
Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met
195 200 205
Arg Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Lys Asn
210 215 220
Glu Asp Gly Ala Pro Ser Glu Lys Ala Glu Pro Asn Lys Gly Glu Gln
225 230 235 240
Asn Ser Gly Tyr Arg Arg Ile Pro Pro Asp Leu Gln Leu Leu Gln Lys
245 250 255
Glu Thr
47
423
DNA
Oryza sativa
unsure
(223)
n = A, C, G, or T
47
cattggttct aatcttgaca gagtttaagg ttggcacttt ctgtcagaag ttaagttagg 60
acttccacaa aattatacca tctctgggtg ttcttatagg tgtttctcac tatcaggaat 120
gtacagttct tgcagctgtc aagttctttg tacctatgtt tctgtatctt ctaaagattt 180
tgattcgtct gcactgtgca gccatatctc catgagtcac ggnatcaaca tgccctgaaa 240
agggctaggg gagctggagg ccgatttctt aattcaaaat cggatgacaa ggaaagagca 300
ttctgattcc aagttccaag agataaacan gatggagttg cacccccgtg ataatgggca 360
aacgtctanc tctccgtctt caaaggggng gatcatcagc tnaacaaaat aaagaagtca 420
aaa 423
48
34
PRT
Oryza sativa
UNSURE
(9)
Xaa = any amino acid
48
Gln Pro Tyr Leu His Glu Ser Arg Xaa Gln His Ala Leu Lys Arg Ala
1 5 10 15
Arg Gly Ala Gly Gly Arg Phe Leu Asn Ser Lys Ser Asp Asp Lys Glu
20 25 30
Arg Ala
49
479
DNA
Oryza sativa
49
ctcttctcat ctcatctccc tctcctctcc tctcgccgtc gccgtcgccg tcgccgccgc 60
tcgccgccgg cggggataga gttcgccggg atcgcctcgc cgggagagtt ccctcaccat 120
cccgcacctc cgctcgcctg gcctcttcct cccggaagtg tggtgtgctg caagctcctg 180
tctctcctac aaggtttcaa aaccaaaata tgcctgaagc acacggaaag ctggggtgat 240
taacgtctgt ttcttttgac tacaatcatc ctgattctgc ttctgtctgc aaaaacaacc 300
aagccatgac gtctgtagtt catgatgttt caggcaacca tggagctgat gagcggcaaa 360
aacagcaaag gcaaggtgaa cctgaggacc aagcaagaag cctcagttac tagtacagat 420
agccatacaa tggtaagcaa caccttcaac agattatgcg acaacctatg cccatcacg 479
50
35
PRT
Oryza sativa
50
Met Thr Ser Val Val His Asp Val Ser Gly Asn His Gly Ala Asp Glu
1 5 10 15
Arg Gln Lys Gln Gln Arg Gln Gly Glu Pro Glu Asp Gln Ala Arg Ser
20 25 30
Leu Ser Tyr
35
51
1107
DNA
Oryza sativa
51
gcacgagcaa ttatccttgt attgaccaat gctatggtct tatgaccacc tacgcgatga 60
aatcaatgag tggcgggcga atgctactgc cgctgaacgc gccagccgat gcgccgatct 120
atgtcaacgc gaagcagtac gaaggcatcc tccgccgtcg ccgtgcccgc gccaaggccc 180
agagggagaa caggctggtc aaaggcagga agccctacct ccacgagtcg cgccaccgcc 240
acgccatgcg ccgggccaga ggctccggcg gccgcttcct caacaccaag aaagaagcca 300
ccgccgccgg atgcggcggc agcagcaaga cgcccctcgc gtccctcgtc agccccgccg 360
acgtagccca tcgtccaggc tccggcggcc gcgcgtccag cctctccggc tccgacgtgt 420
cgtcgccggg aggcgtcatg tacgaccacc accgccacga cgacgccgac gcggcggacc 480
actacaacag catcgaccac cacctccgca cgccgttctt caccccgctc ccgatcatca 540
tggacagcgg cggcggcggc ggcgaccacg cctcacactc cgccgccgcc gtcgccgccc 600
ccttcaggtg ggcgacggcg gccggcgacg gctgctgcga gctcctcaag gcgtgacagc 660
cttgaggcgg ggatctccag gcgtgcccag agctgctgct gatcgatcac catcagcttt 720
ggctgcctgt aggcaaatca ttcttggctc tttacttgca ttggggttct tgcaagcaac 780
tctcctcgtc acctaccaaa actgtccctg aaacttctct agtgctgggg tctcgatcag 840
ggatgatgat gtgatggagg agaggcttac ccatatgcct gtaaattatg gttagtgttc 900
tgattaagca actagtagta cttggtaatt actggctatg aattagtagt atggactctg 960
gtgtcaggtt gctctttgtc tgaataaact ggagtcgttt gaagctttgc aaaaaaaaaa 1020
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1080
aaaaaaaaaa aaaaaaaaaa aaaaaaa 1107
52
217
PRT
Oryza sativa
52
Thr Ser Asn Tyr Pro Cys Ile Asp Gln Cys Tyr Gly Leu Met Thr Thr
1 5 10 15
Tyr Ala Met Lys Ser Met Ser Gly Gly Arg Met Leu Leu Pro Leu Asn
20 25 30
Ala Pro Ala Asp Ala Pro Ile Tyr Val Asn Ala Lys Gln Tyr Glu Gly
35 40 45
Ile Leu Arg Arg Arg Arg Ala Arg Ala Lys Ala Gln Arg Glu Asn Arg
50 55 60
Leu Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His
65 70 75 80
Ala Met Arg Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys
85 90 95
Lys Glu Ala Thr Ala Ala Gly Cys Gly Gly Ser Ser Lys Thr Pro Leu
100 105 110
Ala Ser Leu Val Ser Pro Ala Asp Val Ala His Arg Pro Gly Ser Gly
115 120 125
Gly Arg Ala Ser Ser Leu Ser Gly Ser Asp Val Ser Ser Pro Gly Gly
130 135 140
Val Met Tyr Asp His His Arg His Asp Asp Ala Asp Ala Ala Asp His
145 150 155 160
Tyr Asn Ser Ile Asp His His Leu Arg Thr Pro Phe Phe Thr Pro Leu
165 170 175
Pro Ile Ile Met Asp Ser Gly Gly Gly Gly Gly Asp His Ala Ser His
180 185 190
Ser Ala Ala Ala Val Ala Ala Pro Phe Arg Trp Ala Thr Ala Ala Gly
195 200 205
Asp Gly Cys Cys Glu Leu Leu Lys Ala
210 215
53
977
DNA
Oryza sativa
53
gcacgaggca aactctagga tgccattgcc tgttgatcct tctgtagaag agcccatatt 60
tgtcaatgca aagcaataca atgcgatcct tagaagaagg caaacgcgtg caaaattgga 120
ggcccaaaat aaggcggtga aaggtcggaa gccttacctc catgaatctc gacatcatca 180
tgctatgaag cgagcccgtg gatcaggtgg tcggttcctt accaaaaagg agctgctgga 240
acagcagcag cagcagcagc agcagaagcc accaccggca tcagctcagt ctccaacagg 300
tagagccaga acgagcggcg gtgccgttgt ccttggcaag aacctgtgcc cagagaacag 360
cacatcctgc tcgccatcga caccgacagg ctccgagatc tccagcatct catttggggg 420
cggcatgctg gctcaccaag agcacatcag cttcgcatcc gctgatcgcc accccacaat 480
gaaccagaac caccgtgtcc ccgtcatgag gtgaaaacct cgggatcgcg ggacacgggc 540
ggttctggtt taccctcact ggcgcactcc ggtgtgcccg tggcaattca tccttggctt 600
atgaagtatc tacctgataa tagtctgctg tcagtttata tgcaatgcaa cctctgtcag 660
ataaactctt atagtttgtt ttattgtaag ctatgactga acgaactgtc gagcagatgg 720
ctaatttgta tgttgtgggt acagaaatcc tgaagctttt gatgtaccta attgcctttt 780
gcttatactc ttggtgtata cccattacca agttgcctta aaaaccctcc aattatgtaa 840
tcagtcatgg ttttatagaa ccttgccaca tgtaatcaat cacctgtttt tgtaaattga 900
tctataaacg ctataggctg ctgtgttatc tgcatttaaa aaaaaaaaaa aaaaaaaaaa 960
aaaaaaaaaa aaaaaaa 977
54
168
PRT
Oryza sativa
54
Ala Asn Ser Arg Met Pro Leu Pro Val Asp Pro Ser Val Glu Glu Pro
1 5 10 15
Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln
20 25 30
Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala Val Lys Gly Arg Lys
35 40 45
Pro Tyr Leu His Glu Ser Arg His His His Ala Met Lys Arg Ala Arg
50 55 60
Gly Ser Gly Gly Arg Phe Leu Thr Lys Lys Glu Leu Leu Glu Gln Gln
65 70 75 80
Gln Gln Gln Gln Gln Gln Lys Pro Pro Pro Ala Ser Ala Gln Ser Pro
85 90 95
Thr Gly Arg Ala Arg Thr Ser Gly Gly Ala Val Val Leu Gly Lys Asn
100 105 110
Leu Cys Pro Glu Asn Ser Thr Ser Cys Ser Pro Ser Thr Pro Thr Gly
115 120 125
Ser Glu Ile Ser Ser Ile Ser Phe Gly Gly Gly Met Leu Ala His Gln
130 135 140
Glu His Ile Ser Phe Ala Ser Ala Asp Arg His Pro Thr Met Asn Gln
145 150 155 160
Asn His Arg Val Pro Val Met Arg
165
55
465
DNA
Oryza sativa
unsure
(280)
n = A, C, G, or T
55
cttacagcag ccttaccttc acgaatctcg gcatcgccat gcaatgaaga gggctagggg 60
cactggtggg cgattcctga ataccaagca gctccagctg cagcaacagt ctcacactac 120
ctccaccaag accaccacag acagccaaaa ttcttcaggt tcaagtcatc tacggctagg 180
tggtggcgca atcggagatc aaactccatt tccgttcaaa gcaatggatt cacaagctaa 240
catcaagaga gctgcagctt ctgcttccac cttcactgtn acttctgcgg gacaaaaaga 300
cgacgccttc ttcgaccgcc atggncaaca tctcaataac ttctccggnc attttggnca 360
agcaagcnca caaaggggng tcggnaagca tgcataaccg gtcaaaagca agagggttcc 420
tgctnatgnn gatganatga aagagcagct tggaaatcna acant 465
56
131
PRT
Oryza sativa
UNSURE
(123)
Xaa = any amino acid
56
Leu Gln Gln Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys
1 5 10 15
Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Gln
20 25 30
Leu Gln Gln Gln Ser His Thr Thr Ser Thr Lys Thr Thr Thr Asp Ser
35 40 45
Gln Asn Ser Ser Gly Ser Ser His Leu Arg Leu Gly Gly Gly Ala Ile
50 55 60
Gly Asp Gln Thr Pro Phe Pro Phe Lys Ala Met Asp Ser Gln Ala Asn
65 70 75 80
Ile Lys Arg Ala Ala Ala Ser Ala Ser Thr Phe Thr Val Thr Ser Ala
85 90 95
Gly Gln Lys Asp Asp Ala Phe Phe Asp Arg His Gly Gln His Leu Asn
100 105 110
Asn Phe Ser Gly His Phe Gly Gln Ala Ser Xaa Gln Arg Gly Val Gly
115 120 125
Lys His Ala
130
57
1482
DNA
Glycine max
57
tttctgttct tctctgggga tctgaagaca tgcagtccaa gtctgaaact gcaaatcgac 60
tgagatcaga tcctcattcc tttcaacctg gcagtgttta ttctgagcct tggtggcgtg 120
gtattgggta caatcctgtg gcccaaacaa tggctggggc aaatgcatcc aattcatcgt 180
ctcttgaatg ccctaatggt gattctgaat ccaatgaaga aggtcaatct ttgtccaata 240
gcgggatgaa tgaggaagat gatgatgcca ctaaggattc acagcctgct gttcctaatg 300
gaacaggaaa ttatgggcaa gaacagcaag ggatgcagca tactgcatca tctgcaccct 360
ccatgcgtga agaatgcctt actcagacac cacagctgga acttgtcggt cattcaattg 420
catgtgctac aaatccttat caggatccgt attatggggg catgatggca gcttatggtc 480
accaacagtt gggatatgct ccttttatag gaatgcctca tgccagaatg cctttgcccc 540
ttgagatggc tcaagaacct gtgtatgtga atgccaaaca gtaccaagga attctgaggc 600
gaagacaggc tcgtgctaaa gcagagcttg aaaggaagct cataaaatct agaaagccat 660
atcttcatga atctaggcat cagcatgcta tgagaagggc aaggggtact ggaggacgat 720
ttgcaaagaa aactgacggt gagggctcaa accactcagg caaggaaaag gataatggta 780
ctgattctgt cctatcatca caatcaatta gttcatctgg ttctgaacct ttacattctg 840
actctgccga aacctggaat tctcctaaca tgcaacaaga tgcaagagca tcaaaagtgc 900
acaacaggtt caaagcaccc tgttaccaaa atggcagtgg ctcctaccat aatcataatg 960
gattgcaatc ttcagtgtac cattcatcct caggtgaaag actggaggaa agggattgtt 1020
cgggtcagca actgaaccac aattgatggg gggttagagg ccgaggttgg tttgtatcca 1080
agtgacatat ttggtgaata ccttggttat ctgtaaacac tcttggcaat atatatgcca 1140
agcggcaaat cattcttggc tttgttcttg tgtttgtggt gttaatgata ctatgggggg 1200
ggtggggggg gggggaatga ttggtatttg agatttctgt tgaagtcagt caatcaatcc 1260
ttcgttcttt tctcattttt gcattttgta aagttttata gtggttagga tggtcacttc 1320
agaagattat ggagtatggt gagaaacaaa ctcttgatgt gccaacactc gtttgactgg 1380
tttatctttg tgtagttcaa ccggttgtta atgttaacat aagacatcat aggataatga 1440
acatgctgtt agttacatta catcaaaaaa aaaaaaaaaa aa 1482
58
338
PRT
Glycine max
58
Met Gln Ser Lys Ser Glu Thr Ala Asn Arg Leu Arg Ser Asp Pro His
1 5 10 15
Ser Phe Gln Pro Gly Ser Val Tyr Ser Glu Pro Trp Trp Arg Gly Ile
20 25 30
Gly Tyr Asn Pro Val Ala Gln Thr Met Ala Gly Ala Asn Ala Ser Asn
35 40 45
Ser Ser Ser Leu Glu Cys Pro Asn Gly Asp Ser Glu Ser Asn Glu Glu
50 55 60
Gly Gln Ser Leu Ser Asn Ser Gly Met Asn Glu Glu Asp Asp Asp Ala
65 70 75 80
Thr Lys Asp Ser Gln Pro Ala Val Pro Asn Gly Thr Gly Asn Tyr Gly
85 90 95
Gln Glu Gln Gln Gly Met Gln His Thr Ala Ser Ser Ala Pro Ser Met
100 105 110
Arg Glu Glu Cys Leu Thr Gln Thr Pro Gln Leu Glu Leu Val Gly His
115 120 125
Ser Ile Ala Cys Ala Thr Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly
130 135 140
Met Met Ala Ala Tyr Gly His Gln Gln Leu Gly Tyr Ala Pro Phe Ile
145 150 155 160
Gly Met Pro His Ala Arg Met Pro Leu Pro Leu Glu Met Ala Gln Glu
165 170 175
Pro Val Tyr Val Asn Ala Lys Gln Tyr Gln Gly Ile Leu Arg Arg Arg
180 185 190
Gln Ala Arg Ala Lys Ala Glu Leu Glu Arg Lys Leu Ile Lys Ser Arg
195 200 205
Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala
210 215 220
Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asp Gly Glu Gly Ser
225 230 235 240
Asn His Ser Gly Lys Glu Lys Asp Asn Gly Thr Asp Ser Val Leu Ser
245 250 255
Ser Gln Ser Ile Ser Ser Ser Gly Ser Glu Pro Leu His Ser Asp Ser
260 265 270
Ala Glu Thr Trp Asn Ser Pro Asn Met Gln Gln Asp Ala Arg Ala Ser
275 280 285
Lys Val His Asn Arg Phe Lys Ala Pro Cys Tyr Gln Asn Gly Ser Gly
290 295 300
Ser Tyr His Asn His Asn Gly Leu Gln Ser Ser Val Tyr His Ser Ser
305 310 315 320
Ser Gly Glu Arg Leu Glu Glu Arg Asp Cys Ser Gly Gln Gln Leu Asn
325 330 335
His Asn
59
1385
DNA
Glycine max
59
gcacgagggg attttgagtg gaggggaaaa gttgtgctaa gatgccgggg aaagctgaca 60
ctgatgattg gcgagtagag cggggtgagc agattcagtt tcagtcttcc atttactctc 120
atcatcagcc ttggtggtgt ggagtggggg aaaatgcctc taaatcatct tcagctgatc 180
agttaaatgg ttcaatcgtg aatggtatca cgcggtctga gaccaatgat aagtcaggtg 240
aaggtgttgc caaagaatac caaaacatca aacatgccgt gttgtcaacc ccatttacca 300
tggacaaaca tcttgctcca aatccccaga tggaacttgt tggtcattca gttgttttaa 360
catctcctta ttcagatgca cagcatggtc aaatcttgac tacttacggg caacaagtta 420
tgataaaccc tcaattgtac ggaatgtatc atgctagaat gcctttgcca cctgaaatgg 480
aagaggagcc tgtttatgtc aatgcaaagc agtatcatgg tattttgagg cgaagacagt 540
cacgtgctaa ggctgagctt gaaaagaaag taatcaaaaa caggaagcca tacctccatg 600
aatcccgtca ccttcatgcc atgagaaggg ctagaggcaa tggtggtcgc tttctcaaca 660
aaaagaagct cgaaaattac aattctgatg ccacttcaga cattgggcaa aatactggtg 720
caaacccctc aacaaactca cctaacactc aacatttgtt caccaacaat gagaatctag 780
gctcatcaaa tgcgtcacaa gccacggttc aggacatgca cagagtggag agtttcaata 840
ttggttacca taatggaaat ggtcttgcag aactgtacca ttcacaagca aatggaaaaa 900
aggagggaaa ctgctttggt aaagagaggg accctaataa tggggctttc aaatgacact 960
tcgcccagcc atacagcaac agttaggtga agatgaaggg tttttatctc atccaacttg 1020
tgatgctgta ttgaaggcaa ttcattcttg gcttagttaa gtggtgagac cagtgacatg 1080
gagtacactc tgccttgttt ggtctctccc cttgcatttg tttctcttta caagtccata 1140
tgtaaaaatg gataacggaa agaaaaagaa aaatcacttt tgtttgagaa cttttttaag 1200
tttgttttta actgtgtgaa ggtttcataa aattgtggac tgacttgtgt gacatatgct 1260
ccacaaaacc ttaaaacttt cgtctatttt gtccaaaaaa aaaaaaaaaa aaaaaaaaaa 1320
aaaaaaaaaa aaagggaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1380
aaaaa 1385
60
304
PRT
Glycine max
60
Met Pro Gly Lys Ala Asp Thr Asp Asp Trp Arg Val Glu Arg Gly Glu
1 5 10 15
Gln Ile Gln Phe Gln Ser Ser Ile Tyr Ser His His Gln Pro Trp Trp
20 25 30
Cys Gly Val Gly Glu Asn Ala Ser Lys Ser Ser Ser Ala Asp Gln Leu
35 40 45
Asn Gly Ser Ile Val Asn Gly Ile Thr Arg Ser Glu Thr Asn Asp Lys
50 55 60
Ser Gly Glu Gly Val Ala Lys Glu Tyr Gln Asn Ile Lys His Ala Val
65 70 75 80
Leu Ser Thr Pro Phe Thr Met Asp Lys His Leu Ala Pro Asn Pro Gln
85 90 95
Met Glu Leu Val Gly His Ser Val Val Leu Thr Ser Pro Tyr Ser Asp
100 105 110
Ala Gln His Gly Gln Ile Leu Thr Thr Tyr Gly Gln Gln Val Met Ile
115 120 125
Asn Pro Gln Leu Tyr Gly Met Tyr His Ala Arg Met Pro Leu Pro Pro
130 135 140
Glu Met Glu Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly
145 150 155 160
Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys
165 170 175
Val Ile Lys Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His
180 185 190
Ala Met Arg Arg Ala Arg Gly Asn Gly Gly Arg Phe Leu Asn Lys Lys
195 200 205
Lys Leu Glu Asn Tyr Asn Ser Asp Ala Thr Ser Asp Ile Gly Gln Asn
210 215 220
Thr Gly Ala Asn Pro Ser Thr Asn Ser Pro Asn Thr Gln His Leu Phe
225 230 235 240
Thr Asn Asn Glu Asn Leu Gly Ser Ser Asn Ala Ser Gln Ala Thr Val
245 250 255
Gln Asp Met His Arg Val Glu Ser Phe Asn Ile Gly Tyr His Asn Gly
260 265 270
Asn Gly Leu Ala Glu Leu Tyr His Ser Gln Ala Asn Gly Lys Lys Glu
275 280 285
Gly Asn Cys Phe Gly Lys Glu Arg Asp Pro Asn Asn Gly Ala Phe Lys
290 295 300
61
1401
DNA
Glycine max
61
gaagtcttta tgtgacctgg gtggaatgat tctgtgtctg catgtgtgaa ttctggcaag 60
ggaactaggg atctgaagat aagatatgca atctaaatct gaaactgcaa atcaactgag 120
gtctgatcca cattccttta cacctaacaa tgcttattct gaaccctggt ggcgaggtat 180
tcagtacaat cctgtccccc aagcaatgtt aggagtgaat gcatctaatt catcttcact 240
tgaacgccct aatggtgatt cggaatccag tgaagaggat gatgatgcca ctaaagaatc 300
acaacccact gctcctaatc aatcaggaaa ttatggacag gaccaccaag cgatgcaaca 360
ttcttcatca tctgcacctt tggtacgtga tgattgcctt acacaggctc cacaagtgga 420
acttgttggc cactcaattg gatacactcc ttttatagga atgccccatg ccagaatggc 480
tttgcccctt gagatggctc aagagcctgt ttatgtgaat gccaaacaat accaaggaat 540
tctgagacga agacaggctc gtgctaaagc agagcttgaa aagaaattaa taaaagtcag 600
aaagccatat cttcatgaat cccggcatca gcatgctata agaagagcac gaggtaatgg 660
agggcgtttt gcaaagaaaa ctgaagttga ggcttcaaac cacatgaaca aggaaaagga 720
tatgggtact ggccaggtcc cattgtcacg gtcaattagt tcatctggtt ttggatcact 780
accctctgac tctgctgaga cctggaattc tcctagtgtg caacaagatg caagaggatc 840
tcaagtgcat gagagatttg aagaacgcaa ctatgcaaat gttttgcagt catcatctac 900
tttttgtttg cactcgggtg aaagagtgga ggaaggggac tgttcaggtc aacaacgggg 960
aagcatcttg tcagagcaca cctcacagag gcgtcttgct attcagtaaa ccactgcatg 1020
tgttgatgct gaggttggta tatataattg agtgaactag taggttgagt accttggcta 1080
tctatctgta aacattggca atttgcatgc atgtcaagcg gcaaatcatt cttggctggg 1140
tttcagctgt tcatgatatg gggagaagaa tgattgattg ggccatcata cttgtgttgt 1200
tgaagtctac cagtccttca ttatatcctc tttttcattt tttctgtttt tgtacagaga 1260
tagtagttag caaagtcaag ccaacggatt agaagacttg atgaaacaaa ctactgactc 1320
actttcctct ggcggcttta ttttatgtta ctcaccggtt attaatgctt aatatgagac 1380
atcatatgag agatttgctg c 1401
62
307
PRT
Glycine max
62
Met Gln Ser Lys Ser Glu Thr Ala Asn Gln Leu Arg Ser Asp Pro His
1 5 10 15
Ser Phe Thr Pro Asn Asn Ala Tyr Ser Glu Pro Trp Trp Arg Gly Ile
20 25 30
Gln Tyr Asn Pro Val Pro Gln Ala Met Leu Gly Val Asn Ala Ser Asn
35 40 45
Ser Ser Ser Leu Glu Arg Pro Asn Gly Asp Ser Glu Ser Ser Glu Glu
50 55 60
Asp Asp Asp Ala Thr Lys Glu Ser Gln Pro Thr Ala Pro Asn Gln Ser
65 70 75 80
Gly Asn Tyr Gly Gln Asp His Gln Ala Met Gln His Ser Ser Ser Ser
85 90 95
Ala Pro Leu Val Arg Asp Asp Cys Leu Thr Gln Ala Pro Gln Val Glu
100 105 110
Leu Val Gly His Ser Ile Gly Tyr Thr Pro Phe Ile Gly Met Pro His
115 120 125
Ala Arg Met Ala Leu Pro Leu Glu Met Ala Gln Glu Pro Val Tyr Val
130 135 140
Asn Ala Lys Gln Tyr Gln Gly Ile Leu Arg Arg Arg Gln Ala Arg Ala
145 150 155 160
Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Val Arg Lys Pro Tyr Leu
165 170 175
His Glu Ser Arg His Gln His Ala Ile Arg Arg Ala Arg Gly Asn Gly
180 185 190
Gly Arg Phe Ala Lys Lys Thr Glu Val Glu Ala Ser Asn His Met Asn
195 200 205
Lys Glu Lys Asp Met Gly Thr Gly Gln Val Pro Leu Ser Arg Ser Ile
210 215 220
Ser Ser Ser Gly Phe Gly Ser Leu Pro Ser Asp Ser Ala Glu Thr Trp
225 230 235 240
Asn Ser Pro Ser Val Gln Gln Asp Ala Arg Gly Ser Gln Val His Glu
245 250 255
Arg Phe Glu Glu Arg Asn Tyr Ala Asn Val Leu Gln Ser Ser Ser Thr
260 265 270
Phe Cys Leu His Ser Gly Glu Arg Val Glu Glu Gly Asp Cys Ser Gly
275 280 285
Gln Gln Arg Gly Ser Ile Leu Ser Glu His Thr Ser Gln Arg Arg Leu
290 295 300
Ala Ile Gln
305
63
1241
DNA
Glycine max
63
gcacgaggtc ctaagttgta agaaacactc tcttctcctt tctcactatt gttctgttac 60
tgttttttgc agcaacactt cagttcaatt aacgaactac accactttct ttctcttctt 120
cgactgctct gtaaccgaaa acctcccttt cccagtttcg aatcttttgt ttctgccttt 180
ggttactgtt tttccgagcc atgctattca ttattgtcct tcgaatcgga ttgattggga 240
cactgtattg catgtaaatc aggaaatcat gacttctact catgacctct cagataatga 300
agctgatgac cagcagcagt cggaatcaca aatggagcct ttatctgcaa atggaatttc 360
ttatgcaggt attgctactc agaatgttca gtatgcaaca ccttcacagc ttggaactgg 420
gcatgctgtg gtaccgccca cttacccata tccagatcca tactacagaa gtatctttgc 480
tccctatgat gcacaaactt atcccccaca accctatggt ggaaatccaa tggtccacct 540
tcagttaatg ggaattcaac aagcaggtgt tcctttgcca actgatacag ttgaggagcc 600
tgtgtttgtc aatgcaaaac agtatcatgg tatattaaga cgcagacagt cccgtgctaa 660
agctgaatca gaaaaaaagg ctgcaaggaa tcggaagcca tacttgcatg aatctcgaca 720
tttgcatgca ctgagaagag caagaggatg tggaggtcgg tttttgaatt caaagaaaga 780
tgagaatcaa caggatgagg ttgcatcaac tgacgaatca cagtccacta tcaatctcaa 840
ttctgataaa aatgagcttg caccatcaga tagaacatcc taaaactaca gaaatggtga 900
tgctgtagat tgcagggatc tgttgtgtat atctatattg ggagatgaat ctccaaccaa 960
cagtatcctc agatatctcc ctattattca ttctgtcgta caacgccata ggtataagta 1020
taggttgtgt agtaggtatg ttaggaggtt gcaaaataaa acaagtaaaa tgtaaattga 1080
agtgattcaa ctaagtctat ccccaatgtg gtcctttctt gcctttttag gtatttttat 1140
tgtgtgggct tttctttgta ttatttggtg cctctgaggg aaagagaaga gattatccga 1200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 1241
64
204
PRT
Glycine max
64
Met Thr Ser Thr His Asp Leu Ser Asp Asn Glu Ala Asp Asp Gln Gln
1 5 10 15
Gln Ser Glu Ser Gln Met Glu Pro Leu Ser Ala Asn Gly Ile Ser Tyr
20 25 30
Ala Gly Ile Ala Thr Gln Asn Val Gln Tyr Ala Thr Pro Ser Gln Leu
35 40 45
Gly Thr Gly His Ala Val Val Pro Pro Thr Tyr Pro Tyr Pro Asp Pro
50 55 60
Tyr Tyr Arg Ser Ile Phe Ala Pro Tyr Asp Ala Gln Thr Tyr Pro Pro
65 70 75 80
Gln Pro Tyr Gly Gly Asn Pro Met Val His Leu Gln Leu Met Gly Ile
85 90 95
Gln Gln Ala Gly Val Pro Leu Pro Thr Asp Thr Val Glu Glu Pro Val
100 105 110
Phe Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser
115 120 125
Arg Ala Lys Ala Glu Ser Glu Lys Lys Ala Ala Arg Asn Arg Lys Pro
130 135 140
Tyr Leu His Glu Ser Arg His Leu His Ala Leu Arg Arg Ala Arg Gly
145 150 155 160
Cys Gly Gly Arg Phe Leu Asn Ser Lys Lys Asp Glu Asn Gln Gln Asp
165 170 175
Glu Val Ala Ser Thr Asp Glu Ser Gln Ser Thr Ile Asn Leu Asn Ser
180 185 190
Asp Lys Asn Glu Leu Ala Pro Ser Asp Arg Thr Ser
195 200
65
1716
DNA
Glycine max
65
gcacgaggta cgtaccgaca tgactccaac ctgatggggt taaacactgc ttctgcgtag 60
gattcgatgc cgctactcct tcttcagttt ctacaactga gtttcatatc tcctttctat 120
tgatgtttat gctgaagact gaataaaagt ctgagaaagc tgcttactac aaaccaacaa 180
gattaactaa gaaatcatct tttgggacga tgcaaactgt ttatcttaaa gagcacgaag 240
gaaatgcgca caattttgtg ggcacgttgt cttctgcagc ttcagcaccc tggtggagtg 300
cttttggatc tcaatctgtt catcagggag agtcttgtgg ccaagtgaaa cccttttcat 360
tggagctgcc aaactgcata gaccaacttg ctgccactaa gccactagca agaggagctg 420
accaagtgtt gggtaaaggg cacataactc agtttacaat ctttccagat gattgtaaaa 480
tgtcagatga tgcgcaaaag cttcagacaa ccatgtcact gcagtcatcg cttactgatc 540
cacagtctcg ttttgagata gggtttagtc tgcccacgat atgtgcaaaa tatccttata 600
cggatcaatt ttatggactc ttctcagctt atgcacctca aatttcggga cgtataatgc 660
tgccacttaa catgacatct gatgatgaac caatttacgt aaatgctaag cagtaccatg 720
gaatcattag acgtcggcag tcccgtgcca aagctgtact tgatcacaaa ttgactaaac 780
gtcgcaagcc ctatatgcac gaatcacgcc atctccatgc aatgcggcga ccaagaggat 840
gtgggggtcg cttcttgaac actaagaatt ctgttgacgg aaatggtaaa attggaaatg 900
aagtgcataa aactgttggt gaacaattgc agtctagtgg ctctcagagt tctgaattcc 960
ttcaatctga ggttggaact tttaattcat caaaagagac taatggaagc agtccaaata 1020
tttctggttc agaggtgact agcatgtatt cgcggggagg tcttgacagc ttttctctca 1080
atcatcttgg atctgctgtc cactcttttg cagacatgat agatggtggg cgcggtatga 1140
tcatacccac caaatgggtt gcagcagcag gtaactgctg caaccttaaa gtttgatttg 1200
caaagaatca agggtgggct tgctgtagca ttgcaccagg cccatcctcg atgaggccag 1260
atgaagaagc ttcgtttcag ttgcgtgtgc tgactgtgac aagtttcgct cggtaagatc 1320
gtcctcacat ctggtctagg caatccatcc ttggctcata ctttggcaat ccatccttgg 1380
ctcattgtaa ctgaaggcaa ctcatccttg gcttgatgta cttgcagtaa tttgtctttc 1440
tgcacaggaa tgttgttggc atggtacaaa ctaatgactt gatatcctga tgcagaagac 1500
aactatgttt ctgtctttgt gtgaaaatga aagcatgaaa ctctagttat gtgtgcttcg 1560
aataatgtct aaacgtggtg ttgtattttg tatttctgac ttcgaggaac aatgtattat 1620
agaaccttgt tctgtggtct ttgttagaaa aaataaagca ttggtgtgtt tttctccaaa 1680
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaag 1716
66
328
PRT
Glycine max
66
Met Gln Thr Val Tyr Leu Lys Glu His Glu Gly Asn Ala His Asn Phe
1 5 10 15
Val Gly Thr Leu Ser Ser Ala Ala Ser Ala Pro Trp Trp Ser Ala Phe
20 25 30
Gly Ser Gln Ser Val His Gln Gly Glu Ser Cys Gly Gln Val Lys Pro
35 40 45
Phe Ser Leu Glu Leu Pro Asn Cys Ile Asp Gln Leu Ala Ala Thr Lys
50 55 60
Pro Leu Ala Arg Gly Ala Asp Gln Val Leu Gly Lys Gly His Ile Thr
65 70 75 80
Gln Phe Thr Ile Phe Pro Asp Asp Cys Lys Met Ser Asp Asp Ala Gln
85 90 95
Lys Leu Gln Thr Thr Met Ser Leu Gln Ser Ser Leu Thr Asp Pro Gln
100 105 110
Ser Arg Phe Glu Ile Gly Phe Ser Leu Pro Thr Ile Cys Ala Lys Tyr
115 120 125
Pro Tyr Thr Asp Gln Phe Tyr Gly Leu Phe Ser Ala Tyr Ala Pro Gln
130 135 140
Ile Ser Gly Arg Ile Met Leu Pro Leu Asn Met Thr Ser Asp Asp Glu
145 150 155 160
Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Ile Arg Arg Arg
165 170 175
Gln Ser Arg Ala Lys Ala Val Leu Asp His Lys Leu Thr Lys Arg Arg
180 185 190
Lys Pro Tyr Met His Glu Ser Arg His Leu His Ala Met Arg Arg Pro
195 200 205
Arg Gly Cys Gly Gly Arg Phe Leu Asn Thr Lys Asn Ser Val Asp Gly
210 215 220
Asn Gly Lys Ile Gly Asn Glu Val His Lys Thr Val Gly Glu Gln Leu
225 230 235 240
Gln Ser Ser Gly Ser Gln Ser Ser Glu Phe Leu Gln Ser Glu Val Gly
245 250 255
Thr Phe Asn Ser Ser Lys Glu Thr Asn Gly Ser Ser Pro Asn Ile Ser
260 265 270
Gly Ser Glu Val Thr Ser Met Tyr Ser Arg Gly Gly Leu Asp Ser Phe
275 280 285
Ser Leu Asn His Leu Gly Ser Ala Val His Ser Phe Ala Asp Met Ile
290 295 300
Asp Gly Gly Arg Gly Met Ile Ile Pro Thr Lys Trp Val Ala Ala Ala
305 310 315 320
Gly Asn Cys Cys Asn Leu Lys Val
325
67
1103
DNA
Glycine max
67
gcacgaggaa atgaagaatt agagggagtg agaggaggaa gaagaagaag aagattccag 60
aatccagagt gagaaacatt aggcttatca gaggagacat gcccgagttg aaccgacaat 120
tctattacta ctctttgctt ctttcttcat gcctcatcaa atcccaaagg atataattga 180
aggttttggg aactaaggct gcaatattgt atacattcta ctcaaggaat ggctcatact 240
tcttatcctt gtggtgatcc ttattttggt agttcaatag ttgcttatgg aacacaggct 300
attactcaac aaatggtgcc ccagatgctg ggattagcat ccaccagaat tgcattacca 360
gttgagcttg cagaagatgg gcccatttat gtcaatgcca aacaatacca tggtatactg 420
agaaggcgac agtcacgagc aaagcttaag gctcaaaaca aactcatcaa aagtcgtaag 480
ccatatcttc atgagtctcg gcaccgccac gcattgaaaa gggttagggg aactgggggg 540
cgctttctta gtgccaaaca gcttcaacag tttaatgcag aacttgtcac cgatgcccat 600
tcaggcccgg gccctgtcaa tgtttatcaa aagaaagatg catctgaggc agaaagtcat 660
ccctcaagaa ctggaaaaaa tgcatctatc acattcacag caatctctgg cttgacaagt 720
atgtccggta acagtgtcag tttcaggcgg cctgagcaca acttcttggg gaactctcct 780
aatataggtg gatcgtcgca atgcagtggg ggactcacct ttggtggtgg agctcggcaa 840
tgtacttcag ttggccggtg agaggtggaa ccaatcaaaa tcaagttcac tggtctggca 900
aatcatcctt ggcttagtca ctttactttc tgtgtttcat gtgttgttac ggaaatgttg 960
tcttttggaa gactctgcat tagcactcag acttttgcta gtgctttccc atgtattttg 1020
aaagttgctc ttgtttctgt tgttgaactg gaccagaaag tttgtgcttg aaaatttaac 1080
tttttaaaaa aaaaaaaaaa aaa 1103
68
210
PRT
Glycine max
68
Met Ala His Thr Ser Tyr Pro Cys Gly Asp Pro Tyr Phe Gly Ser Ser
1 5 10 15
Ile Val Ala Tyr Gly Thr Gln Ala Ile Thr Gln Gln Met Val Pro Gln
20 25 30
Met Leu Gly Leu Ala Ser Thr Arg Ile Ala Leu Pro Val Glu Leu Ala
35 40 45
Glu Asp Gly Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu
50 55 60
Arg Arg Arg Gln Ser Arg Ala Lys Leu Lys Ala Gln Asn Lys Leu Ile
65 70 75 80
Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Leu
85 90 95
Lys Arg Val Arg Gly Thr Gly Gly Arg Phe Leu Ser Ala Lys Gln Leu
100 105 110
Gln Gln Phe Asn Ala Glu Leu Val Thr Asp Ala His Ser Gly Pro Gly
115 120 125
Pro Val Asn Val Tyr Gln Lys Lys Asp Ala Ser Glu Ala Glu Ser His
130 135 140
Pro Ser Arg Thr Gly Lys Asn Ala Ser Ile Thr Phe Thr Ala Ile Ser
145 150 155 160
Gly Leu Thr Ser Met Ser Gly Asn Ser Val Ser Phe Arg Arg Pro Glu
165 170 175
His Asn Phe Leu Gly Asn Ser Pro Asn Ile Gly Gly Ser Ser Gln Cys
180 185 190
Ser Gly Gly Leu Thr Phe Gly Gly Gly Ala Arg Gln Cys Thr Ser Val
195 200 205
Gly Arg
210
69
1128
DNA
Glycine max
69
gcacgagggg tttgggtttc aagagaggag acatgcttaa cttcaaccca acacttcaag 60
tacttgcttc ttcataccct taccagatcc caaaggtcac gatctaattt taagtgatta 120
gtctgatgag cattttgaag gttacatgaa gcaatttctc tttttgaatc ttcctgacac 180
cgagatcaat tgttcacaag ttgattgcaa tcactcaatg gctcattctt cttatcccta 240
cggcgatcca attcttgctt atggaccaca agctattagt catccccaaa tggtacccca 300
gatgctggga ctagcatcca ccagagtggc attaccactt gatcttgctg aagatggacc 360
gatttatgtc aacgcgaaac aataccatgg tatactgaga aggcgacagt cacgagcaaa 420
acttgaggct cagaacaaac ttatcaaaag tcgtaagcca tatcttcatg agtctcggca 480
ccgccatgct ttgaataggg ttaggggatc tgggggtcga tttctgagta ccaaacagct 540
tgcacagtct aatgcagaat ttgtcaccgg tgcacattct ggttctgacc ctaccaacat 600
atatcagaaa gaacatccat tagaggtgga aagtcattcc tcaaaagatg gagataatgc 660
atcattcata acaacctact ccgaccggcc atgtttatct ggcaacaacc tcaattttcg 720
gcagcaggag tgcatgtttc tggggaattc tgcaaacatg agtggagcac cacagtgcag 780
tgggggactc acctttggcg gagcaaagca acgcacttca gttgtccggt gagagaagaa 840
actgatcgaa accgacttca ccggtcaggc aaatcatcct tggcttagtc acttttgtct 900
gtgtcttaat gtgttcgtac taaatgatca ttttgagaga ctcttcagtc tgcattagca 960
ctaataagac ctttccaatt gctttggcat gtattttaaa gttgctattg tactggattc 1020
tgaactggat tggaatagtc tgtgcatgga actagtatgt ttgtgttagt tactgttgaa 1080
tttccttctt taaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 1128
70
228
PRT
Glycine max
70
Met Lys Gln Phe Leu Phe Leu Asn Leu Pro Asp Thr Glu Ile Asn Cys
1 5 10 15
Ser Gln Val Asp Cys Asn His Ser Met Ala His Ser Ser Tyr Pro Tyr
20 25 30
Gly Asp Pro Ile Leu Ala Tyr Gly Pro Gln Ala Ile Ser His Pro Gln
35 40 45
Met Val Pro Gln Met Leu Gly Leu Ala Ser Thr Arg Val Ala Leu Pro
50 55 60
Leu Asp Leu Ala Glu Asp Gly Pro Ile Tyr Val Asn Ala Lys Gln Tyr
65 70 75 80
His Gly Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Leu Glu Ala Gln
85 90 95
Asn Lys Leu Ile Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His
100 105 110
Arg His Ala Leu Asn Arg Val Arg Gly Ser Gly Gly Arg Phe Leu Ser
115 120 125
Thr Lys Gln Leu Ala Gln Ser Asn Ala Glu Phe Val Thr Gly Ala His
130 135 140
Ser Gly Ser Asp Pro Thr Asn Ile Tyr Gln Lys Glu His Pro Leu Glu
145 150 155 160
Val Glu Ser His Ser Ser Lys Asp Gly Asp Asn Ala Ser Phe Ile Thr
165 170 175
Thr Tyr Ser Asp Arg Pro Cys Leu Ser Gly Asn Asn Leu Asn Phe Arg
180 185 190
Gln Gln Glu Cys Met Phe Leu Gly Asn Ser Ala Asn Met Ser Gly Ala
195 200 205
Pro Gln Cys Ser Gly Gly Leu Thr Phe Gly Gly Ala Lys Gln Arg Thr
210 215 220
Ser Val Val Arg
225
71
1286
DNA
Helianthus sp.
71
gcacgagctt ctagattttc tctccgattc gtcgccccaa attttagggt ttttactttt 60
cgtcctctat actcgtagat cttggtgtaa cagtattgca taagtttcat gtcctcttct 120
gccatgcgag cgaattcatc tgattcgtct cctccagaac agtcgttaga cagggaatca 180
cagtctgatg aagttcttag tgaggaagaa gatgatgcaa gcaaagaaac acaaaatgct 240
tcgtcttttc gttcagataa aagttatcag cagcagggag taccaaatat ccttccaaat 300
aatggcgaaa ccgtagggca ggtcccacaa ctagaacttg tcggtcacac tattgcctgt 360
gctccaaatc cttattgtga tccatattat ggtggaatga tggcagctta tggtcagcct 420
tttgttcatc ctcagtttct tgagcaagca aggatgcctt tgccacttga aatggcgcaa 480
gagcctgttt acgtgaatgc caaacaatac catgcgatat taaggcgaag gcaatcccgt 540
gcaaaagcag agcttgagaa gaaacttata aaagacagaa agccttatct tcatgaatca 600
cggcatcagc atgctttgag aagggtaagg ggcaccggtg gtcgttttgc aaagaaaact 660
gacgttaata agaacacaac aggttcgggt tcaggttctg ccatgtcatc atcccagtcg 720
gtgaattcaa accgggtgca ctcagaatct gccgagagct tggacacacc aaggggtgga 780
ttggtaaatt cacacaatac tcgcacgtat cttgataacg gaggttcttt aggccagcag 840
tggataaaca tttcatctaa ccaatcttca cagagggctg ttgccatgaa gtgatgtcga 900
gtgtttaaca ccctttgtgt ctatccgtgg cttctaagct ggccggcaaa tcattcttgg 960
ctcatgttaa tatgagggac aaacaggtaa atgtaccttt tggtgtcctc tttggtttta 1020
ctttcaggat ttctttcttc ggaactgatg ttatgtacaa agtttgcttt tggggataga 1080
agaattggtt gggttgggtt tgtgtgttct tttctgaatg tttggtatat ttggaggtga 1140
agcatggagt ttaagatgtg cttatgtcta tcgtctaatt gtaggggcat atagtgctcc 1200
acagcctcca gcacatgtgt aatgtcgtgg ctgttgaaaa ttggagcttc atatttactg 1260
ttttgcaaaa aaaaaaaaaa aaaaaa 1286
72
261
PRT
Helianthus sp.
72
Met Ser Ser Ser Ala Met Arg Ala Asn Ser Ser Asp Ser Ser Pro Pro
1 5 10 15
Glu Gln Ser Leu Asp Arg Glu Ser Gln Ser Asp Glu Val Leu Ser Glu
20 25 30
Glu Glu Asp Asp Ala Ser Lys Glu Thr Gln Asn Ala Ser Ser Phe Arg
35 40 45
Ser Asp Lys Ser Tyr Gln Gln Gln Gly Val Pro Asn Ile Leu Pro Asn
50 55 60
Asn Gly Glu Thr Val Gly Gln Val Pro Gln Leu Glu Leu Val Gly His
65 70 75 80
Thr Ile Ala Cys Ala Pro Asn Pro Tyr Cys Asp Pro Tyr Tyr Gly Gly
85 90 95
Met Met Ala Ala Tyr Gly Gln Pro Phe Val His Pro Gln Phe Leu Glu
100 105 110
Gln Ala Arg Met Pro Leu Pro Leu Glu Met Ala Gln Glu Pro Val Tyr
115 120 125
Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Ser Arg
130 135 140
Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Asp Arg Lys Pro Tyr
145 150 155 160
Leu His Glu Ser Arg His Gln His Ala Leu Arg Arg Val Arg Gly Thr
165 170 175
Gly Gly Arg Phe Ala Lys Lys Thr Asp Val Asn Lys Asn Thr Thr Gly
180 185 190
Ser Gly Ser Gly Ser Ala Met Ser Ser Ser Gln Ser Val Asn Ser Asn
195 200 205
Arg Val His Ser Glu Ser Ala Glu Ser Leu Asp Thr Pro Arg Gly Gly
210 215 220
Leu Val Asn Ser His Asn Thr Arg Thr Tyr Leu Asp Asn Gly Gly Ser
225 230 235 240
Leu Gly Gln Gln Trp Ile Asn Ile Ser Ser Asn Gln Ser Ser Gln Arg
245 250 255
Ala Val Ala Met Lys
260
73
1306
DNA
Triticum aestivum
73
ggagaaacgg aaacagagac agagggagag gagacttgca gaggagagga gagaagaggc 60
ggaacaaggg aggagggagg ggtcgccgga agggggacat gctccctccg catctcacat 120
ctcgcagctt gaactgagag caagagcaga agcccatgag atgagacgca agcaaaatat 180
gcaagaaaat ggcacaatca tgattcagtt tggtcagcaa gtgcctaact gcgagtcctc 240
agctagcgat tctcctcaag aagtgtccgg aatgagcgaa gggagcttta atgagcagaa 300
tgatcaatct ggtaatcgcg atggctatac gaagagtagt gatgaaggca agatgatgtc 360
ggctttgtct ctgggcaatt cagaaatggc atacacaccg ccaaaacctg accgcactca 420
tccctttgcc atatcatacc catatgctga tccttactat ggtggtgcag tggcagccta 480
tggcgcacat gctattatgc acccccagat ggtgggcatg gtaccatcct ctcgagtgcc 540
actaccgatt gaaccagctg ccgccgaaga gcccatttat gtgaatgcga agcaatacca 600
tgccattctc cgaaggagac agctccgcgc aaaattagag gctgaaaata agctggtcaa 660
aagccgtaag ccgtacctgc atgagtcccg gcaccagcac gcgatgaagc gggctcgggg 720
aacaggcggg cggttcctca acgcaaagga gaagtctgaa gcttcaggcg gcggcaatgc 780
atcagcgagg tctggccacg ccggcgttcc cccggatggc ggcatgttct cgaagcacga 840
ccacacctta ccatccggtg acttccatta ccgcgcgaga gggggcgcct agggtgggca 900
cgcagttgcc ccctggcaaa tcatccttgg cttatgtgtg tggcgaatga ccgtcaactc 960
ggtccagtga tattgtaaaa ctgaatttag agtctgtgca attgtgttac ttgggggttt 1020
ggtagacagc ccttgtgttt ggggagggga cgatgcagct gcagctgcag ccggttctct 1080
tgttgtggta ggtttgtgtg gcatggcagg tgctgctaag ctggagcctg cttgaactgt 1140
tttcctgtca ctttgttgtt tggggtaata atgaccatct tgtatgatat tagtactgac 1200
ttggagtaag taataaccat tcccggcgtg atgcatttgc gcccgtggtg gtgtttctgt 1260
tgaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 1306
74
243
PRT
Triticum aestivum
74
Met Arg Arg Lys Gln Asn Met Gln Glu Asn Gly Thr Ile Met Ile Gln
1 5 10 15
Phe Gly Gln Gln Val Pro Asn Cys Glu Ser Ser Ala Ser Asp Ser Pro
20 25 30
Gln Glu Val Ser Gly Met Ser Glu Gly Ser Phe Asn Glu Gln Asn Asp
35 40 45
Gln Ser Gly Asn Arg Asp Gly Tyr Thr Lys Ser Ser Asp Glu Gly Lys
50 55 60
Met Met Ser Ala Leu Ser Leu Gly Asn Ser Glu Met Ala Tyr Thr Pro
65 70 75 80
Pro Lys Pro Asp Arg Thr His Pro Phe Ala Ile Ser Tyr Pro Tyr Ala
85 90 95
Asp Pro Tyr Tyr Gly Gly Ala Val Ala Ala Tyr Gly Ala His Ala Ile
100 105 110
Met His Pro Gln Met Val Gly Met Val Pro Ser Ser Arg Val Pro Leu
115 120 125
Pro Ile Glu Pro Ala Ala Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys
130 135 140
Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu
145 150 155 160
Ala Glu Asn Lys Leu Val Lys Ser Arg Lys Pro Tyr Leu His Glu Ser
165 170 175
Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg Phe
180 185 190
Leu Asn Ala Lys Glu Lys Ser Glu Ala Ser Gly Gly Gly Asn Ala Ser
195 200 205
Ala Arg Ser Gly His Ala Gly Val Pro Pro Asp Gly Gly Met Phe Ser
210 215 220
Lys His Asp His Thr Leu Pro Ser Gly Asp Phe His Tyr Arg Ala Arg
225 230 235 240
Gly Gly Ala
75
1077
DNA
Triticum aestivum
75
gcacgaggtt ggaaagtaac aaaccatgac ttctgtcacc gacggtgttt caggtgatca 60
tagagctgat gagcagcaga agcaagctgc tgctcaaggg aaccaggaag aggccccagc 120
tactagtata ggtagtcagg caatggtggc aacaccttcc acagattatg tcacacccta 180
tggccaccag gaagcttgcc atgcaatggg tcaaattgct tacccaactg tcgatccatt 240
ctatggaagc ctttatgcag cctacggtgg acaacctatg atgcatccac caatggtcgg 300
aatgcatgca gccgcaatac cgttgcctac tgatgcaatt gaagagcctg tgtatgtgaa 360
tgcaaagcaa tataatgcca tattaaggcg gcgccaatct cgggctaaag cagagtcaga 420
aaggaagctt atcaagggcc gcaagccata tctccatgag tcgcggcatc aacatgcctt 480
gaaaagggcc aggggagccg gaggccggtt tcttaacgca aagtcagacg acaatgaaga 540
gcattctgat tccagctcca aagataagca gaatggcgtt gcaccccgca gcagtggcca 600
atcctcccaa tctcccaaag gcgcgacttc ggctgataag tcagcaaacc atgaatgaga 660
tgctagaagg tccgccggac gcgacgatcc atgccaacag ttttgtacag tatatatatg 720
ctagtgagcg agagagagtc gcgccggcgg gtgccatagg atatatccgc tctgctctat 780
agtagtgata gacttatcga cagatttttt tgcagcattg gtccgtgttt gctcggtttg 840
gtttctacat tctgtacaat gagtagtttt ttttgtggtt tttgtgttcc ggggttagcc 900
gcgggtttgg tcaggaggct tttgtagctt ataaaagaag tataattagt gctacattgt 960
tttctttggt gtggatttgg tctcttagct gtgctgcatc ctcattcgtg gtgcagaaaa 1020
taatatctgg gtatacataa taatagctct gcctgcagct ttctttgcca aaaaaaa 1077
76
210
PRT
Triticum aestivum
76
Met Thr Ser Val Thr Asp Gly Val Ser Gly Asp His Arg Ala Asp Glu
1 5 10 15
Gln Gln Lys Gln Ala Ala Ala Gln Gly Asn Gln Glu Glu Ala Pro Ala
20 25 30
Thr Ser Ile Gly Ser Gln Ala Met Val Ala Thr Pro Ser Thr Asp Tyr
35 40 45
Val Thr Pro Tyr Gly His Gln Glu Ala Cys His Ala Met Gly Gln Ile
50 55 60
Ala Tyr Pro Thr Val Asp Pro Phe Tyr Gly Ser Leu Tyr Ala Ala Tyr
65 70 75 80
Gly Gly Gln Pro Met Met His Pro Pro Met Val Gly Met His Ala Ala
85 90 95
Ala Ile Pro Leu Pro Thr Asp Ala Ile Glu Glu Pro Val Tyr Val Asn
100 105 110
Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys
115 120 125
Ala Glu Ser Glu Arg Lys Leu Ile Lys Gly Arg Lys Pro Tyr Leu His
130 135 140
Glu Ser Arg His Gln His Ala Leu Lys Arg Ala Arg Gly Ala Gly Gly
145 150 155 160
Arg Phe Leu Asn Ala Lys Ser Asp Asp Asn Glu Glu His Ser Asp Ser
165 170 175
Ser Ser Lys Asp Lys Gln Asn Gly Val Ala Pro Arg Ser Ser Gly Gln
180 185 190
Ser Ser Gln Ser Pro Lys Gly Ala Thr Ser Ala Asp Lys Ser Ala Asn
195 200 205
His Glu
210
77
1378
DNA
Triticum aestivum
77
gcacgaggag attcccctct ccgcggcgca gacgaccacc cgccggccgc ccctgccgtc 60
gctctgctag gcagcgatga tgagcttcaa gggccacgac ggattcgggc aggcctccaa 120
tggtggtggt ggtggtggag cctccgtgcc atggtggacg gtgtcccaga tgctgtacgg 180
ggagccgggg gccgccttgt cgtcgtcgcc ggaggcggag cctcgccggg acgcccagtt 240
ccaggtcgtg cccagagctc agggcatcct ggatccactg ccggcgccca agagcggggc 300
tcctgaggtc ctcaagttct cggtgttcca agggaatttg gagtcgggag gcaacaaagg 360
agagaagccc atggagcact ccgccaccat cgcactgcag tcgccgctcc cggaatacaa 420
cagtcgcttc gaatttggcc cgggtccttc catgatgtct tctggttatc cttcagccga 480
gcagtgctat ggcctgctta ccacttacgc gatgaaatct acgcctggtg gccgattgct 540
cttgccactg aatgcaacag ctgacgcgcc gatttacgtg aatgcgaagc agtatgaagg 600
catccttcgc cgccgccgtg ctcgtgccaa ggtggagcga gagaatcagc tggtgaaagg 660
aagaaagccg tatcttcacg aatcacgcca ccgccacgcg atgcgccggg cgaggggcac 720
gggagggcgc ttcctcaaca ccaagaagga ggggaatggc aaggacgctg gaggaggagg 780
caagagggca gagtgcgccc cgcccacgcg cttcgccacg tctccgagct ccgtcatccc 840
gagcaacccg cactcccgga gcagcatctc gagcctctcc ggctcggagg tgtcgagcat 900
gtacgaccac gacgacgtgg accactacaa cagcatcgag cacctccgga cgcccttctt 960
caccccgctg ccgatcatca tggacggcga gcacggggca tccgccccct tcaagtgggc 1020
cacggccgcc gacggctgct gtgagctcct caaggcgtga cttgaggggg gtacacgcag 1080
gcacccagat caagagccgg ccatggccgg ctctggctcc gtctggttgt ctgcaggcaa 1140
atcattcttg gctctactgc attggggtgt ccttccacgt cgcattacct cttccctgag 1200
aactccggtg ctggttctca gggatcttgt gatgatgggg ctccccatat gcctgtaaaa 1260
tagtatcgga agcactagca gtgtactacg ggtatgaact ctgtggtact atcaggtatc 1320
tgtgtcagaa ctcagaataa gtatcaaact tcagggtcta aaaaaaaaaa aaaaaaaa 1378
78
327
PRT
Triticum aestivum
78
Met Met Ser Phe Lys Gly His Asp Gly Phe Gly Gln Ala Ser Asn Gly
1 5 10 15
Gly Gly Gly Gly Gly Ala Ser Val Pro Trp Trp Thr Val Ser Gln Met
20 25 30
Leu Tyr Gly Glu Pro Gly Ala Ala Leu Ser Ser Ser Pro Glu Ala Glu
35 40 45
Pro Arg Arg Asp Ala Gln Phe Gln Val Val Pro Arg Ala Gln Gly Ile
50 55 60
Leu Asp Pro Leu Pro Ala Pro Lys Ser Gly Ala Pro Glu Val Leu Lys
65 70 75 80
Phe Ser Val Phe Gln Gly Asn Leu Glu Ser Gly Gly Asn Lys Gly Glu
85 90 95
Lys Pro Met Glu His Ser Ala Thr Ile Ala Leu Gln Ser Pro Leu Pro
100 105 110
Glu Tyr Asn Ser Arg Phe Glu Phe Gly Pro Gly Pro Ser Met Met Ser
115 120 125
Ser Gly Tyr Pro Ser Ala Glu Gln Cys Tyr Gly Leu Leu Thr Thr Tyr
130 135 140
Ala Met Lys Ser Thr Pro Gly Gly Arg Leu Leu Leu Pro Leu Asn Ala
145 150 155 160
Thr Ala Asp Ala Pro Ile Tyr Val Asn Ala Lys Gln Tyr Glu Gly Ile
165 170 175
Leu Arg Arg Arg Arg Ala Arg Ala Lys Val Glu Arg Glu Asn Gln Leu
180 185 190
Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala
195 200 205
Met Arg Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Lys
210 215 220
Glu Gly Asn Gly Lys Asp Ala Gly Gly Gly Gly Lys Arg Ala Glu Cys
225 230 235 240
Ala Pro Pro Thr Arg Phe Ala Thr Ser Pro Ser Ser Val Ile Pro Ser
245 250 255
Asn Pro His Ser Arg Ser Ser Ile Ser Ser Leu Ser Gly Ser Glu Val
260 265 270
Ser Ser Met Tyr Asp His Asp Asp Val Asp His Tyr Asn Ser Ile Glu
275 280 285
His Leu Arg Thr Pro Phe Phe Thr Pro Leu Pro Ile Ile Met Asp Gly
290 295 300
Glu His Gly Ala Ser Ala Pro Phe Lys Trp Ala Thr Ala Ala Asp Gly
305 310 315 320
Cys Cys Glu Leu Leu Lys Ala
325
79
1192
DNA
Triticum aestivum
79
gcacgaggga gtgacgcggt cgaggagggg cgtgcggggg gcagacagag agggagcgca 60
aagggacggc ggaggcaagc tagcttcccg ggggcggacg caccgagaga gggcggcggg 120
agggaggagg cgcgtgggag ccatgcttct cccctcttct tcgtcttcct cctacgatcc 180
caaaggtgac tcctttggga aatcggttga cgatcatatg aggtcaactt tgacttttgg 240
tgataagcat tctgtatatg caggtcaaaa cactgactat ggccacccaa tggcttgcat 300
ttcatacccg ttcaacgatt ctggttctgg agtttgggcg gcctatgggt cacgggctat 360
gttccagccc ctcatggcgg gcggaggggc atctgcaacg gcaagagttc cattgcccgt 420
cgaactagca gcggatgagc ccatatttgt caatcccaaa caatataatg ggattctccg 480
gcgaaggcag ctgcgcgcta agttagaggc ccagaataaa ctcaccaaaa acagaaagcc 540
ctacctccac gagtcgcgcc atcttcacgc gatgaagcgg gcaagaggtt ccgggggacg 600
tttcctcaat tccaaacagc tgaagcagca gcagcagtct ggcagtgcct gcaccaaggc 660
cattgcggat ggcgcgaatt ccctgggttc gacccatcta cggctaggca gcggcgcagc 720
cggagaccga accaactcgg tgtccaaggc gatgtcctcc caagagaaca gcaagagagt 780
cgccgccccg gctcccgcct tcaccatgat tcaagcggcg cgcaaagacg acgacttctt 840
ccaccatcac gcccaccatc tcagcttctc cggtcatttt ggccagtcaa gcgaccgata 900
tacgtaataa ggggtcctcc gcgccccggt gtggtcaggc aactcatcct tggctttatt 960
tctggcgtgt taggacttca gagatagttt atctcacagt gctttgcagc ccatagttct 1020
cggcttgatg ttcggtatgc aaatgttggt gtactggtgc gttggaacaa aagtttgatg 1080
tgttcacatg acgattggtc gcggaactca tcttgtgttc tgctcgaccc taaaaaaaaa 1140
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa ac 1192
80
254
PRT
Triticum aestivum
80
Met Leu Leu Pro Ser Ser Ser Ser Ser Ser Tyr Asp Pro Lys Gly Asp
1 5 10 15
Ser Phe Gly Lys Ser Val Asp Asp His Met Arg Ser Thr Leu Thr Phe
20 25 30
Gly Asp Lys His Ser Val Tyr Ala Gly Gln Asn Thr Asp Tyr Gly His
35 40 45
Pro Met Ala Cys Ile Ser Tyr Pro Phe Asn Asp Ser Gly Ser Gly Val
50 55 60
Trp Ala Ala Tyr Gly Ser Arg Ala Met Phe Gln Pro Leu Met Ala Gly
65 70 75 80
Gly Gly Ala Ser Ala Thr Ala Arg Val Pro Leu Pro Val Glu Leu Ala
85 90 95
Ala Asp Glu Pro Ile Phe Val Asn Pro Lys Gln Tyr Asn Gly Ile Leu
100 105 110
Arg Arg Arg Gln Leu Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Thr
115 120 125
Lys Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Met
130 135 140
Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Ser Lys Gln Leu
145 150 155 160
Lys Gln Gln Gln Gln Ser Gly Ser Ala Cys Thr Lys Ala Ile Ala Asp
165 170 175
Gly Ala Asn Ser Leu Gly Ser Thr His Leu Arg Leu Gly Ser Gly Ala
180 185 190
Ala Gly Asp Arg Thr Asn Ser Val Ser Lys Ala Met Ser Ser Gln Glu
195 200 205
Asn Ser Lys Arg Val Ala Ala Pro Ala Pro Ala Phe Thr Met Ile Gln
210 215 220
Ala Ala Arg Lys Asp Asp Asp Phe Phe His His His Ala His His Leu
225 230 235 240
Ser Phe Ser Gly His Phe Gly Gln Ser Ser Asp Arg Tyr Thr
245 250
81
1260
DNA
Triticum aestivum
81
gcacgagaag attatctctg taaactataa gttctgacag gtcttttgct ttattagtgg 60
ctcttctctc tgatgatgtt cacatcgccg aagccccatt tacagtgagg tgaattgatg 120
cgattatatc ttcatgctaa cagtaacacc ctttttgttt cagacaatga caatgatcat 180
gggaagcccg atcagcacat ggtaaagccg cttttatctt tggggaaccc agagactgtt 240
gctcccccac caatgcttga ttgtagccaa tcatttgcat atattcctta tactgctgat 300
gcttatgctg ggatctttcc aggatatgcc tcgcacgcta ttgttcatcc ccaattgaat 360
gctgcaacaa actctcgtgt gccgctccct gttgagcctg cagcagaaga gccaatgttt 420
gttaatgcaa agcagtacca tgcaattctt aggaggaggc agatacgtgc taaattggag 480
gcccaaaata agctggtgaa agcccggaag ccataccttc atgaatctcg gcaccgccat 540
gccatgaagc gagctcgtgg aacaggaggg cggttcctca acacaaagca actcgaggag 600
cagaagcaga agcaggcttc aggtggtgca agctgtacaa aggtccttgg caagaataca 660
ctccttcaga gtagccccgc cttcgcacct tcggcatcag ctccctccaa catgtcaagc 720
ttttcaacaa ccggcatgtt ggctaatcaa gagcgcacct gcttcccctc ggttggcttc 780
cgtcccacgg ttagcttcag tgcactgaat ggcaacggga agctggcccc aaacggcatg 840
caccagcgcg cttccatgat gaggtaaagc aaagcaccct ctggtgcgct gccggtggca 900
attcatcctt ggcttatgaa gatgttccgg aaatgtggtt gcaatatcag ctggaccaag 960
acattgttat gagtcctttt gagtttcatc tagttgaaag cactggtgtg ctgatgcaga 1020
ctgaaatctt catcacattt cttttgtgtg tacttattca aataaggcac accttgatta 1080
tcccagagac cggagttggg catggttgcg aaaccatagg cctatacttc cttacctgtt 1140
gtgaatgtat ctggtaatgt acttaagaga tggttgagcc tcgagctttg atgaatgctg 1200
ttgcagttca tcaactttgc aacctggttt gcctgatttc aaaaaaaaaa aaaaaaaaaa 1260
82
249
PRT
Triticum aestivum
82
Met Arg Leu Tyr Leu His Ala Asn Ser Asn Thr Leu Phe Val Ser Asp
1 5 10 15
Asn Asp Asn Asp His Gly Lys Pro Asp Gln His Met Val Lys Pro Leu
20 25 30
Leu Ser Leu Gly Asn Pro Glu Thr Val Ala Pro Pro Pro Met Leu Asp
35 40 45
Cys Ser Gln Ser Phe Ala Tyr Ile Pro Tyr Thr Ala Asp Ala Tyr Ala
50 55 60
Gly Ile Phe Pro Gly Tyr Ala Ser His Ala Ile Val His Pro Gln Leu
65 70 75 80
Asn Ala Ala Thr Asn Ser Arg Val Pro Leu Pro Val Glu Pro Ala Ala
85 90 95
Glu Glu Pro Met Phe Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg
100 105 110
Arg Arg Gln Ile Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Val Lys
115 120 125
Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys
130 135 140
Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Gln Leu Glu
145 150 155 160
Glu Gln Lys Gln Lys Gln Ala Ser Gly Gly Ala Ser Cys Thr Lys Val
165 170 175
Leu Gly Lys Asn Thr Leu Leu Gln Ser Ser Pro Ala Phe Ala Pro Ser
180 185 190
Ala Ser Ala Pro Ser Asn Met Ser Ser Phe Ser Thr Thr Gly Met Leu
195 200 205
Ala Asn Gln Glu Arg Thr Cys Phe Pro Ser Val Gly Phe Arg Pro Thr
210 215 220
Val Ser Phe Ser Ala Leu Asn Gly Asn Gly Lys Leu Ala Pro Asn Gly
225 230 235 240
Met His Gln Arg Ala Ser Met Met Arg
245
83
887
DNA
Canna edulis
83
gcacgagatt cactcccagt tcttctcccc ggttttccgc ctctctccgc aggttttcga 60
cgtctggttt gccctaaatc agctgaatgg atcagccgcc tggccacccc gccgtccctc 120
cggtgatggg cgtcgccgct ggagtgcctt atgcaactgc cgctgccgcc ggaccctatc 180
aggcctacca gaacctctac caccagcagc aacagcagca gcagcaacaa ctccagatgt 240
tctgggccga ccagtaccgt gagatcgagc aaactaccga cttccggaac cacagcctgc 300
cgctcgcgcg gatcaagaag atcatgaagg ccgacgagga cgtgcgtatg atcgctgccg 360
aggcgcctgt ggtgttcgcc cgcgcctgcg agatgttcat cctggaactc acccaccggt 420
cgtgggctca cgccgaggag aacaagcgcc ggacactgca gaagaacgat atagccgcgg 480
ccatcagccg caccgacgtg ttcgattttc tcattgatat cgtgccaagg gaggagggga 540
aggaagatgt tgcccacgcc ctcggacccc cagctggtgg tgaccccctc gcttactatt 600
atgtccagaa gtagaagctg ctgctgtgtg agtctttaat taaatgtctc catgttctca 660
atttcataaa tgccttagtg tgattataaa catagggcat ggggtttggt ttgttacctg 720
aagtgcactg aatttaatct ctagtgaact tgctttgcat agctggtgat gtgttcttgt 780
tagtaagttt atattgtttg ggtattgtcc atctaactac atgtatgctt atggcaagca 840
tcattacatt gatatggatg ggcatttacg ctgctctcat tcgcgcc 887
84
175
PRT
Canna edulis
84
Met Asp Gln Pro Pro Gly His Pro Ala Val Pro Pro Val Met Gly Val
1 5 10 15
Ala Ala Gly Val Pro Tyr Ala Thr Ala Ala Ala Ala Gly Pro Tyr Gln
20 25 30
Ala Tyr Gln Asn Leu Tyr His Gln Gln Gln Gln Gln Gln Gln Gln Gln
35 40 45
Leu Gln Met Phe Trp Ala Asp Gln Tyr Arg Glu Ile Glu Gln Thr Thr
50 55 60
Asp Phe Arg Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
65 70 75 80
Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val
85 90 95
Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Ser
100 105 110
Trp Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
115 120 125
Ile Ala Ala Ala Ile Ser Arg Thr Asp Val Phe Asp Phe Leu Ile Asp
130 135 140
Ile Val Pro Arg Glu Glu Gly Lys Glu Asp Val Ala His Ala Leu Gly
145 150 155 160
Pro Pro Ala Gly Gly Asp Pro Leu Ala Tyr Tyr Tyr Val Gln Lys
165 170 175
85
988
DNA
Vitis sp.
85
caaaaaaaaa atcccaaaac aagcagagac accctcctcc ctcgaatcaa attacaaaga 60
aatggagaac aaccagcagg cccaatcctc cccataccca ccacagcaac cctttcacca 120
tcttctgcag cagcaacagc agcagcttca gatgttttgg tcctaccaac gccaagagat 180
cgagcaggtg aacgacttca agaaccacca actgcctctg gcccgcatca agaagattat 240
gaaggcggat gaggatgtcc ggatgatctc ggcggaggcc ccaatcctct tcgccaaggc 300
ctgcgagctc ttcattctgg agctgacgat aaggtcgtgg ttgcacgcgg aggagaacaa 360
gaggaggaca ctgcagaaga atgatatcgc cgcggcgatt actaggacgg atatatttga 420
ttttttggtg gatattgtgc cgagggatga gatcaaggac gaggggggct tggggatggt 480
agggtcgacg gccagtgggg tgccgtacta ttatccgccg atggggcagc ccgcgccggg 540
agtaatgatg ggaaggccgg cggttccggg ggtggatccg ggggtgtacg tgcagccgcc 600
gtcgcaggca tggcagtcgg tgtggcagac ggcagaggac gggtcgtacg ggagcggagg 660
gagcagtgga caggggaatc ttgatggcca aggttaagca aacgcccatt gtggatgttg 720
tggtgcttcc cggcatgatg gaaactatcg agctcgtgga cagaacttgg attttccttg 780
gctatgaatt gctctgttat tatttgtgaa aactagttgg tttttaatgt aatggcttca 840
attagaaact tgttaaaaac cgtgatttgg accagtgcag tgatatgact caactaatcc 900
tatgtgcagt tctaaatgta aggtccatgt ttttcatttt aactgaatga ttctagttat 960
ctgattaaaa aaaaaaaaaa aaaaaaaa 988
86
211
PRT
Vitis sp.
86
Met Glu Asn Asn Gln Gln Ala Gln Ser Ser Pro Tyr Pro Pro Gln Gln
1 5 10 15
Pro Phe His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe
20 25 30
Trp Ser Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn
35 40 45
His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
50 55 60
Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala
65 70 75 80
Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala
85 90 95
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala
100 105 110
Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg
115 120 125
Asp Glu Ile Lys Asp Glu Gly Gly Leu Gly Met Val Gly Ser Thr Ala
130 135 140
Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro Gly
145 150 155 160
Val Met Met Gly Arg Pro Ala Val Pro Gly Val Asp Pro Gly Val Tyr
165 170 175
Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Thr Ala Glu
180 185 190
Asp Gly Ser Tyr Gly Ser Gly Gly Ser Ser Gly Gln Gly Asn Leu Asp
195 200 205
Gly Gln Gly
210
87
1572
DNA
Zea mays
87
ccacgcgtcc gcataagaaa aaaaatgaag cttgccattt cgctcagggc cctgcagcgg 60
cggcagctgg cgggagagag gcttgggact gggccgcccg gccgcgagga ataaactcac 120
tcctgtcttc atacgtatcc atagccggca ggcggcagta cctgtatgtg gttttagcta 180
tacgcgacct cagttcgggc gcaagctaca accccgacca ggcgagaaga agcatcgata 240
gtgtgacgag ctaacccacc accagcaacg taatccaaat ccatggacaa ccagccgctg 300
ccctactcca caggccagcc ccctgccccc ggaggagccc cggtggcggg catgcctggc 360
gcggccggcc tcccacccgt gccgcaccac cacctgctcc agcagcagca ggcccagctg 420
caggcgttct gggcgtacca gcgccaggag gcggagcgcg cgtccgcgtc ggacttcaag 480
aaccaccagc tgcctctggc ccggatcaag aagatcatga aggccgacga ggacgtgcgc 540
atgatctccg ccgaggcgcc cgtgctgttc gccaaggcct gcgagctctt catcctcgag 600
ctcactatcc gctcctggct ccacgccgag gagaacaagc gccgcaccct gcagcgcaac 660
gacgtcgccg cggccatcgc gcgcaccgac gtcttcgatt tcctcgtcga catcgtgccc 720
cgcgaggagg ccaaggagga gcccggcagc gccctcggct tcgcggcgcc tggtaccggc 780
gtcgtcgggg ctggcgcccc gggcggggcg ccagccgccg ggatgcccta ctactatccg 840
ccgatggggc agccggcgcc gatgatgccg gcctggcatg ttccggcctg ggacccggcc 900
tggcagcaag gggcagcgga tgtcgatcag agcggcagct tcagcgagga aggacaaggg 960
tttggagcag gccatggcgg cgccgctagc ttccctcctg cgcctccgac ctccgagtga 1020
tcgatcggcg cgtctcttgg tcctggcctc ctggcttagc tacatgtgca tgatgtcaat 1080
cgttcaatgt gccatgctgt gtatactcta cagcaaacgt ggtaatggag ctgctatgca 1140
tacagaacga ataaggcgtg acgtgtgaga ccgtaagagt acgtagtact aatatgtaga 1200
tgcacgtgac gtgccaatta atcaaagatt aacatgcagt taattaatta gtcctcctac 1260
cgaggtgcct catctatatt ttttttccat ttatatatcg agttcacaca atccataaga 1320
atacaaactt cggcaaggtt taggatttgg ggaacttgag gcttggggag ttagggttcc 1380
atggctaccg gtcgtgatga cacatggggc atcaaggtag attaagggtc tgtttgtttg 1440
aacttttaga gtttttttga aaagttgttg ttgaactttt gatactgaga agccaattca 1500
acgatgttat tagttcctga aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1560
aaaaaaaaaa ag 1572
88
245
PRT
Zea mays
88
Met Asp Asn Gln Pro Leu Pro Tyr Ser Thr Gly Gln Pro Pro Ala Pro
1 5 10 15
Gly Gly Ala Pro Val Ala Gly Met Pro Gly Ala Ala Gly Leu Pro Pro
20 25 30
Val Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala
35 40 45
Phe Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp
50 55 60
Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
65 70 75 80
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe
85 90 95
Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp
100 105 110
Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val
115 120 125
Ala Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile
130 135 140
Val Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe
145 150 155 160
Ala Ala Pro Gly Thr Gly Val Val Gly Ala Gly Ala Pro Gly Gly Ala
165 170 175
Pro Ala Ala Gly Met Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala
180 185 190
Pro Met Met Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln
195 200 205
Gln Gly Ala Ala Asp Val Asp Gln Ser Gly Ser Phe Ser Glu Glu Gly
210 215 220
Gln Gly Phe Gly Ala Gly His Gly Gly Ala Ala Ser Phe Pro Pro Ala
225 230 235 240
Pro Pro Thr Ser Glu
245
89
1164
DNA
Zea mays
89
gcacgagtct ccccccattc tccaatccgt gccctagtcg agccagccgc gaggaaggag 60
gcgtctcgcc tagcgcccgc ccgtcggccg accttctgct gcaccttcga actctggaaa 120
gatcatagat ttttgggcaa tagcaagtgg acatggaacc atcctctcag cctcagcctg 180
cgatgggtgt cgccgccggt gggtcacaag tgtatcctgc gtctgcctac ccgcctgcag 240
caacagtagc tcctcctgct gttgcatctg ctggtttaca gtcagtgcaa ccattcccag 300
ccaaccctgc ccatatgagt gctcagcacc agattgtcta ccaacaagct caacagttcc 360
accaacagct ccagcagcag caacagcagc agcttcagca gttctgggtc gaacgcatga 420
ctgaaatcga ggcaacagct gatttcagga accacaactt gccacttgcg aggataaaga 480
agatcatgaa ggccgacgaa gatgtccgca tgatctcagc cgaagctccc gtggtcttcg 540
caaaagcttg cgagatattc atactggagc tgacgctgag gtcgtggatg cacaccgagg 600
agaacaagcg ccgcaccttg cagaagaacg acattgccgc agccatcacc aggaccgaca 660
tttacgactt cttggtcgac attgttccca gggatgagat gaaggacgac ggaatcgggc 720
ttcctaggcc cgggctgcca cccatgggag ccccagctga cgcatatcca tactactaca 780
tgccacagca gcaggtgcct ggtcctggga tggtttatgg cgcccagcaa ggccacccgg 840
tgacgtatct gtggcaggat cctcaggaac agcaggagca agctcctgaa gagcagcagt 900
ctctgcatga aagggactga ggatgtcgct caagctatca cctgattttt cagagctctc 960
attttaggtt ctctaaactg caggttttcg ttggctaata tcgttgggta tcaaactgaa 1020
acaggtaggg tgtagcatca tggtagtttg atttctgctg tggtgttagt tggagggata 1080
atgattagcg gctagtggat taaagttacc cataccgttt cctttcgttc caaaaaaaaa 1140
aaaaaaaaaa aaaaaaaaaa aaaa 1164
90
255
PRT
Zea mays
90
Met Glu Pro Ser Ser Gln Pro Gln Pro Ala Met Gly Val Ala Ala Gly
1 5 10 15
Gly Ser Gln Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala Ala Thr Val
20 25 30
Ala Pro Pro Ala Val Ala Ser Ala Gly Leu Gln Ser Val Gln Pro Phe
35 40 45
Pro Ala Asn Pro Ala His Met Ser Ala Gln His Gln Ile Val Tyr Gln
50 55 60
Gln Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Gln Gln
65 70 75 80
Leu Gln Gln Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala Thr Ala
85 90 95
Asp Phe Arg Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
100 105 110
Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val
115 120 125
Phe Ala Lys Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser
130 135 140
Trp Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
145 150 155 160
Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp
165 170 175
Ile Val Pro Arg Asp Glu Met Lys Asp Asp Gly Ile Gly Leu Pro Arg
180 185 190
Pro Gly Leu Pro Pro Met Gly Ala Pro Ala Asp Ala Tyr Pro Tyr Tyr
195 200 205
Tyr Met Pro Gln Gln Gln Val Pro Gly Pro Gly Met Val Tyr Gly Ala
210 215 220
Gln Gln Gly His Pro Val Thr Tyr Leu Trp Gln Asp Pro Gln Glu Gln
225 230 235 240
Gln Glu Gln Ala Pro Glu Glu Gln Gln Ser Leu His Glu Arg Asp
245 250 255
91
1270
DNA
Zea mays
91
gcacgaggac gagacagaga gagaaggcca agaggcttcc tctccccatt cctcccttcc 60
gtgccctagc cgagccagcc gcgaggaagg aggcatcccg ccgtctcgcc tggcgcccgc 120
ccgtcggccg accttctgcc gcagcttcca attgtaaaaa gatcatagat ttttgtgcaa 180
gagcgagtgg atatggaacc atcccctcag cctatgggtg tcgctgccgg tgggtcacaa 240
gtgtatcctg cctctgccta tccgcctgca gcaacagtag ctcctgcttc tgttgtatct 300
gctggtttac agtcagggca gccattccca gccaatcctg gtcatatgag tgctcagcac 360
cagattgtct accaacaagc tcaacaattc caccaacagc tccagcagca acaacaacag 420
cagcttcagc agttctgggt tgaacgcatg actgaaattg aggcgacgac tgatttcaag 480
aaccacaact tgccacttgc gaggataaag aagatcatga aggccgatga agatgttcgc 540
atgatctcag ctgaagctcc tgtagtcttt gcaaaagctt gtgagatatt catactggag 600
ctgacactta ggtcgtggat gcacactgag gagaacaagc gccgcacctt gcaaaagaat 660
gacattgcag cagcgatcac taggactgac atttatgact tcttggtcga cattgttccc 720
agggatgaga tgaaggagga cggaattggg cttcctaggg ctggtctgcc acccatggga 780
gccccagctg atgcatatcc atactactac atgccacagc agcaggtgcc tggttctgga 840
atggtttatg gtgcccagca agggcaccca gtgacttatt tgtggcagga gcctcagcaa 900
cagcaggagc aagctcctga agagcagcaa tctgcatgaa agtggctgag aatattgctc 960
agaagctatc acctgattca gagttctcat tttaggttgt ccaaactgca ggttttctta 1020
gtaatatcgt tggttatcaa actgaaacag gcgattctaa gtagggtgta gcatcatggt 1080
agtttcattt ctgcttgtga tgttagttga aaggataatg attagtggct agtggattaa 1140
agttaccata ccatttcctt ctattccgaa agtttgcctc catgaggcct ctgatatgac 1200
gtgctagttg ttaatgcttc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1260
aaaaaaaaaa 1270
92
248
PRT
Zea mays
92
Met Glu Pro Ser Pro Gln Pro Met Gly Val Ala Ala Gly Gly Ser Gln
1 5 10 15
Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala Ala Thr Val Ala Pro Ala
20 25 30
Ser Val Val Ser Ala Gly Leu Gln Ser Gly Gln Pro Phe Pro Ala Asn
35 40 45
Pro Gly His Met Ser Ala Gln His Gln Ile Val Tyr Gln Gln Ala Gln
50 55 60
Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln
65 70 75 80
Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala Thr Thr Asp Phe Lys
85 90 95
Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
100 105 110
Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys
115 120 125
Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His
130 135 140
Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
145 150 155 160
Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp Ile Val Pro
165 170 175
Arg Asp Glu Met Lys Glu Asp Gly Ile Gly Leu Pro Arg Ala Gly Leu
180 185 190
Pro Pro Met Gly Ala Pro Ala Asp Ala Tyr Pro Tyr Tyr Tyr Met Pro
195 200 205
Gln Gln Gln Val Pro Gly Ser Gly Met Val Tyr Gly Ala Gln Gln Gly
210 215 220
His Pro Val Thr Tyr Leu Trp Gln Glu Pro Gln Gln Gln Gln Glu Gln
225 230 235 240
Ala Pro Glu Glu Gln Gln Ser Ala
245
93
511
DNA
Zea mays
unsure
(442)
n = A, C, G, or T
93
gactcaactc agtgctcagc accagatggt gtaccagcag gctcagcaat ttcatcaaca 60
acttcagcaa cagcaggaac aacagctcag ggagttctgg actacccaga tggatgagat 120
caagcaagca aatgacttca agatccacac cttgccactt gcaaggataa agaagataat 180
gaaggctgat gaggatgtgc ggatgatctc tgcagaagct cctgttgtgt ttgcgaaggc 240
atgcgaggta ttcatattag agctgacatt gaggtcatgg atgcacacag aggagaacaa 300
gcgccggacc ttgcagaaga acgacattgc agctgccatc accaggactg atatatatga 360
cttcttggtg gacataatcc cgagggatga aatgaaagag gaagggcttc ggacataatc 420
ccatagttgg cctgccgcct gntatggggg cntccagctt gatcatgggt cttnatccat 480
tattactatg tggccantta acangtgcca a 511
94
135
PRT
Zea mays
94
Thr Gln Leu Ser Ala Gln His Gln Met Val Tyr Gln Gln Ala Gln Gln
1 5 10 15
Phe His Gln Gln Leu Gln Gln Gln Gln Glu Gln Gln Leu Arg Glu Phe
20 25 30
Trp Thr Thr Gln Met Asp Glu Ile Lys Gln Ala Asn Asp Phe Lys Ile
35 40 45
His Thr Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
50 55 60
Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys Ala
65 70 75 80
Cys Glu Val Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His Thr
85 90 95
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Cys Ser Cys
100 105 110
His His Pro Gly Leu Ile Tyr Met Thr Ser Leu Val Asp Ile Ile Pro
115 120 125
Arg Asp Glu Met Lys Glu Glu
130 135
95
499
DNA
Zea mays
unsure
(278)
n = A, C, G, or T
95
ctttctcccc tgttgttgtt gatccaaaaa gccacctccc cccaacccaa tcccgtcgtc 60
actctctcac tccactgcct ccggaacacc ctagcaatgg atcccaactc cagcatccct 120
cccccggtga tgggcgcggc ggtggcgtac cctccggcgg ccggcgccgc gtactccgcc 180
gggccgtacg cgcacgcgca cgcggcgttg ggcgcgctgt acccgcctcc cccggcgccg 240
ggtcccccct cctcgcacca gggcggcgcg gcggcggngc agctgcagct gttctgggcg 300
gagcagtacc gcgagatcga ggcgacgacg gacttcaaga accacaacct gccgctgggc 360
cgcatcanga agatcatgaa ggcggacgan ngactgcgca tgatcgccgc cgaggcgccg 420
gtggtgttcg cccgcgcctg cgagatgttc ancctggagc tgaccaancg cggntgggcn 480
cacgcngagg aaaaaaaac 499
96
134
PRT
Zea mays
UNSURE
(61)
Xaa = any amino acid
96
Met Asp Pro Asn Ser Ser Ile Pro Pro Pro Val Met Gly Ala Ala Val
1 5 10 15
Ala Tyr Pro Pro Ala Ala Gly Ala Ala Tyr Ser Ala Gly Pro Tyr Ala
20 25 30
His Ala His Ala Ala Leu Gly Ala Leu Tyr Pro Pro Pro Pro Ala Pro
35 40 45
Gly Pro Pro Ser Ser His Gln Gly Gly Ala Ala Ala Xaa Gln Leu Gln
50 55 60
Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp Phe
65 70 75 80
Lys Asn His Asn Leu Pro Leu Gly Arg Ile Xaa Lys Ile Met Lys Ala
85 90 95
Asp Xaa Xaa Leu Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala
100 105 110
Arg Ala Cys Glu Met Phe Xaa Leu Glu Leu Thr Xaa Arg Gly Trp Ala
115 120 125
His Ala Glu Glu Lys Lys
130
97
1060
DNA
Zea mays
97
gcacgagaag caccttcctc ttcctcttcc tccgcccccc aatccccctc gtctcacaac 60
cctagctgcc cccgaatcca tggatcccaa caaatccagc accccgccgc cgcctccagt 120
catgggtgcc cccgttgcct accctccgcc ggcgtaccct cccggtgtgg ccgccggcgc 180
cggcgcctac ccgccgcagc tctacgcgcc gccggctgct gccgcggccc agcaggcggc 240
ggccgcgcag cagcagcagc tgcagatatt ctgggcggag cagtaccgcg agatcgaggc 300
cactaccgac ttcaagaatc acaacctccc gctcgcccgc atcaagaaga tcatgaaagc 360
cgacgaggac gtccgcatga tcgccgccga ggctcccgtg gtgttcgccc gggcctgcga 420
gatgttcatc ctcgagctca cccatcgcgg ctgggcgcac gccgaagaga acaagcgccg 480
cacgctccag aaatccgaca ttgccgctgc catcgcccgc accgaggtat tcgacttcct 540
tgtggacatc gttccgcgcg acgacggtaa agacgctgat gcggcggccg ccgcagctgc 600
cgcggctgcc gggatcccgc gccccgccgc cggagtacca gccaccgacc ctctcgccta 660
ctactacgtg cctcagcagt aatgtatcat catcacgtta ttgttccgtc tatgtgcctg 720
agcaataatg tatcatcatt gccttattgt tccggggcag ttgtgttatt tgtgtctgtt 780
tagttgctgc tgctgttacc gcgtaatagc atatgtgtta tctgtgtctg tttagttgct 840
gctgctgttg ccgcgtaata aaacttggtc gtttacgggg ctccctcaag attaagaatt 900
gagttgtttg atggtagaat cctggtaagg ttgttgtaac tggggggcgc ctttgtttgg 960
gctggtagtg tatgcctagg cctcacttat ctgatgctgt aatgcgacaa gtattatgtg 1020
gttgtctggt aattattgtg caaaaaaaaa aaaaaaaaaa 1060
98
200
PRT
Zea mays
98
Met Asp Pro Asn Lys Ser Ser Thr Pro Pro Pro Pro Pro Val Met Gly
1 5 10 15
Ala Pro Val Ala Tyr Pro Pro Pro Ala Tyr Pro Pro Gly Val Ala Ala
20 25 30
Gly Ala Gly Ala Tyr Pro Pro Gln Leu Tyr Ala Pro Pro Ala Ala Ala
35 40 45
Ala Ala Gln Gln Ala Ala Ala Ala Gln Gln Gln Gln Leu Gln Ile Phe
50 55 60
Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp Phe Lys Asn
65 70 75 80
His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
85 90 95
Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala
100 105 110
Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala
115 120 125
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala
130 135 140
Ile Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile Val Pro Arg
145 150 155 160
Asp Asp Gly Lys Asp Ala Asp Ala Ala Ala Ala Ala Ala Ala Ala Ala
165 170 175
Ala Gly Ile Pro Arg Pro Ala Ala Gly Val Pro Ala Thr Asp Pro Leu
180 185 190
Ala Tyr Tyr Tyr Val Pro Gln Gln
195 200
99
901
DNA
Zea mays
99
gcacgagtga ccgccggaac accctaggca atggagccca aatccaccac ccctcccccg 60
ccccccgtga tgggcgcgcc catcgcgtat cctcccccgc ccggcgccgc gtaccccgcc 120
gggccgtacg tgcacgcgcc ggcggccgcg ctctaccctc ctcctcccct gccgccggcg 180
cccccctcct cgcagcaggg cgccgcggcg gcgcaccagc agcagctatt ctgggcggag 240
caataccgcg agatcgaggc caccaccgac ttcaagaacc acaacctgcc gctcgcccgc 300
atcaagaaga tcatgaaggc cgacgaggac gtgcgcatga tcgccgccga ggcgcccgtc 360
gtcttctccc gcgcctgcga gatgttcatc ctcgagctca cccaccgcgg ctgggcacac 420
gccgaggaga acaagcgccg cacgctgcag aagtccgaca tcgccgccgc cgtcgcgcgc 480
accgaggtct tcgacttcct cgtcgacatc gtgccgcggg acgaggccaa ggacgccgac 540
tccgccgcca tgggagcagc cgggatcccg caccccgccg ccggcctgcc cgccgccgat 600
cccatgggct actactacgt ccagccgcag taacgaattt gcttccttat catggtttcg 660
cttccatgca gcctttgcgg gtttttagta aactattatt attactgaga gtgccctgtt 720
gttacccatg ctctgttgtt gccacccaat aactcgatga cctgatgatc atctgatgtg 780
cctcccgttc cgtaacaagt gattccattt ctgattaaaa aaaaaaaaaa aaaaaaaaaa 840
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaccaa aaaaaaaaaa aaaaaaaaaa 900
a 901
100
200
PRT
Zea mays
100
Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro Pro Val Met Gly Ala
1 5 10 15
Pro Ile Ala Tyr Pro Pro Pro Pro Gly Ala Ala Tyr Pro Ala Gly Pro
20 25 30
Tyr Val His Ala Pro Ala Ala Ala Leu Tyr Pro Pro Pro Pro Leu Pro
35 40 45
Pro Ala Pro Pro Ser Ser Gln Gln Gly Ala Ala Ala Ala His Gln Gln
50 55 60
Gln Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp
65 70 75 80
Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
85 90 95
Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe
100 105 110
Ser Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp
115 120 125
Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile
130 135 140
Ala Ala Ala Val Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile
145 150 155 160
Val Pro Arg Asp Glu Ala Lys Asp Ala Asp Ser Ala Ala Met Gly Ala
165 170 175
Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro Ala Ala Asp Pro Met
180 185 190
Gly Tyr Tyr Tyr Val Gln Pro Gln
195 200
101
1118
DNA
Oryza sativa
101
cacacacagc tacaaatcga ctgtaattaa ggtacgtata tataggtgac aatggacaac 60
cagcagctac cctacgccgg tcagccggcg gccgcaggcg ccggagcccc ggtgccgggc 120
gtgcctggcg cgggcgggcc gccggcggtg ccgcaccacc acctgctcca gcagcagcag 180
gcgcagctgc aggcgttctg ggcgtaccag cggcaggagg cggagcgcgc gtcggcgtcg 240
gacttcaaga accaccagct gccgctggcg cggatcaaga agatcatgaa ggcggacgag 300
gacgtgcgca tgatctcggc ggaggcgccc gtgctgttcg ccaaggcgtg cgagctcttc 360
atcctggagc tcaccatccg ctcgtggctg cacgccgagg agaacaagcg ccgcaccctg 420
cagcgcaacg acgtcgccgc cgccatcgcg cgcaccgacg tgttcgactt cctcgtcgac 480
atcgtgccgc gggaggaggc caaggaggag cccggcagcg cgctcgggtt cgcggcggga 540
gggcccgccg gcgccgttgg agcggccggc cccgccgcgg ggctgccgta ctactacccg 600
ccgatggggc agccggcgcc gatgatgccg gcgtggcatg ttccggcgtg ggacccggcg 660
tggcagcaag gagcagcgcc ggatgtggac cagggcgccg ccggcagctt cagcgaggaa 720
gggcagcaag gttttgcagg ccatggcggt gcggcagcta gcttccctcc tgcacctcca 780
agctccgaat agtgatgatc catatggttc catgcatgca tcgctgaggt gctagctagc 840
tactatagct gctcaaatca aatgctcaat gtgtcggtaa ttaattaatg tggtacgtat 900
taacttaacc gatgtacgta atggacgctc aagctaatta agggatgtac aatttactaa 960
ttaatttaat ttgtaatata tagccgatta actagcaagg tgacccagta ctatttgtaa 1020
tttcttttcc cgttatgcta ctaattgtgg acgcacaaac cattaccgga acagaaatta 1080
ctactgatga attactataa aaaaaaaaaa aaaaaaaa 1118
102
246
PRT
Oryza sativa
102
Met Asp Asn Gln Gln Leu Pro Tyr Ala Gly Gln Pro Ala Ala Ala Gly
1 5 10 15
Ala Gly Ala Pro Val Pro Gly Val Pro Gly Ala Gly Gly Pro Pro Ala
20 25 30
Val Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala
35 40 45
Phe Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp
50 55 60
Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
65 70 75 80
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe
85 90 95
Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp
100 105 110
Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val
115 120 125
Ala Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile
130 135 140
Val Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe
145 150 155 160
Ala Ala Gly Gly Pro Ala Gly Ala Val Gly Ala Ala Gly Pro Ala Ala
165 170 175
Gly Leu Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro Met Met
180 185 190
Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln Gln Gly Ala
195 200 205
Ala Pro Asp Val Asp Gln Gly Ala Ala Gly Ser Phe Ser Glu Glu Gly
210 215 220
Gln Gln Gly Phe Ala Gly His Gly Gly Ala Ala Ala Ser Phe Pro Pro
225 230 235 240
Ala Pro Pro Ser Ser Glu
245
103
1343
DNA
Oryza sativa
103
tctgacccaa gggcgaccgc gtctccctct ctctctctct ctccgccgcc gacgccgagg 60
gctccacgag agggaggtgg gcggcgcggc ccttcgccgg agggagcgct ctccgccgcc 120
gccgctcccg ctcccgccgg cgcgggagat ccgggcgtcg tctctcgggc ctttggcttt 180
ggacggacaa gagctgacat ggaaccatcc tcacagcctc agcctgtgat gggtgttgcc 240
actggtgggt cacaagcata tcctcctcct gctgctgcat atccacctca agccatggtt 300
cctggagctc ctgctgttgt tcctcctggc tcacagccat cagcaccatt ccccactaat 360
ccagctcaac tcagtgctca gcaccagcta gtctaccaac aagcccagca atttcatcag 420
cagctgcagc aacagcaaca gcagcaactc cgtgagttct gggctaacca aatggaagag 480
attgagcaaa caaccgactt caagaaccac agcttgccac tcgcaaggat aaagaagata 540
atgaaggctg atgaggatgt ccggatgatc tcggcagaag cccccgttgt cttcgcaaag 600
gcatgcgagg tattcatatt agagttaaca ttgaggtcgt ggatgcacac ggaggagaac 660
aagcgccgga ccttgcagaa gaatgacatt gcagctgcca tcaccaggac tgatatctat 720
gacttcttgg tggacatagt tcccagggat gaaatgaaag aagaagggct tgggcttccg 780
agggttggcc taccgcctaa tgtggggggc gcagcagaca catatccata ttactacgtg 840
ccagcgcagc aggggcctgg atcaggaatg atgtacggtg gacagcaagg tcacccggtg 900
acgtatgtgt ggcagcagcc tcaagagcaa caggaagagg cccctgaaga gcagcactct 960
ctgccagaaa gtagctaaag atgatacagt gaagttgtga cattgatata cattgtcctg 1020
tgaacttagg gcctctaaaa ctcagtgctc ttgtcaaaac tattcccatg attgttggct 1080
gaaacgggta atctgattag gtcttaggct ttcctaatgt tagttctgct ctgctatggc 1140
agcagtagaa aaaaaaaaga ttgtgatttg gtaggtgatt tgcaactaat gtagtaactg 1200
taccttacct ttcatcagtt tctaatccaa tactcaaaag tgctggcatg tggagaccct 1260
tgtatgaatt gagtgtttgt tcatgtcatg catcagtctg ttgcctcatt tatcagtcat 1320
catgcctcct gctttgcaaa aaa 1343
104
259
PRT
Oryza sativa
104
Met Glu Pro Ser Ser Gln Pro Gln Pro Val Met Gly Val Ala Thr Gly
1 5 10 15
Gly Ser Gln Ala Tyr Pro Pro Pro Ala Ala Ala Tyr Pro Pro Gln Ala
20 25 30
Met Val Pro Gly Ala Pro Ala Val Val Pro Pro Gly Ser Gln Pro Ser
35 40 45
Ala Pro Phe Pro Thr Asn Pro Ala Gln Leu Ser Ala Gln His Gln Leu
50 55 60
Val Tyr Gln Gln Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln
65 70 75 80
Gln Gln Gln Leu Arg Glu Phe Trp Ala Asn Gln Met Glu Glu Ile Glu
85 90 95
Gln Thr Thr Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys
100 105 110
Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala
115 120 125
Pro Val Val Phe Ala Lys Ala Cys Glu Val Phe Ile Leu Glu Leu Thr
130 135 140
Leu Arg Ser Trp Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln
145 150 155 160
Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe
165 170 175
Leu Val Asp Ile Val Pro Arg Asp Glu Met Lys Glu Glu Gly Leu Gly
180 185 190
Leu Pro Arg Val Gly Leu Pro Pro Asn Val Gly Gly Ala Ala Asp Thr
195 200 205
Tyr Pro Tyr Tyr Tyr Val Pro Ala Gln Gln Gly Pro Gly Ser Gly Met
210 215 220
Met Tyr Gly Gly Gln Gln Gly His Pro Val Thr Tyr Val Trp Gln Gln
225 230 235 240
Pro Gln Glu Gln Gln Glu Glu Ala Pro Glu Glu Gln His Ser Leu Pro
245 250 255
Glu Ser Ser
105
1085
DNA
Oryza sativa
105
gcacgagaag gaatctacgt tgcatgcata agacgtgttg gaaatatcat aagttttggg 60
acaagcaaga gaggacatgg agccatcatc acaacctcag ccggcaattg gtgttgttgc 120
tggtggatca caagtgtacc ctgcataccg gcctgcagca acagtgccta cagctcctgc 180
tgtcattcct gccggttcac agccagcacc gtcgttccct gccaaccctg atcaactgag 240
tgctcagcac cagctcgtct atcagcaagc ccagcaattt caccagcagc ttcagcagca 300
gcaacagcgt caactccagc agttttgggc tgaacgtctg gtcgatattg aacaaactac 360
tgacttcaag aaccacagct tgccacttgc taggataaag aagatcatga aggcagatga 420
ggacgttcgc atgatctccg cagaggctcc tgtgatcttt gcgaaagcat gtgagatatt 480
catactggag ctgaccctga gatcatggat gcacacggag gagaacaagc gccgtacctt 540
gcagaagaat gacatagcag ctgccatcac caggacggat atgtacgatt tcttggtaga 600
tatagttccc agggatgact tgaaggagga gggagttggg ctccctaggg ctggattgcc 660
gcccttgggt gtccctgctg actcatatcc gtatggctac tatgtgccac agcagcaggt 720
cccaggtgca ggaatagcgt atggtggtca gcaaggtcat ccggggtatc tgtggcagga 780
tcctcaggaa cagcaggaag agcctcctgc agagcagcaa agtgattaag aagagtaaat 840
gatccctgtg aattgtcaag aagcttacca cctgattcag aattttactt ttagccaggt 900
tgtcgtctat tctgaattta tgaataggat taggattctc tcatggtagt tgcatttctg 960
ctgtagtgga aaaggattta tgacatgaga gtatgagact aatgggtttc agttactata 1020
ccgtttcctg tcaatccaaa agttggcctt tgcgaggcca ttgatataaa aaaaaaaaaa 1080
aaaaa 1085
106
250
PRT
Oryza sativa
106
Met Glu Pro Ser Ser Gln Pro Gln Pro Ala Ile Gly Val Val Ala Gly
1 5 10 15
Gly Ser Gln Val Tyr Pro Ala Tyr Arg Pro Ala Ala Thr Val Pro Thr
20 25 30
Ala Pro Ala Val Ile Pro Ala Gly Ser Gln Pro Ala Pro Ser Phe Pro
35 40 45
Ala Asn Pro Asp Gln Leu Ser Ala Gln His Gln Leu Val Tyr Gln Gln
50 55 60
Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Arg Gln Leu
65 70 75 80
Gln Gln Phe Trp Ala Glu Arg Leu Val Asp Ile Glu Gln Thr Thr Asp
85 90 95
Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys
100 105 110
Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe
115 120 125
Ala Lys Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp
130 135 140
Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile
145 150 155 160
Ala Ala Ala Ile Thr Arg Thr Asp Met Tyr Asp Phe Leu Val Asp Ile
165 170 175
Val Pro Arg Asp Asp Leu Lys Glu Glu Gly Val Gly Leu Pro Arg Ala
180 185 190
Gly Leu Pro Pro Leu Gly Val Pro Ala Asp Ser Tyr Pro Tyr Gly Tyr
195 200 205
Tyr Val Pro Gln Gln Gln Val Pro Gly Ala Gly Ile Ala Tyr Gly Gly
210 215 220
Gln Gln Gly His Pro Gly Tyr Leu Trp Gln Asp Pro Gln Glu Gln Gln
225 230 235 240
Glu Glu Pro Pro Ala Glu Gln Gln Ser Asp
245 250
107
893
DNA
Oryza sativa
107
gcacgagaaa gagagagctt ttccatcccc aaatcccctc ctcctcctca aaccctagct 60
aagctccgct cgcagcagcc atggatccca ccaaatccag cacgccgccg ccggtgatgg 120
gcgcgcccgt cggcttcccg cctggcgcgt accctccgcc tccccccggc ggcgcagcag 180
cagctgcaga tgttctgggc ggagcagtac cgcgagatcg aggccaccac cgacttcaag 240
aaccacaacc tccccctggc ccgcatcaag aagatcatga aggccgacga ggacgtccgc 300
atgatcgccg ccgaggcccc cgtcgtgttc gcccgcgcct gcgagatgtt catcctcgag 360
ctcacccacc gcggctgggc gcacgccgag gagaacaagc gccgtacgct gcagaagtcc 420
gacattgccg ccgccatcgc gcgcaccgag gtgttcgact tcctcgtcga catcgtgccc 480
cgcgacgacg ccaaggacgc cgacgccgcc gcggccgcgg cggcggccgg catcccccgc 540
cccgccgccg gtgtgccggc caccgatccg ctcgcctact actatgtgcc ccagcagtaa 600
tgtatctgat taaccccttt caagcctttt ctaagcgaag gatgtgttgt tgtttgttgt 660
tgctgttgct gttcttgttg ttgttgttgc cgcgtaataa gatatgttga taatttatgg 720
cttcccctga gcttaaagaa tttgagcttt tggttctaga atctgggtaa aattgttgta 780
atggggaaga ctgtatgact gtatttgtag tgcatgtctt aacttgtcgg atagtgtaat 840
ccgataatta ttatgcggtt agctggttac ctctcaaaaa aaaaaaaaaa aaa 893
108
172
PRT
Oryza sativa
108
Met Asp Pro Thr Lys Ser Ser Thr Pro Pro Pro Val Met Gly Ala Pro
1 5 10 15
Val Gly Phe Pro Pro Gly Ala Tyr Pro Pro Pro Pro Pro Ala Ala Gln
20 25 30
Gln Gln Leu Gln Met Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala
35 40 45
Thr Thr Asp Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys
50 55 60
Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro
65 70 75 80
Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His
85 90 95
Arg Gly Trp Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys
100 105 110
Ser Asp Ile Ala Ala Ala Ile Ala Arg Thr Glu Val Phe Asp Phe Leu
115 120 125
Val Asp Ile Val Pro Arg Asp Asp Ala Lys Asp Ala Asp Ala Ala Ala
130 135 140
Ala Ala Ala Ala Ala Gly Ile Pro Arg Pro Ala Ala Gly Val Pro Ala
145 150 155 160
Thr Asp Pro Leu Ala Tyr Tyr Tyr Val Pro Gln Gln
165 170
109
1054
DNA
Glycine max
109
gcacgagggg tctctctgtc tctctcggat catcaaaatc agaaagaatt gggggaatgg 60
agaacaacca gcaacaaggc gctcaagccc aatcgggacc gtaccccggc ggcgccggtg 120
gaagtgcagg tgcaggtgca ggtgcaggcg cggccccgtt ccagcacctg ctccagcagc 180
agcagcagca gctgcagatg ttctggtcgt accagcggca agagatcgag cacgtgaacg 240
acttcaagaa ccaccagctc cccttggccc gcatcaagaa gatcatgaag gccgacgagg 300
acgtccgcat gatctccgcc gaggccccca tcctcttcgc caaggcctgc gagctcttca 360
tcctcgagct caccatccgc tcctggctcc acgccgacga gaacaagcgc cgcaccctcc 420
agaagaacga catcgccgcc gccatcactc gcaccgacat tttcgacttc ctcgtcgaca 480
tcgtcccccg cgacgagatc aaggacgacg ccgcgctcgt cggggcaacg gccagtgggg 540
tgccttacta ctacccgccc attggccagc ctgccgggat gatgattggc cgccccgccg 600
tcgatcccgc caccggagtt tatgtccagc cgccctccca ggcctggcag tccgtctggc 660
agtccgccgc cgaggacacg ccctacggca ccggtgccca ggggaacctt gatggccaga 720
gctgagcgac aaccatgccg aaacggactg tcaggagtta tgaagattct gaacttgctt 780
ggaattttga ttgcttgcaa tttggaaatg gttttgttaa ctaaattttt atgggatgac 840
actatgaacc tgttaactcg atgaacagca tgatttaact acttctgtac aaaaatttaa 900
aactaaacaa tgatccttct gtgtgaactt gtttgatcat ctgctaatac tatttatttc 960
ctcgtaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1020
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1054
110
222
PRT
Glycine max
110
Met Glu Asn Asn Gln Gln Gln Gly Ala Gln Ala Gln Ser Gly Pro Tyr
1 5 10 15
Pro Gly Gly Ala Gly Gly Ser Ala Gly Ala Gly Ala Gly Ala Gly Ala
20 25 30
Ala Pro Phe Gln His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met
35 40 45
Phe Trp Ser Tyr Gln Arg Gln Glu Ile Glu His Val Asn Asp Phe Lys
50 55 60
Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
65 70 75 80
Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys
85 90 95
Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His
100 105 110
Ala Asp Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
115 120 125
Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro
130 135 140
Arg Asp Glu Ile Lys Asp Asp Ala Ala Leu Val Gly Ala Thr Ala Ser
145 150 155 160
Gly Val Pro Tyr Tyr Tyr Pro Pro Ile Gly Gln Pro Ala Gly Met Met
165 170 175
Ile Gly Arg Pro Ala Val Asp Pro Ala Thr Gly Val Tyr Val Gln Pro
180 185 190
Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Ser Ala Ala Glu Asp Thr
195 200 205
Pro Tyr Gly Thr Gly Ala Gln Gly Asn Leu Asp Gly Gln Ser
210 215 220
111
1036
DNA
Glycine max
111
gcacgagccc acacacactc tttctctctc tctctttccc tgatcatcaa aatcagaaaa 60
aattggggga atggagacca acaaccagca acaacaacaa caaggagctc aagcccaatc 120
gggaccctac cccgtcgccg gcgccggcgg cagtgcaggt gcaggtgcag gcgctcctcc 180
ccctttccag caccttctcc agcagcagca gcagcagctc cagatgttct ggtcttacca 240
gcgtcaagaa atcgagcacg tgaacgactt taagaatcac cagctccctc ttgcccgcat 300
caagaagatc atgaaggccg acgaggatgt ccgcatgatc tccgccgagg cccccatcct 360
cttcgccaag gcctgcgagc tcttcatcct cgagctcacc atccgctcct ggctccacgc 420
cgaggagaac aagcgccgca ccctccagaa gaacgacatc gccgccgcca tcacccgcac 480
cgacattttc gacttcctcg ttgatattgt cccccgcgac gagatcaagg acgacgctgc 540
tcttgtgggg gccaccgcca gtggggtgcc ttactactac ccgcccattg gacagcctgc 600
cgggatgatg attggccgcc ccgccgtcga tcccgccacc ggggtttatg tccagccgcc 660
ctcccaggca tggcagtccg tctggcagtc cgctgccgag gacgcttcct atggcaccgg 720
cggggccggt gcccagcgga gccttgatgg ccagagttga gtgacatcga tgccgatgat 780
ggacagtcag gagttatgaa gattctgaac ttgctgcaat ttagaaatgg ttttgtttac 840
taaattttta tgggatgaca ctgtgaacct gttaactcga tgaacagcat gatttaacta 900
cttttgtaca aaaatttaaa actaaacact gatccttctg tgtgaaacat gtatgatcat 960
ctgccaatac tgtttatttc ctcataagtc atgataccac tcgtatactt tgctaaaaaa 1020
aaaaaaaaaa aaaaaa 1036
112
229
PRT
Glycine max
112
Met Glu Thr Asn Asn Gln Gln Gln Gln Gln Gln Gly Ala Gln Ala Gln
1 5 10 15
Ser Gly Pro Tyr Pro Val Ala Gly Ala Gly Gly Ser Ala Gly Ala Gly
20 25 30
Ala Gly Ala Pro Pro Pro Phe Gln His Leu Leu Gln Gln Gln Gln Gln
35 40 45
Gln Leu Gln Met Phe Trp Ser Tyr Gln Arg Gln Glu Ile Glu His Val
50 55 60
Asn Asp Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile
65 70 75 80
Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile
85 90 95
Leu Phe Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg
100 105 110
Ser Trp Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn
115 120 125
Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val
130 135 140
Asp Ile Val Pro Arg Asp Glu Ile Lys Asp Asp Ala Ala Leu Val Gly
145 150 155 160
Ala Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Ile Gly Gln Pro
165 170 175
Ala Gly Met Met Ile Gly Arg Pro Ala Val Asp Pro Ala Thr Gly Val
180 185 190
Tyr Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Ser Ala
195 200 205
Ala Glu Asp Ala Ser Tyr Gly Thr Gly Gly Ala Gly Ala Gln Arg Ser
210 215 220
Leu Asp Gly Gln Ser
225
113
514
DNA
Glycine max
unsure
(424)
n = A, C, G, or T
113
tagggttttc tcctccccca ttgacccacc gtccatcgca aaggaagtcg cgcccaattt 60
ccatggtttg tagattaaat cttaaagcag taagtcatca tggataaatc agagcagact 120
cagcagcaac atcagcatgg gatgggcgtt gccacaggtg ctagccaaat ggcctattct 180
tctcactacc cgactgctcc catggtggct tctggcacgc ctgctgtagc tgttccttcc 240
ccaactcagg ctccagctgc cttctctagt tctgctcacc agcttgcata ccagcaagca 300
cagcatttcc accaccaaca gcagcaacac caacaacagc agcttcaaat gttctggtca 360
aaccaaatgc aagaaattga gcaaacaatt gactttaaaa accacagtct tcctcttgct 420
cggntaaaan agataatgaa agctgatgaa gatgtccgga tganttctgc aagaagctcc 480
aagtcaatat ttgcaaaagc atgtgnaatg gtca 514
114
126
PRT
Glycine max
UNSURE
(109)
Xaa = any amino acid
114
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln His Gln His Gly Met Gly
1 5 10 15
Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr Pro Thr
20 25 30
Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro Ser Pro
35 40 45
Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu Ala Tyr
50 55 60
Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln Gln Gln
65 70 75 80
Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu Gln Thr
85 90 95
Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Xaa Lys Xaa Ile
100 105 110
Met Lys Ala Asp Glu Asp Val Arg Met Xaa Ser Ala Arg Ser
115 120 125
115
1363
DNA
Glycine max
115
ttcggcacga gttgaaacca aaccaaacca aaccaaacca aacctctctt tctcagtttc 60
tctctcttag ggttttctcc tcccccattg acccaccgtc catcgcaaag gaagtcgcgc 120
ccaatttcca tggaactgta aagagattat agtttgtaga ttaaatctta aagcagtaag 180
tcatcatgga taaatcagag cagactcagc agcaacatca gcatgggatg ggcgttgcca 240
caggtgctag ccaaatggcc tattcttctc actacccgac tgctcccatg gtggcttctg 300
gcacgcctgc tgtagctgtt ccttccccaa ctcaggctcc agctgccttc tctagttctg 360
ctcaccagct tgcataccag caagcacagc atttccacca ccaacagcag caacaccaac 420
aacagcagct tcaaatgttc tggtcaaacc aaatgcaaga aattgagcaa acaattgact 480
ttaaaaacca cagtcttcct cttgctcgga taaaaaagat aatgaaagct gatgaagatg 540
tccggatgat ttctgcagaa gctccagtca tatttgcaaa agcatgtgaa atgttcatat 600
tagagttgac gttgagatct tggatccaca cagaagagaa caagaggaga actctacaaa 660
agaatgatat agcagctgct atttcgagaa acgatgtttt tgatttcttg gttgatatta 720
tcccaagaga tgagttgaaa gaggaaggac ttggaataac caaggctact attccattgg 780
tgaattctcc agctgatatg ccatattact atgtccctcc acagcatcct gttgtaggac 840
ctcctgggat gatcatgggc aagcccgttg gtgctgagca agcaacgctg tattctacac 900
agcagcctcg acctcccatg gcgttcatgc catggcccca tacacaaccc cagcaacagc 960
agccacccca acatcaacaa acagactcat gatgaccatg caattcaatt aggtcggaaa 1020
gtagcatgca ccttatgatt attacaaatt tacttaatgc ctttaagtca gctgtagttt 1080
agtgttttgc attgaaaaat gccaaagatt gtttgaggtt tcttgcactc atttatgatt 1140
gtatgagctc ttatgctgag ttacttttgg ttgtgtttat ttgaggtact ggtgtggtag 1200
ttaaattagt ttgtagctgt ccataagtaa acagcgtagc tgcttaatta ggaggtctga 1260
aatgatgaaa tagtttgtat tgttattgca gaaggtaggt tttattcagt atttcattct 1320
attgcaatgg ctgaatttaa tgctcaaaaa aaaaaaaaaa aaa 1363
116
268
PRT
Glycine max
116
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln His Gln His Gly Met Gly
1 5 10 15
Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr Pro Thr
20 25 30
Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro Ser Pro
35 40 45
Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu Ala Tyr
50 55 60
Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln Gln Gln
65 70 75 80
Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu Gln Thr
85 90 95
Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile
100 105 110
Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val
115 120 125
Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg
130 135 140
Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn
145 150 155 160
Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe Leu Val
165 170 175
Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly Ile Thr
180 185 190
Lys Ala Thr Ile Pro Leu Val Asn Ser Pro Ala Asp Met Pro Tyr Tyr
195 200 205
Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met Ile Met
210 215 220
Gly Lys Pro Val Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr Gln Gln
225 230 235 240
Pro Arg Pro Pro Met Ala Phe Met Pro Trp Pro His Thr Gln Pro Gln
245 250 255
Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265
117
1505
DNA
Glycine max
117
gcacgagctc caccgtccat tgcaaagtct tgcgcccaat ttccatggaa ctgtaaagag 60
aggatagtta gaagattaaa tcttaaagca gtaagtcatc atggataaat cagagcagac 120
tcaacagcag cagcagcaac aacagcatgt gatgggagtt gccgcagggg ctagccaaat 180
ggcctattct tctcactacc cgactgcttc catggtggct tctggcacgc ccgctgtaac 240
tgctccttcc ccaactcagg ctccagctgc cttctctagt tctgctcacc agcttgcata 300
ccagcaagca cagcatttcc accaccaaca gcagcaacac caacaacagc agcttcaaat 360
gttctggtca aaccaaatgc aagaaattga gcaaacaatt gactttaaaa accatagcct 420
tcctcttgct cggataaaaa agataatgaa agctgatgaa gatgtccgga tgatttcagc 480
agaagctccg gtcatatttg caaaagcttg tgaaatgttc atattagagt tgacgttgcg 540
atcttggatc cacacagaag agaacaagag gagaactcta caaaagaatg atatagcagc 600
tgctatttcg agaaacgatg tttttgattt cttggttgat attattccaa gagatgagtt 660
gaaagaggaa ggacttggaa taaccaaggc tactattccg ttagtgggtt ctccagctga 720
tatgccatat tactatgtcc ctccacagca tcctgttgta ggaccacctg ggatgatcat 780
gggcaagccc attggcgctg agcaagcaac actatattct acacagcagc ctcgacctcc 840
tgtggcgttc atgccatggc ctcatacaca acccctgcaa cagcagccac cccaacatca 900
acaaacagac tcatgatgac tatgcaattc aattaggttg gaaagtagcc tgcacctttt 960
gattattaca aatttactta atgcctttca gccagctgta gtttagtgtt gtgcattgaa 1020
aaaaagcaaa agattgtttt gaggtttctt gcactcattt atgattgtat gagctcttgt 1080
gatgagttac ttttggttgt gtttactatt ggtgtagtgg ttaaattatt tggcagctgt 1140
ccataaccag agagcgtagc tgcttaatta ggaggtttga tatgatgaaa tagtttgtat 1200
tgttattgca gaaggtaggt ttaattcagt attccattct actgcaatgg ctgaatttat 1260
tgctcatctg catagtacta gttgatgttt tttcctgtga ctcgttatgt gttagagtgc 1320
gaagaagaat gagtgtgcca tatttattct tcccctgttc ttgcgccaca ctctcggaaa 1380
aacaaatgtt tccgatcatt tcaattattt ccaggaacat caatatagtg gttgatgttt 1440
aatgctgtca ctgcaaaaaa aaatatgttt tttacagttg gaaaaaaaaa aaaaaaaaaa 1500
aaaaa 1505
118
271
PRT
Glycine max
118
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln Gln Gln Gln Gln Gln His
1 5 10 15
Val Met Gly Val Ala Ala Gly Ala Ser Gln Met Ala Tyr Ser Ser His
20 25 30
Tyr Pro Thr Ala Ser Met Val Ala Ser Gly Thr Pro Ala Val Thr Ala
35 40 45
Pro Ser Pro Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln
50 55 60
Leu Ala Tyr Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His
65 70 75 80
Gln Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile
85 90 95
Glu Gln Thr Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile
100 105 110
Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu
115 120 125
Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu
130 135 140
Thr Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu
145 150 155 160
Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp
165 170 175
Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu
180 185 190
Gly Ile Thr Lys Ala Thr Ile Pro Leu Val Gly Ser Pro Ala Asp Met
195 200 205
Pro Tyr Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly
210 215 220
Met Ile Met Gly Lys Pro Ile Gly Ala Glu Gln Ala Thr Leu Tyr Ser
225 230 235 240
Thr Gln Gln Pro Arg Pro Pro Val Ala Phe Met Pro Trp Pro His Thr
245 250 255
Gln Pro Leu Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265 270
119
730
DNA
Glycine max
119
gcacgagtga ctttaaaaac catagccttc ctcttgctcg gataaaaaag ataatgaaag 60
ctgatgaaga tgtccggatg atttcagcag aagctccggt catatttgca aaagcttgtg 120
aaatgttcat attagagttg acgttgcgat cttggatcca cacagaagag aacaagagga 180
gaactctaca aaagaatgat atagcagctg ctatttcgag aaacgatgtt tttgatttct 240
tggttgatat tattccaaga gatgagttga aagaggaagg acttggaata accaaggcta 300
ctattccgtt agtgggttct ccagctgata tgccatatta ctatgtccct ccacagcatc 360
ctgttgtagg accacctggg atgatcatgg gcaagcccat tggcgctgag caagcaacac 420
tatattctac acagcagcct cgacctcctg tggcgttcat gccatggcct catacacaac 480
ccctgcaaca gcagccaccc caacatcaac aaacagactc atgatgacta tgcaattcaa 540
ttaggttgga aagtagcctg caccttttga ttattacaaa tttacttaat gcctttcagc 600
cagctgtagt ttagtgttgt gcattgaaaa aaagcaaaag attgttttga ggtttcttgc 660
actcatttat gattgtatga gctcttgtga tgagttactt ttggttgtgt ttaaaaaaaa 720
aaaaaaaaaa 730
120
171
PRT
Glycine max
120
Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
1 5 10 15
Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile
20 25 30
Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser
35 40 45
Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
50 55 60
Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe Leu Val Asp
65 70 75 80
Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly Ile Thr Lys
85 90 95
Ala Thr Ile Pro Leu Val Gly Ser Pro Ala Asp Met Pro Tyr Tyr Tyr
100 105 110
Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met Ile Met Gly
115 120 125
Lys Pro Ile Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr Gln Gln Pro
130 135 140
Arg Pro Pro Val Ala Phe Met Pro Trp Pro His Thr Gln Pro Leu Gln
145 150 155 160
Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
165 170
121
1139
DNA
Glycine max
121
gcacgagaca cagcttttgt tctcgcactt cgctgtctga ggttctggat tctcagtgtt 60
tgcgaagcgc tgcatcatcc tttggggaag aatggatcat caagggcata gccagaaccc 120
atctatgggg gtggttggta gtggagctca attagcatat ggttctaacc catatcagcc 180
aggccaaata actgggccac cggggtctgt tgtgacatca gttggtacca ttcaatccac 240
acctgctgga gctcagctag gacagcatca acttgcttat cagcatattc atcagcaaca 300
acaacaccag cttcagcaac agctccaaca attttggtca aaccagtacc aagaaattga 360
gaaggttact gatttcaaga accacagtct tcccctggca aggatcaaga agattatgaa 420
ggctgacgag gatgttagga tgatatcagc cgaagcacca gtcatctttg caagggcatg 480
tgaaatgttc atattagagt taaccctgcg ttcttggaat cacactgaag agaacaaaag 540
gcgaacactt caaaaaaatg atattgctgc tgcaatcaca aggactgaca tctttgattt 600
cttggttgac attgtgcctc gtgaggactt gaaagatgaa gtgcttgcat caatcccaag 660
aggaacaatg cctgttgcag ggcctgctga tgcccttcca tattgctaca tgccgcctca 720
gcatgcgtcc caagttggag ctgctggtgt tataatgggt aagcctgtga tggacccaaa 780
catgtatgct cagcagtctc acccctacat ggcaccacaa atgtggccac agccaccaga 840
ccaacgacag tcgtccccag aacattagct gatgtgtcgt ggaaattaag ataaccaggc 900
accggaatca gttgtgaatg tcaaactgaa tggttgggaa gatccatact acattgcgag 960
cagaagctgt agctgatagt ttacatgcaa tgcagactat aaacatatgt agataatgtg 1020
ctagggaaaa cttaacctta tctttgattt agctggataa aatggtattt ttcatgttta 1080
aatttacagg tcatcagatg ataatattta tttactggtg caaaaaaaaa aaaaaaaaa 1139
122
258
PRT
Glycine max
122
Met Asp His Gln Gly His Ser Gln Asn Pro Ser Met Gly Val Val Gly
1 5 10 15
Ser Gly Ala Gln Leu Ala Tyr Gly Ser Asn Pro Tyr Gln Pro Gly Gln
20 25 30
Ile Thr Gly Pro Pro Gly Ser Val Val Thr Ser Val Gly Thr Ile Gln
35 40 45
Ser Thr Pro Ala Gly Ala Gln Leu Gly Gln His Gln Leu Ala Tyr Gln
50 55 60
His Ile His Gln Gln Gln Gln His Gln Leu Gln Gln Gln Leu Gln Gln
65 70 75 80
Phe Trp Ser Asn Gln Tyr Gln Glu Ile Glu Lys Val Thr Asp Phe Lys
85 90 95
Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp
100 105 110
Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Arg
115 120 125
Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His
130 135 140
Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala
145 150 155 160
Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro
165 170 175
Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Ser Ile Pro Arg Gly Thr
180 185 190
Met Pro Val Ala Gly Pro Ala Asp Ala Leu Pro Tyr Cys Tyr Met Pro
195 200 205
Pro Gln His Ala Ser Gln Val Gly Ala Ala Gly Val Ile Met Gly Lys
210 215 220
Pro Val Met Asp Pro Asn Met Tyr Ala Gln Gln Ser His Pro Tyr Met
225 230 235 240
Ala Pro Gln Met Trp Pro Gln Pro Pro Asp Gln Arg Gln Ser Ser Pro
245 250 255
Glu His
123
1493
DNA
Triticum aestivum
123
ggcaccagct ctggcttcca agtctataca taatataggg accgagcttg cggttttgcc 60
aagggtgatg gggaccgagc aagggaagga aggaacggga gcgggggagg ggcgcgtgga 120
ggtgcgcacg gggccgaggc cagcgctgcc ggcgccgcag cagcgggcgg tggacgggtt 180
ctggagggag cggcaggagg agatggaggc gacggcggac ttcaacgacc gcatactgcc 240
catggcccgc ctcaagaggc tcatccgcgc cgaggaggac ggcatgatga tcgccgccga 300
cacgccggcg tacctggcca agctctgcga gctcttcgtg caggagctcg ccgtgcgcgc 360
ctgggcgtgc gcccaatccc accaccgccg catcatactg gaatcggaca tcgccgaggc 420
catcgccttc acccagtcgt acgacttcct cgccaccgtg ctcctcgagc accaacggga 480
ggcgcggctg gccggccgtg ctgctatccc gacaacggtt ccggtgacgg cggcgagggc 540
aaggctcatc accaggaagc gccacatgcc ggacccgaat cctccacggc cggtgcatgg 600
ggtgcggaga attcgtcctc gtgcgcttcc tatcccgccg ccgtcggact ttcgctacgt 660
gccggttcca tttccgttca cctcggcgcc gataggagcc gcagcgatgg cggaggggct 720
gatgattctc ccacccatca accacgcgac taccgagcgc gtgttcttcc tggacaggaa 780
cagcggcact gacttcgcag gtgaaaactc tgctgctgaa actatagcat ctccgcctcc 840
tccggcaggg cctgcaggag cagtggcgct gcccactgtc catcctgctg cttactactt 900
gtgcgcttac ccggtgacca acgacgttga ggcctttgcc gttggcaaca ctgatcctga 960
tgtcatccca ccggagattg tagtgggaga cgtcgccatc ccaccggaga ttatagaggg 1020
aaacgtcgcc gatggcaacg gcgacggcgg acagcagcag cagcagagcg aaaaccttgg 1080
tggtaatggt gagagtgtgg tggtgtcgca aagcaatggt gtgcaggaag atggtgcaga 1140
tgggatgttt ctgaaggaga tcctcatgga tgaagacctg atgtttcccg acgctgagct 1200
ttttccgttg gtgggcgctg cacctggtcc agaggatttc atcgtcgacc aagatgttct 1260
cgacgacgtc ttcgccaacc cgagcagcag cgcaagcagc gactgaaccg aaagaagatc 1320
agagcgggac gcagcatcgg ttgattcatc tatcgtctct cgacctgcta ctctatgcta 1380
gccgctatat cggttaataa atttgggaat aagtttgtgt tcgtgcgtgt gacatggact 1440
gtatggttcg ccctgaattt atcgtattgc aatatatagc cgtgattgtg tgt 1493
124
434
PRT
Triticum aestivum
124
Ala Pro Ala Leu Ala Ser Lys Ser Ile His Asn Ile Gly Thr Glu Leu
1 5 10 15
Ala Val Leu Pro Arg Val Met Gly Thr Glu Gln Gly Lys Glu Gly Thr
20 25 30
Gly Ala Gly Glu Gly Arg Val Glu Val Arg Thr Gly Pro Arg Pro Ala
35 40 45
Leu Pro Ala Pro Gln Gln Arg Ala Val Asp Gly Phe Trp Arg Glu Arg
50 55 60
Gln Glu Glu Met Glu Ala Thr Ala Asp Phe Asn Asp Arg Ile Leu Pro
65 70 75 80
Met Ala Arg Leu Lys Arg Leu Ile Arg Ala Glu Glu Asp Gly Met Met
85 90 95
Ile Ala Ala Asp Thr Pro Ala Tyr Leu Ala Lys Leu Cys Glu Leu Phe
100 105 110
Val Gln Glu Leu Ala Val Arg Ala Trp Ala Cys Ala Gln Ser His His
115 120 125
Arg Arg Ile Ile Leu Glu Ser Asp Ile Ala Glu Ala Ile Ala Phe Thr
130 135 140
Gln Ser Tyr Asp Phe Leu Ala Thr Val Leu Leu Glu His Gln Arg Glu
145 150 155 160
Ala Arg Leu Ala Gly Arg Ala Ala Ile Pro Thr Thr Val Pro Val Thr
165 170 175
Ala Ala Arg Ala Arg Leu Ile Thr Arg Lys Arg His Met Pro Asp Pro
180 185 190
Asn Pro Pro Arg Pro Val His Gly Val Arg Arg Ile Arg Pro Arg Ala
195 200 205
Leu Pro Ile Pro Pro Pro Ser Asp Phe Arg Tyr Val Pro Val Pro Phe
210 215 220
Pro Phe Thr Ser Ala Pro Ile Gly Ala Ala Ala Met Ala Glu Gly Leu
225 230 235 240
Met Ile Leu Pro Pro Ile Asn His Ala Thr Thr Glu Arg Val Phe Phe
245 250 255
Leu Asp Arg Asn Ser Gly Thr Asp Phe Ala Gly Glu Asn Ser Ala Ala
260 265 270
Glu Thr Ile Ala Ser Pro Pro Pro Pro Ala Gly Pro Ala Gly Ala Val
275 280 285
Ala Leu Pro Thr Val His Pro Ala Ala Tyr Tyr Leu Cys Ala Tyr Pro
290 295 300
Val Thr Asn Asp Val Glu Ala Phe Ala Val Gly Asn Thr Asp Pro Asp
305 310 315 320
Val Ile Pro Pro Glu Ile Val Val Gly Asp Val Ala Ile Pro Pro Glu
325 330 335
Ile Ile Glu Gly Asn Val Ala Asp Gly Asn Gly Asp Gly Gly Gln Gln
340 345 350
Gln Gln Gln Ser Glu Asn Leu Gly Gly Asn Gly Glu Ser Val Val Val
355 360 365
Ser Gln Ser Asn Gly Val Gln Glu Asp Gly Ala Asp Gly Met Phe Leu
370 375 380
Lys Glu Ile Leu Met Asp Glu Asp Leu Met Phe Pro Asp Ala Glu Leu
385 390 395 400
Phe Pro Leu Val Gly Ala Ala Pro Gly Pro Glu Asp Phe Ile Val Asp
405 410 415
Gln Asp Val Leu Asp Asp Val Phe Ala Asn Pro Ser Ser Ser Ala Ser
420 425 430
Ser Asp
125
660
DNA
Triticum aestivum
unsure
(483)
n = A, C, G, or T
125
ggcaccgagc tagcttggca atggccgcga gggcgtgtcc tgctgcttct ggttaccgtg 60
tgtgctgaag catctgacgc gcttgcgccg agcagcagga gctagccgtt catgctcttc 120
ttccctcccc ttggcatctg aagcagtaag agctcaagtt cacagagggc gttcgtccga 180
tctacaaagc ccagctgtac atcgccttag ctagcttgca gatcgcaagc tagatagtaa 240
tggagaacca ccagctgccc tacaccaccc agccgccggc aacgggcgcg gccggaggag 300
ccccggtgcc tggcgtgcct gggccaccgc cggtgccaca ccaccacctg ctccagcagc 360
agcaggccca gctgcaggcg ttctgggcgt accagcggca ggaggcggag cgcgcatcgg 420
cgtccgactt caagaaccac cagctgccgc tggctcggat caagaagatc atgaaggccg 480
acnaagacgt gcgcatgatc tccgcggagg cgcccgtgct cttcgccaag gcctgcgagc 540
tctttattct cgaagctcac cattccgctt cctggctgca cgcccgagga agaacaagcc 600
gccgcacaac ttgnagcgca aacgacgttn cccgcttgcc aatnggngcc gccacccgac 660
126
147
PRT
Triticum aestivum
UNSURE
(82)
Xaa = any amino acid
126
Met Glu Asn His Gln Leu Pro Tyr Thr Thr Gln Pro Pro Ala Thr Gly
1 5 10 15
Ala Ala Gly Gly Ala Pro Val Pro Gly Val Pro Gly Pro Pro Pro Val
20 25 30
Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala Phe
35 40 45
Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp Phe
50 55 60
Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala
65 70 75 80
Asp Xaa Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala
85 90 95
Lys Ala Cys Glu Leu Phe Ile Leu Glu Ala His His Ser Ala Ser Trp
100 105 110
Leu His Ala Arg Gly Arg Thr Ser Arg Arg Thr Thr Xaa Ser Ala Asn
115 120 125
Asp Val Xaa Arg Leu Pro Xaa Gly Ala Ala Thr Arg Arg Xaa Phe Glu
130 135 140
Xaa Phe Leu
145
127
1874
DNA
Triticum aestivum
127
gcacgagccc acccacaacc ctagctcccc cgaacccatg gatcccacca aatccagcac 60
cccgccgccg ccccccgtcc tgggcgcgcc cgtcggctac ccgccggggg cgtaccctcc 120
tccgccgggc gcccccgcgg ccgcctaccc gccgcagctc tacgcgccgc cgggcgccgc 180
cgccgcccag caggccgcgg cgcagcagca gcagcagctg caggtgttct gggcggagca 240
gtaccgcgag atcgaggcca ccaccgactt caagaaccac aacctcccgc tggcccggat 300
caagaagatc atgaaggccg acgaggacgt ccgcatgatc gccgccgagg cccccgtcgt 360
cttcgcccgc gcctgcgaga tgttcatcct cgagctcacc caccgcggct gggcgcacgc 420
cgaggagaac aagcgccgca cgctccagaa gtccgacatt gcggccgcca tcgcccgcac 480
cgaggtcttc gacttcctcg tggacatcgt gccccgggac gacgccaagg acgccgaggc 540
ggccgccgcc gcggccatgg ccacggcggc ggccgggatc ccgcgcccgg ccgccggcgt 600
gcctgccacc gacccgagta tggcatacta ctatgtcccc cagcagtaat gtatcatcga 660
tctaaacttg cgcatttcta atcggagaat gtgttgttgt tctgtgactg tccttggtgc 720
tgttgttgct gcggcgtaat aagatttatg ggcctcccct gagcttatga attgagctgt 780
tcggttctag tattacagta ggattgttgt aatgggggag gccgtatgat tgcttccgta 840
gtgcatgact aactggccac ccagtgtaat ctgataacta ttatctggcg cctcccatgg 900
ttactatgta tttatgttct tcacacagtc ctctttgtct ctaccacttc gaggagttct 960
tcggaaggat gggctccaag atgcttctgg tcaccgctct cttggtgggc atagcctctc 1020
agagctatgc caccaggagc cttgacggaa accacttggc tgatcagaag tacggcggcg 1080
gcggctacgg aggtggcggt gggggctccg gaggtggtgg tggctacgga ggaggtggca 1140
gcggcggcgg gggtggctat ggaggaggcg gcggcggtgg ctacggagga ggaggcggcg 1200
gttacacacc gatgccaaca ccgtcgaccc ccagccacag cggatcctgc gactactgga 1260
agggccaccc ggagaagatc atcgactgca tcggcagcct gggcagcatc ctgggctccc 1320
tcggagaggt gtgccactcc ttcttcggca gcaagatcca taccctgcag gacgcgctgt 1380
gcaacacccg gaccgactgc tacggcgacc tgctgcgcga gggcgccgcc gcctacatca 1440
acgccatcgc cgccaagaag gagaagttcg cctacaccgc ctaccaggtc aaggagtgcg 1500
tcgccgtcgg gctcacctcc gagttcgccg ccgccgcgca ggccgccatg ttgaagaagg 1560
ccaactacgc ctgccactac taggaggcta ggctaccggc cggccgcccc agctggtggt 1620
cgtcggtggc taaataagtc catatatgca tgcacgtgtc gtgcatgttt tcatgcagtt 1680
tcccggatgc gcgcgcgcgt gtcctccgct atgcctttat gtgtttgctt gccgtttgat 1740
gatgcatgcc atgccgtctc atatatacgt agtgatgctt aatgctttgc ttgcttttct 1800
tatcttcgtt ggtgatgtaa gaataatttg attgaggagt tattagtgaa agacatagta 1860
tgcaaaaaaa aaaa 1874
128
203
PRT
Triticum aestivum
128
Met Asp Pro Thr Lys Ser Ser Thr Pro Pro Pro Pro Pro Val Leu Gly
1 5 10 15
Ala Pro Val Gly Tyr Pro Pro Gly Ala Tyr Pro Pro Pro Pro Gly Ala
20 25 30
Pro Ala Ala Ala Tyr Pro Pro Gln Leu Tyr Ala Pro Pro Gly Ala Ala
35 40 45
Ala Ala Gln Gln Ala Ala Ala Gln Gln Gln Gln Gln Leu Gln Val Phe
50 55 60
Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp Phe Lys Asn
65 70 75 80
His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu
85 90 95
Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala
100 105 110
Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala
115 120 125
Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala
130 135 140
Ile Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile Val Pro Arg
145 150 155 160
Asp Asp Ala Lys Asp Ala Glu Ala Ala Ala Ala Ala Ala Met Ala Thr
165 170 175
Ala Ala Ala Gly Ile Pro Arg Pro Ala Ala Gly Val Pro Ala Thr Asp
180 185 190
Pro Ser Met Ala Tyr Tyr Tyr Val Pro Gln Gln
195 200
129
629
DNA
Amaranthus retroflexus
unsure
(566)..(567)..(568)
n = A, C, G, or T
129
gcacgaggat ggatcatcat catcgtggag ggttccatgg ttaccgcaaa caacatcccc 60
tttctaagtc ctcctcttct gaaatgagat tgacatcgga ggtgttaccg gctgagatga 120
atcacatacg cccaactagc aatggaaaag gagtatcaca tgacatgaac aaccatacca 180
ataaccatca tccctacaac aatagcaaca acaacaacaa tggtttcagc aacggaaata 240
gtaatcactc agcatcaacc gatcaagata acaatgagtg cactgtacgc gagcaagatc 300
gctttatgcc catcgccaat gtcattagga tcatgcgcaa gattcttcct cctcatgcca 360
aaatctccga tgatgctaag gaaactatcc aggagtgtgt atcagagtac atcagcttca 420
taacaggtga agccaacgag aggtgccaaa gggaacaacg taagaccata actgctgaag 480
atgttctttg ggcgatgagc aagttgggat tcgatgacta catcgaaccc ctcacactgt 540
acttgcatcg atacagggaa ctcgannngg aacgtggttc catccgcact tgtgagccac 600
tcctcnnnct cagtcgtgct gccatnnnn 629
130
198
PRT
Amaranthus retroflexus
UNSURE
(186)..(187)
Xaa = any amino acid
130
Met Asp His His His Arg Gly Gly Phe His Gly Tyr Arg Lys Gln His
1 5 10 15
Pro Leu Ser Lys Ser Ser Ser Ser Glu Met Arg Leu Thr Ser Glu Val
20 25 30
Leu Pro Ala Glu Met Asn His Ile Arg Pro Thr Ser Asn Gly Lys Gly
35 40 45
Val Ser His Asp Met Asn Asn His Thr Asn Asn His His Pro Tyr Asn
50 55 60
Asn Ser Asn Asn Asn Asn Asn Gly Phe Ser Asn Gly Asn Ser Asn His
65 70 75 80
Ser Ala Ser Thr Asp Gln Asp Asn Asn Glu Cys Thr Val Arg Glu Gln
85 90 95
Asp Arg Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Lys Ile
100 105 110
Leu Pro Pro His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln
115 120 125
Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn Glu
130 135 140
Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Val Leu
145 150 155 160
Trp Ala Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro Leu Thr
165 170 175
Leu Tyr Leu His Arg Tyr Arg Glu Leu Xaa Xaa Glu Arg Gly Ser Ile
180 185 190
Arg Thr Cys Glu Pro Leu
195
131
625
DNA
Momordica charantia
unsure
(597)..(598)..(599)
n = A, C, G, or T
131
gcacgaggct agctagctag gtctctctac tcagttagag agagaaagaa aaagaaaaca 60
aggggaagag agagagagag gcatggaata tggaggagga ggaggagatg ggttccatag 120
ctacagaagg cagcagccaa acacaaaacc aagctctgct ttgaacatgt tgctgaccac 180
aaacaagcca tccgccaaca accaccacca ccacttaaac ggccaaaacg ccaccaccac 240
caccaactcc tctgctgctg ccgccccgac cctggccccg gccgctgctg ccaacaacaa 300
cgagcagcag tgcgtcgtgc gggagcaaga ccaatacatg ccgatcgcca acgtgatacg 360
catcatgcgg cggatcttac cctcccatgc aaagatatcc gacgatgcca aggagaccat 420
ccaagagtgt gtgtcggagt acattagctt catcaccggc gaggccaacg agcggtgcca 480
gcgagagcag cgcaagacgg tgacggcgga ggacgtcctt tgggccatgg ggaagcttgg 540
cttcgacgac tacatcgagc cactcaccgt gttcctcaac cgctaccggg agtcagnnng 600
cgatcgaatc cgaacggagn nnntc 625
132
179
PRT
Momordica charantia
UNSURE
(172)..(173)
Xaa = any amino acid
132
Met Glu Tyr Gly Gly Gly Gly Gly Asp Gly Phe His Ser Tyr Arg Arg
1 5 10 15
Gln Gln Pro Asn Thr Lys Pro Ser Ser Ala Leu Asn Met Leu Leu Thr
20 25 30
Thr Asn Lys Pro Ser Ala Asn Asn His His His His Leu Asn Gly Gln
35 40 45
Asn Ala Thr Thr Thr Thr Asn Ser Ser Ala Ala Ala Ala Pro Thr Leu
50 55 60
Ala Pro Ala Ala Ala Ala Asn Asn Asn Glu Gln Gln Cys Val Val Arg
65 70 75 80
Glu Gln Asp Gln Tyr Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg
85 90 95
Arg Ile Leu Pro Ser His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr
100 105 110
Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala
115 120 125
Asn Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Val Thr Ala Glu Asp
130 135 140
Val Leu Trp Ala Met Gly Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro
145 150 155 160
Leu Thr Val Phe Leu Asn Arg Tyr Arg Glu Ser Xaa Xaa Asp Arg Ile
165 170 175
Arg Thr Glu
133
1173
DNA
Zea mays
133
ccacgcgtcc gccaccacac cacgagcgcg cgataaccct agctagcttc aggtagtagc 60
gagagccaat ggactccagc agcttcctcc ctgccgccgg cgcggagaat ggctcggcgg 120
cgggcggcgc caacaatggc ggcgctgctc agcagcatgc ggcgccggcg atccgcgagc 180
aggaccggct gatgccgatc gcgaacgtga tccgcatcat gcggcgcgtg ctgccggcgc 240
acgccaagat ctcggacgac gccaaggaga cgatccagga gtgcgtgtcg gagtacatca 300
gcttcatcac gggggaggcc aacgagcggt gccagcggga gcagcgcaag accatcaccg 360
ccgaggacgt gctgtgggcc atgagccgcc tcggcttcga cgactacgtc gagccgctcg 420
gcgcctacct ccaccgctac cgcgagttcg agggcgacgc gcgcggcgtc gggctcgtcc 480
cgggggccgc cccatcgcgc ggcggcgacc accacccgca ctccatgtcg ccagcggcga 540
tgctcaagtc ccgcgggcca gtctccggag ccgccatgct accgcaccac caccaccacc 600
acgacatgca gatgcacgcc gccatgtacg ggggaacggc cgtgcccccg ccggccgggc 660
ctcctcacca cggcgggttc ctcatgccac acccacaggg tagtagccac tacctgcctt 720
acgcgtacga gcccacgtac ggcggtgagc acgccatggc tgcatactat ggaggcgccg 780
cgtacgcgcc cggcaacggc gggagcggcg acggcagtgg cagtggcggc ggtggcggga 840
gcgcgtcgca cacaccgcag ggcagcggcg gcttggagca cccgcacccg ttcgcgtaca 900
agtagctagt tcgtacgtcg ttcgacttga gcaagccatc gatctgctga tctgaacgta 960
cgctgtattg tacacgcatg cacgtacgta tcggcggcta gctctcctgt ttaagttgta 1020
ctgtgattct gtcccggccg gctagcaact tagtatcttc cttcagtctc tagtttctta 1080
gcagtcgtag aagtgttcaa tgcttgccag tgtgttgttt tagggccggg gtaaaccatc 1140
cgatgagatt atttcaaaaa aaaaaaaaaa aaa 1173
134
278
PRT
Zea mays
134
Met Asp Ser Ser Ser Phe Leu Pro Ala Ala Gly Ala Glu Asn Gly Ser
1 5 10 15
Ala Ala Gly Gly Ala Asn Asn Gly Gly Ala Ala Gln Gln His Ala Ala
20 25 30
Pro Ala Ile Arg Glu Gln Asp Arg Leu Met Pro Ile Ala Asn Val Ile
35 40 45
Arg Ile Met Arg Arg Val Leu Pro Ala His Ala Lys Ile Ser Asp Asp
50 55 60
Ala Lys Glu Thr Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile
65 70 75 80
Thr Gly Glu Ala Asn Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile
85 90 95
Thr Ala Glu Asp Val Leu Trp Ala Met Ser Arg Leu Gly Phe Asp Asp
100 105 110
Tyr Val Glu Pro Leu Gly Ala Tyr Leu His Arg Tyr Arg Glu Phe Glu
115 120 125
Gly Asp Ala Arg Gly Val Gly Leu Val Pro Gly Ala Ala Pro Ser Arg
130 135 140
Gly Gly Asp His His Pro His Ser Met Ser Pro Ala Ala Met Leu Lys
145 150 155 160
Ser Arg Gly Pro Val Ser Gly Ala Ala Met Leu Pro His His His His
165 170 175
His His Asp Met Gln Met His Ala Ala Met Tyr Gly Gly Thr Ala Val
180 185 190
Pro Pro Pro Ala Gly Pro Pro His His Gly Gly Phe Leu Met Pro His
195 200 205
Pro Gln Gly Ser Ser His Tyr Leu Pro Tyr Ala Tyr Glu Pro Thr Tyr
210 215 220
Gly Gly Glu His Ala Met Ala Ala Tyr Tyr Gly Gly Ala Ala Tyr Ala
225 230 235 240
Pro Gly Asn Gly Gly Ser Gly Asp Gly Ser Gly Ser Gly Gly Gly Gly
245 250 255
Gly Ser Ala Ser His Thr Pro Gln Gly Ser Gly Gly Leu Glu His Pro
260 265 270
His Pro Phe Ala Tyr Lys
275
135
1269
DNA
Zea mays
135
ccacgcgtcc gcatgaataa tccccaaaac cctaaagcca gtgctccttg caccttgcca 60
ccggagcttc ccaaagaagc agtggcgacc gacgaagcac cgccgccaat gggcaacaac 120
aacaacacgg aatcggcgac ggcgacgatg gtccgggagc aggaccggct gatgcccgtg 180
gccaacgtgt cccgcatcat gcgccaagtg ctgcctccgt acgccaagat ctccgacgac 240
gccaaggagg tgatccagga gtgcgtgtcg gagttcatca gcttcgtcac tggcgaggcg 300
aacgagcggt gccacaccga gcgccgcaag accgtcacct ccgaggacat cgtgtgggcc 360
atgagccgcc tcggcttcga cgactacgtc gcgcccctcg gcgccttcct ccagcgcatg 420
cgcgacgaca gcgaccacgg cggtgaagag cgcggcggcc ctgcagggcg tggtggctcg 480
cgccgcggct cgtcgtcctt gccgctccac tgcccgcagc agatgcacca cctgcaccca 540
gccgtctgcc ggcgtccgca ccagagcgtg tcgcctgctg caggatacgc cgtccggccc 600
gttccccgcc cgatgccagc cagtgggtac cgcatgcagg gcggagacca ccgcagcgtg 660
ggcggcgtgg ctccctgcag ctacggaggg gcgctcgtcc aggccggtgg aacccaacac 720
gttgttggat tccacgacga cgaggcaagc tcttcgagtg aaaatccgcc gccggagggg 780
cgtgccgctg gctcgaacta gcctagcttc tcagttcccc gtgtacaata agaggggcgg 840
tcgcggcgcc gcgccgcgcc cttgggttgg gccgggcgct atgctgcagt ttggtttgta 900
aactaacgag cctagggtag ctggtgcacg cgcgccacct cgccggacgt cgccgtcgtc 960
gtcggcatgg acttaaccgg cgggccctgt tgttatttct caagtttgta gccaacgcac 1020
tgttcggtgc gttccataat ttaatttacc atgttgctct cgaaatgaaa aaaaaaaaaa 1080
aaaaaagggc ggccgccctt tttttttttt tttttttttt tcctcttaag gcaaggcaac 1140
tcctgtttgt aggggaatcg ttatggttct gcttctgatt gctcctagtt cttccatcat 1200
tttcgtgttc aaagagaagg ctcccagaaa ataaaataac gattgctatg aaaaaaaaaa 1260
aaaaaaaag 1269
136
262
PRT
Zea mays
136
Met Asn Asn Pro Gln Asn Pro Lys Ala Ser Ala Pro Cys Thr Leu Pro
1 5 10 15
Pro Glu Leu Pro Lys Glu Ala Val Ala Thr Asp Glu Ala Pro Pro Pro
20 25 30
Met Gly Asn Asn Asn Asn Thr Glu Ser Ala Thr Ala Thr Met Val Arg
35 40 45
Glu Gln Asp Arg Leu Met Pro Val Ala Asn Val Ser Arg Ile Met Arg
50 55 60
Gln Val Leu Pro Pro Tyr Ala Lys Ile Ser Asp Asp Ala Lys Glu Val
65 70 75 80
Ile Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Gly Glu Ala
85 90 95
Asn Glu Arg Cys His Thr Glu Arg Arg Lys Thr Val Thr Ser Glu Asp
100 105 110
Ile Val Trp Ala Met Ser Arg Leu Gly Phe Asp Asp Tyr Val Ala Pro
115 120 125
Leu Gly Ala Phe Leu Gln Arg Met Arg Asp Asp Ser Asp His Gly Gly
130 135 140
Glu Glu Arg Gly Gly Pro Ala Gly Arg Gly Gly Ser Arg Arg Gly Ser
145 150 155 160
Ser Ser Leu Pro Leu His Cys Pro Gln Gln Met His His Leu His Pro
165 170 175
Ala Val Cys Arg Arg Pro His Gln Ser Val Ser Pro Ala Ala Gly Tyr
180 185 190
Ala Val Arg Pro Val Pro Arg Pro Met Pro Ala Ser Gly Tyr Arg Met
195 200 205
Gln Gly Gly Asp His Arg Ser Val Gly Gly Val Ala Pro Cys Ser Tyr
210 215 220
Gly Gly Ala Leu Val Gln Ala Gly Gly Thr Gln His Val Val Gly Phe
225 230 235 240
His Asp Asp Glu Ala Ser Ser Ser Ser Glu Asn Pro Pro Pro Glu Gly
245 250 255
Arg Ala Ala Gly Ser Asn
260
137
481
DNA
Argemone mexicana
unsure
(410)
n = A, C, G, or T
137
cgagagaaag agttggtgaa gaagaagaag aagttgaaaa gagatggaac gtggtggtgg 60
tggtggtggt agtggtggtg gtttccatgg atatcagaaa ctcccaaaat caaactccgc 120
tggaatgatg ctctcggagc tatcgaataa caacaacaat attgacgtaa actctacatg 180
tactgtacga gagcaagatc gatacatgcc aattgctaat gtgatcagga tcatgcgtaa 240
ggtacttcct actcatgcca agatctctga cgatgccaaa gaaactatcc aagaatgtgt 300
ctcagaatac atcagtttca tcacaagtga agccaatgat cgttgccaac gtgaacaaag 360
aaagacaatc acagctgaag atgttttatg ggcgatgagc aaactagggn ttgatgagta 420
cattgaacct ctaactcttt accttcaacg ttatcgtgag tttgaaggtg nacgttggtc 480
a 481
138
146
PRT
Argemone mexicana
UNSURE
(123)
Xaa = any amino acid
138
Met Glu Arg Gly Gly Gly Gly Gly Gly Ser Gly Gly Gly Phe His Gly
1 5 10 15
Tyr Gln Lys Leu Pro Lys Ser Asn Ser Ala Gly Met Met Leu Ser Glu
20 25 30
Leu Ser Asn Asn Asn Asn Asn Ile Asp Val Asn Ser Thr Cys Thr Val
35 40 45
Arg Glu Gln Asp Arg Tyr Met Pro Ile Ala Asn Val Ile Arg Ile Met
50 55 60
Arg Lys Val Leu Pro Thr His Ala Lys Ile Ser Asp Asp Ala Lys Glu
65 70 75 80
Thr Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Ser Glu
85 90 95
Ala Asn Asp Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu
100 105 110
Asp Val Leu Trp Ala Met Ser Lys Leu Gly Xaa Asp Glu Tyr Ile Glu
115 120 125
Pro Leu Thr Leu Tyr Leu Gln Arg Tyr Arg Glu Phe Glu Gly Xaa Arg
130 135 140
Trp Ser
145
139
1154
DNA
Glycine max
unsure
(3)
n = A, C, G, or T
139
atnacacaca cctaccttat aactatggaa actggaggct ttcatggcta ccgcaagctc 60
cccaacacaa cctctgggtt gaagctgtca gtgtcagaca tgaacatgaa catgaggcag 120
cagcaggtag catcatcaga tcagaactgc agcaaccaca gtgcagcagg agaggagaac 180
gaatgcacgg tgagggagca agacaggttc atgccaatcg ctaacgtgat acggatcatg 240
cgcaagattc tccctccaca cgcaaaaatc tccgatgatg caaaggagac aatccaagag 300
tgcgtgtcgg agtacatcag cttcatcacc ggggaggcca acgagcgttg ccagagggag 360
cagcgcaaga ccataaccgc agaggacgtg ctttgggcaa tgagtaagct tggattcgac 420
gactacatcg aaccgttaac catgtacctt caccgctacc gtgagctgga gggtgaccgc 480
acctctatga ggggtgaacc gctcgggaag aggactgtgg aatatgccac gcttgctact 540
gcttttgtgc cgccaccctt tcatcaccac aatggctact ttggtgctgc catgcccatg 600
gggacttacg ttagggaaac gccaccaaat gctgcgtcat ctcatcacca tcatggaatc 660
tccaatgctc atgaaccaaa tgctcgctcc atataaaatt aatgaagagt actgttcagt 720
aggagaacaa gacttcttgg acttgattag cttaactctc agtgattggt gttagagtac 780
tgttgttgag gatggttaat tttataatta agggctggga attggggagt tagtatatat 840
tcctaatcct aattatgtgc atctttaatt tatggaataa ctttgttttt tgttttaact 900
tctgataatt tggattttct gatgtttaat gtggttttgt ctatccctta ttaacagtgc 960
caagcttaag gttttagcca tgctccaaaa tggaatactt gtactgttat gttgttctgg 1020
tagtgatggt gatgaaacct gcaagttatg tttatgtata aagccactat tgatcaaaat 1080
tagagaaatt atcatttaat aagtatcctc ccatgttaat tttaaaaaaa aaaaaaaaaa 1140
actcgagacc ggca 1154
140
223
PRT
Glycine max
140
Met Glu Thr Gly Gly Phe His Gly Tyr Arg Lys Leu Pro Asn Thr Thr
1 5 10 15
Ser Gly Leu Lys Leu Ser Val Ser Asp Met Asn Met Asn Met Arg Gln
20 25 30
Gln Gln Val Ala Ser Ser Asp Gln Asn Cys Ser Asn His Ser Ala Ala
35 40 45
Gly Glu Glu Asn Glu Cys Thr Val Arg Glu Gln Asp Arg Phe Met Pro
50 55 60
Ile Ala Asn Val Ile Arg Ile Met Arg Lys Ile Leu Pro Pro His Ala
65 70 75 80
Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln Glu Cys Val Ser Glu
85 90 95
Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn Glu Arg Cys Gln Arg Glu
100 105 110
Gln Arg Lys Thr Ile Thr Ala Glu Asp Val Leu Trp Ala Met Ser Lys
115 120 125
Leu Gly Phe Asp Asp Tyr Ile Glu Pro Leu Thr Met Tyr Leu His Arg
130 135 140
Tyr Arg Glu Leu Glu Gly Asp Arg Thr Ser Met Arg Gly Glu Pro Leu
145 150 155 160
Gly Lys Arg Thr Val Glu Tyr Ala Thr Leu Ala Thr Ala Phe Val Pro
165 170 175
Pro Pro Phe His His His Asn Gly Tyr Phe Gly Ala Ala Met Pro Met
180 185 190
Gly Thr Tyr Val Arg Glu Thr Pro Pro Asn Ala Ala Ser Ser His His
195 200 205
His His Gly Ile Ser Asn Ala His Glu Pro Asn Ala Arg Ser Ile
210 215 220
141
942
DNA
Glycine max
141
gcacgagctc tcttataatc acacacacac ctaccttaat agctatggaa actggaggct 60
ttcacggcta ccgcaagctc cccaacacca ccgctgggtt gaagctgtca gtgtcagaca 120
tgaacatgag gcagcaggta gcatcatcag atcacagtgc agccacagga gaggagaacg 180
aatgcacggt gagggagcaa gacaggttca tgccaatcgc caacgtgatt aggatcatgc 240
gcaagattct ccctccacac gcaaaaatct cggacgatgc aaaagaaaca atccaagagt 300
gcgtgtctga gtacatcagc ttcatcacag gtgaggcgaa cgagcgttgc cagagggagc 360
agcggaagac cataaccgca gaggacgtgc tttgggccat gagcaagctt ggattcgacg 420
actacatcga accgttgacc atgtaccttc accgctaccg tgaacttgag ggtgaccgca 480
cctctatgag gggtgaacca ctcgggaaga ggactgtgga atacgccacg cttggtgttg 540
ctactgcttt tgtccctcca ccctatcatc accacaatgg gtactttggt gctgccatgc 600
ccatggggac ttacgttagg gaagcgccac caaatacagc ctcctcccat caccaccacc 660
accaccacca ccaccatgct cgtggaatct ccaatgctca tgaaccaaat gctcgctcca 720
tataaaatta tataattatg actaggattc agaacaagac ttgatgatga ttagcttaac 780
tctcagtaat tggtgctaga gtactactgt tgttgaggat actttatttt ataattaagg 840
gctgggaagg gagttagtat attcctaatc ctaactatgt gcatctttaa tttatgaaat 900
cactttgttt taacctttga tgaaaaaaaa aaaaaaaaaa aa 942
142
240
PRT
Glycine max
142
Thr Ser Ser Leu Ile Ile Thr His Thr Pro Thr Leu Ile Ala Met Glu
1 5 10 15
Thr Gly Gly Phe His Gly Tyr Arg Lys Leu Pro Asn Thr Thr Ala Gly
20 25 30
Leu Lys Leu Ser Val Ser Asp Met Asn Met Arg Gln Gln Val Ala Ser
35 40 45
Ser Asp His Ser Ala Ala Thr Gly Glu Glu Asn Glu Cys Thr Val Arg
50 55 60
Glu Gln Asp Arg Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg
65 70 75 80
Lys Ile Leu Pro Pro His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr
85 90 95
Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala
100 105 110
Asn Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp
115 120 125
Val Leu Trp Ala Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro
130 135 140
Leu Thr Met Tyr Leu His Arg Tyr Arg Glu Leu Glu Gly Asp Arg Thr
145 150 155 160
Ser Met Arg Gly Glu Pro Leu Gly Lys Arg Thr Val Glu Tyr Ala Thr
165 170 175
Leu Gly Val Ala Thr Ala Phe Val Pro Pro Pro Tyr His His His Asn
180 185 190
Gly Tyr Phe Gly Ala Ala Met Pro Met Gly Thr Tyr Val Arg Glu Ala
195 200 205
Pro Pro Asn Thr Ala Ser Ser His His His His His His His His His
210 215 220
His Ala Arg Gly Ile Ser Asn Ala His Glu Pro Asn Ala Arg Ser Ile
225 230 235 240
143
796
DNA
Glycine max
143
gcacgagcaa tggcgggagt gagggaacag gaccagtaca tgccgatagc gaacgtgata 60
aggatcatgc gtcggattct gccagcgcac gcgaagatct cagacgacgc gaaggagacg 120
atccaggagt gcgtgtctga gtacatcagt ttcatcacgg cggaggcgaa cgagcggtgc 180
cagcgggagc agcggaagac ggtgaccgca gaggatgtgt tgtgggcgat ggagaagctt 240
ggctttgaca actacgctca ccctctctct ctttaccttc accgctaccg cgagagtgaa 300
ggagaacctg cttctgtcag acgcgcttct tctgcaatgg ggatcaataa taatatggtg 360
cacccacctt atattaattc tcatggcttt ggaatgtttg attttgaccc atcatcgcaa 420
gggttttaca gggacgatca taacgctgct tctggatctg gtggttttgt tgcgcctttt 480
gatccttatg ctaacatcaa acgtgatgcc ctgtgatcat gtaagaacaa caactagtgc 540
atgctgcttt ttcacttggt tagttatatt caagcacaag cacatgcagg tgcagctgca 600
actatttagc ttcatctaca aatctttttt cctctcttct tctcatgctt taattattta 660
gagacaatac ttgttattca ttgttatgct caattgctag cttctattca tcgtcgactg 720
tctgtattgt tgatgttcat tacagtaaca gataagatgg taactgcttt actacttcaa 780
aaaaaaaaaa aaaaaa 796
144
171
PRT
Glycine max
144
Ala Arg Ala Met Ala Gly Val Arg Glu Gln Asp Gln Tyr Met Pro Ile
1 5 10 15
Ala Asn Val Ile Arg Ile Met Arg Arg Ile Leu Pro Ala His Ala Lys
20 25 30
Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln Glu Cys Val Ser Glu Tyr
35 40 45
Ile Ser Phe Ile Thr Ala Glu Ala Asn Glu Arg Cys Gln Arg Glu Gln
50 55 60
Arg Lys Thr Val Thr Ala Glu Asp Val Leu Trp Ala Met Glu Lys Leu
65 70 75 80
Gly Phe Asp Asn Tyr Ala His Pro Leu Ser Leu Tyr Leu His Arg Tyr
85 90 95
Arg Glu Ser Glu Gly Glu Pro Ala Ser Val Arg Arg Ala Ser Ser Ala
100 105 110
Met Gly Ile Asn Asn Asn Met Val His Pro Pro Tyr Ile Asn Ser His
115 120 125
Gly Phe Gly Met Phe Asp Phe Asp Pro Ser Ser Gln Gly Phe Tyr Arg
130 135 140
Asp Asp His Asn Ala Ala Ser Gly Ser Gly Gly Phe Val Ala Pro Phe
145 150 155 160
Asp Pro Tyr Ala Asn Ile Lys Arg Asp Ala Leu
165 170
145
905
DNA
Vernonia mespilifolia
145
gcacgagcca atttctagag agagaacgag agagaattct ctaaagagga aaaatagatg 60
gaacgtggag gaggtttcca tggctaccac aggctcccca tccaccctac atctggaatc 120
caacaatcgg atatgaagct aaagctacca gaaatgacca acaataactc gtccactgat 180
gacaatgagt gcaccgttcg agaacaggac cgcttcatgc cgatagcaaa cgtgatccgc 240
atcatgcgga agatccttcc tccacatgcc aagatctctg atgatgccaa agagacgatc 300
caagaatgtg tttcagagta cattagcttt gtcacaggcg aggcaaatga ccgctgccag 360
cgtgagcaaa ggaagaccat cacagctgaa gatgtgctct gggctatgag caaactggga 420
tttgatgatt atatcgagcc cttgactgtg tatctccatc gctacaggga gtttgatggt 480
ggcgaacgtg gatccataag gggtgagccc cttgtgaaga ggagtacttc tgatcctggt 540
cactttggga tggcttcttt tgtgcctgct tttcatatgg gtcatcataa cggcttcttt 600
ggtcctgcaa gcattggtgg tttcctgaaa gacccatcga gtgctggccc ttcgggacct 660
gcagtcgctg ggtttgagcc gtatgctcag tgtaaagagt aactgcaaaa agtaggggtt 720
gggatgagat gatgatgatg gtggtggtgg tggtggtttg ttttgttttg ttctttcttt 780
tttttttctt ctttcttttc ttggtcattg aggaacaaac ttacattggt tcactttggc 840
taggcatgta aacggttaac atgcttatca agtagtagtt ttcgatcaaa aaaaaaaaaa 900
aaaaa 905
146
214
PRT
Vernonia mespilifolia
146
Met Glu Arg Gly Gly Gly Phe His Gly Tyr His Arg Leu Pro Ile His
1 5 10 15
Pro Thr Ser Gly Ile Gln Gln Ser Asp Met Lys Leu Lys Leu Pro Glu
20 25 30
Met Thr Asn Asn Asn Ser Ser Thr Asp Asp Asn Glu Cys Thr Val Arg
35 40 45
Glu Gln Asp Arg Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg
50 55 60
Lys Ile Leu Pro Pro His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr
65 70 75 80
Ile Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Val Thr Gly Glu Ala
85 90 95
Asn Asp Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp
100 105 110
Val Leu Trp Ala Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro
115 120 125
Leu Thr Val Tyr Leu His Arg Tyr Arg Glu Phe Asp Gly Gly Glu Arg
130 135 140
Gly Ser Ile Arg Gly Glu Pro Leu Val Lys Arg Ser Thr Ser Asp Pro
145 150 155 160
Gly His Phe Gly Met Ala Ser Phe Val Pro Ala Phe His Met Gly His
165 170 175
His Asn Gly Phe Phe Gly Pro Ala Ser Ile Gly Gly Phe Leu Lys Asp
180 185 190
Pro Ser Ser Ala Gly Pro Ser Gly Pro Ala Val Ala Gly Phe Glu Pro
195 200 205
Tyr Ala Gln Cys Lys Glu
210
147
1098
DNA
Triticum aestivum
147
gcacgagcaa gtgcgagtgc gactacctgc attgcacctt ggctagccct agacatggag 60
aacgacggcg tccccaacgg accagcggcg ccggcaccta cccaggggac gccggtggtg 120
cgggagcagg accggctgat gccgatcgcg aacgtgatcc gcatcatgcg ccgtgcgctc 180
cctgcccacg ccaagatctc cgacgacgcc aaggaggcga ttcaggaatg cgtgtccgag 240
ttcatcagct tcgtcaccgg cgaggccaac gaacggtgcc gcatgcagca ccgcaagacc 300
gtcaacgccg aagacatcgt gtgggcccta aaccgcctcg gcttcgacga ctacgtcgtg 360
cccctcagcg tcttcctgca ccgcatgcgc gaccccgagg cggggacagg tggtgccgct 420
gcaggcgaca gccgcgccgt gacgagtgcg cctccccgcg cggccccgcc cgtgatccac 480
gccgtgccgc tgcaggctca gcgcccgatg tacgcgcccc cggctccgtt gcaggttgag 540
aatcagatgc agcggcctgt gtacgctccc ccggctccgg tgcaggttca gatgcagcgg 600
ggcatctatg ggccccgggc tccagtgcac gggtacgccg tcggaatggc gcccgtgcgg 660
gccaacgtcg gcgggcagta ccaggtgttc ggcggagagg gtgtcatggc ccagcaatac 720
tacgggtacg ggtacgagga aggagcgtac ggcgcaggta gcagcaacgg aggagccgcc 780
attggcgacg aggagagctc gtccaacggc gtgccggcac cgggggaggg catgggggag 840
ccagagccag agccagcagc agaagaatcg catgacaagc ccgtccaatc tggctagtcg 900
cgtgcgcggc gcgcgttagc ttctgcgtcc tgtgtactgt aataatttgc cgtgtcgatc 960
cggccatggt ttgtgtgtgc gtagtgctta tctaatgtgg gcttgtcctc tagtaattca 1020
tgtattgctt atctaatgtg gacttgtcct ctagtaattc atgtactctt tgctgttgaa 1080
aaaaaaaaaa aaaaaaaa 1098
148
280
PRT
Triticum aestivum
148
Met Glu Asn Asp Gly Val Pro Asn Gly Pro Ala Ala Pro Ala Pro Thr
1 5 10 15
Gln Gly Thr Pro Val Val Arg Glu Gln Asp Arg Leu Met Pro Ile Ala
20 25 30
Asn Val Ile Arg Ile Met Arg Arg Ala Leu Pro Ala His Ala Lys Ile
35 40 45
Ser Asp Asp Ala Lys Glu Ala Ile Gln Glu Cys Val Ser Glu Phe Ile
50 55 60
Ser Phe Val Thr Gly Glu Ala Asn Glu Arg Cys Arg Met Gln His Arg
65 70 75 80
Lys Thr Val Asn Ala Glu Asp Ile Val Trp Ala Leu Asn Arg Leu Gly
85 90 95
Phe Asp Asp Tyr Val Val Pro Leu Ser Val Phe Leu His Arg Met Arg
100 105 110
Asp Pro Glu Ala Gly Thr Gly Gly Ala Ala Ala Gly Asp Ser Arg Ala
115 120 125
Val Thr Ser Ala Pro Pro Arg Ala Ala Pro Pro Val Ile His Ala Val
130 135 140
Pro Leu Gln Ala Gln Arg Pro Met Tyr Ala Pro Pro Ala Pro Leu Gln
145 150 155 160
Val Glu Asn Gln Met Gln Arg Pro Val Tyr Ala Pro Pro Ala Pro Val
165 170 175
Gln Val Gln Met Gln Arg Gly Ile Tyr Gly Pro Arg Ala Pro Val His
180 185 190
Gly Tyr Ala Val Gly Met Ala Pro Val Arg Ala Asn Val Gly Gly Gln
195 200 205
Tyr Gln Val Phe Gly Gly Glu Gly Val Met Ala Gln Gln Tyr Tyr Gly
210 215 220
Tyr Gly Tyr Glu Glu Gly Ala Tyr Gly Ala Gly Ser Ser Asn Gly Gly
225 230 235 240
Ala Ala Ile Gly Asp Glu Glu Ser Ser Ser Asn Gly Val Pro Ala Pro
245 250 255
Gly Glu Gly Met Gly Glu Pro Glu Pro Glu Pro Ala Ala Glu Glu Ser
260 265 270
His Asp Lys Pro Val Gln Ser Gly
275 280
149
932
DNA
Canna edulis
149
gcaccagctc aaatctccga attagggttt ctgtgccttg tctccaatgg cggaatcggg 60
ggccccgggc acgcccgaga gcggacattc cggcggcgga tctggcgcgc gggagcagga 120
ccgctgcctc cccattgcca acattgggcg gattatgagg aaggccgtac ccgagaacgg 180
caagatcgcc aaggacgcca aggaatccgt ccaggagtgc gtctccgagt tcatcagctt 240
cgtcaccagc gaggcgagcg ataagtgccg ccgcgagaaa aggaagacga tcaacggcga 300
tgatcttctg tgggctatgc ggatgcttgg cttcgaagag tacgtcgagc ctcttaagct 360
ctacttgcag ctctacagag agatggaggg aaacgtcatg gtttcacgtc ccgctgatca 420
atgatcaacc aggaaaaaga gatggagcaa ttaacaggca gcccacagat tcgttcaatg 480
gcatgtagga tggttctcaa gaaagcaaac ttttgcttac tatttcaagg tgtaggccct 540
ttgttagtgt agttaataag ttatagttgc tgcaggttat ttttgttctt atttgtactc 600
ttgtccaata ccttttcctc taagtgaaca acattcagag aatggctctt ctctaggact 660
tggacgaagg cacgaagcac tgatctgaag ttatgatcca ttcaaccatc taaaattaat 720
tttaaatttt aaattgagac aatgttttga cccttgtttc gacatttccc gacagcccta 780
ctgtaatgta aagatgactt ggatagcaaa attgttaaaa aggtacaatt cctgcaatgt 840
tttacaagtc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 900
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 932
150
121
PRT
Canna edulis
150
Met Ala Glu Ser Gly Ala Pro Gly Thr Pro Glu Ser Gly His Ser Gly
1 5 10 15
Gly Gly Ser Gly Ala Arg Glu Gln Asp Arg Cys Leu Pro Ile Ala Asn
20 25 30
Ile Gly Arg Ile Met Arg Lys Ala Val Pro Glu Asn Gly Lys Ile Ala
35 40 45
Lys Asp Ala Lys Glu Ser Val Gln Glu Cys Val Ser Glu Phe Ile Ser
50 55 60
Phe Val Thr Ser Glu Ala Ser Asp Lys Cys Arg Arg Glu Lys Arg Lys
65 70 75 80
Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Arg Met Leu Gly Phe
85 90 95
Glu Glu Tyr Val Glu Pro Leu Lys Leu Tyr Leu Gln Leu Tyr Arg Glu
100 105 110
Met Glu Gly Asn Val Met Val Ser Arg
115 120
151
863
DNA
Momordica charantia
151
gcacgagcag gatctcgctc acatggcgga ggctccgacg agtccagccg gcggcagcca 60
cgagagcggc ggcgagcaga gccccaatac cggtggggtt cgggagcagg accgatacct 120
cccgatcgct aacattagcc ggatcatgaa gaaggccttg cccgctaatg gcaagatcgc 180
caaggacgcc aaggacaccg tccaggaatg cgtctccgaa ttcatcagct tcatcactag 240
cgaggcgagc gataagtgcc agaaggagaa gagaaagacc attaatgggg atgatttgct 300
gtgggcaatg gcgacattgg gtttcgagga ctatattgat ccgcttaagt cgtatctaac 360
taggtacaga gagttggagt gtgatgctaa gggatcttct aggggtggtg atgagtctgc 420
taaaagagat gcagttgggg ccttgcctgg ccaaaattcc cagcagtaca tgcagccggg 480
agcaatgacc tacattaaca cccaaggaca gcatttgatc attccttcaa tgcagaataa 540
tgaataggag actcctgcat tccctcttgg attgtctgaa atctgaggct ggtagaagcg 600
ttcaacacct atatagcatc tttacaatcg atttggctaa tttattatga aatgatgata 660
ttatatatat ttctggggtt tctgtgttgg ttctggattt gattttggtt tgggctttta 720
aggtgggctt cgattttatt gatgctctcg tcatctaaag ttattgtaaa tttgggacct 780
tcaatttagt atagttgctt tggtaatttg gaaactggaa aaaaaaaaaa aaaaaaaaaa 840
aaaaaaaaaa aaaaaaaaaa aaa 863
152
174
PRT
Momordica charantia
152
Met Ala Glu Ala Pro Thr Ser Pro Ala Gly Gly Ser His Glu Ser Gly
1 5 10 15
Gly Glu Gln Ser Pro Asn Thr Gly Gly Val Arg Glu Gln Asp Arg Tyr
20 25 30
Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu Pro Ala
35 40 45
Asn Gly Lys Ile Ala Lys Asp Ala Lys Asp Thr Val Gln Glu Cys Val
50 55 60
Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu Ala Ser Asp Lys Cys Gln
65 70 75 80
Lys Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met
85 90 95
Ala Thr Leu Gly Phe Glu Asp Tyr Ile Asp Pro Leu Lys Ser Tyr Leu
100 105 110
Thr Arg Tyr Arg Glu Leu Glu Cys Asp Ala Lys Gly Ser Ser Arg Gly
115 120 125
Gly Asp Glu Ser Ala Lys Arg Asp Ala Val Gly Ala Leu Pro Gly Gln
130 135 140
Asn Ser Gln Gln Tyr Met Gln Pro Gly Ala Met Thr Tyr Ile Asn Thr
145 150 155 160
Gln Gly Gln His Leu Ile Ile Pro Ser Met Gln Asn Asn Glu
165 170
153
1179
DNA
Eucalyptus grandis
153
gcaccagttt ccccccgccc ccccgatcgc cgcccctccc gccggggccg gcggcggcgg 60
ggcgtcggcg gcggcggcgg aggatgtggg gagctttctc acggaggatg aggtttcttc 120
tcttctatgt tttttttttt gcagctgctc ggcttgcctg ccctctcggg cgacgacgcg 180
atggcggagg ctccggcgag tcccggcggc ggcggcagcc acgagagcgg cgagcacagc 240
ccccggtccg gcggcgccgt ccgcgagcag gacaggtacc tccccatcgc caacatcagc 300
cgcatcatga agaaggccct ccccgccaac ggcaagatcg ccaaggacgc caaggagacc 360
gtgcaggagt gcgtctccga gttcatcagc ttcatcacca gcgaggcgag cgacaagtgc 420
cagagggaga agaggaagac gatcaacggc gacgacttgc tctggcccat ggcgacctta 480
gggtttgagg attacctcga tccgcttaag atttacctgg ccagatacag ggagatggag 540
ggggatacca aggggtcagc taaagtgggg gaagcatcta ctaaaagaga tggcgccgca 600
gttcagtcag ttcctaatgc acagattgct catcaaggtt ctttctctca cggcaccaac 660
tattcgcatt ctcaagttca ccatcctgcg cttccgatgc atggctcaga atgacatgtt 720
ccagcccttg ttgcatgaga tgaagaagtc atcacacttg ttccaggcgt ttgactcatc 780
tcggcatcaa gatattcata agatgtgctg ctgacatttt agggtggtct ctgccaattg 840
tgttcatttg gagttgtttt ccagtgggct gtatatttta gcatctgcat catatttgct 900
ttcagcctta catatgtctg gtttagattt acttgataat gtagaaaggt aagcccccct 960
gcgagtattt atcttattgt catttagatt cgacacccaa ggaggacgag aatgaagttt 1020
ctttttagct ctctgtttcg ttggagttgt cttgtgtatt cttgagttag aaacttgtga 1080
acaaattggt atgcacagtc catgtttatg tgacaatgtc gaggtctgag tgtataatcc 1140
agagtccaat tcagatcgta aaaaaaaaaa aaaaaaaaa 1179
154
177
PRT
Eucalyptus grandis
154
Met Ala Glu Ala Pro Ala Ser Pro Gly Gly Gly Gly Ser His Glu Ser
1 5 10 15
Gly Glu His Ser Pro Arg Ser Gly Gly Ala Val Arg Glu Gln Asp Arg
20 25 30
Tyr Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu Pro
35 40 45
Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln Glu Cys
50 55 60
Val Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu Ala Ser Asp Lys Cys
65 70 75 80
Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Pro
85 90 95
Met Ala Thr Leu Gly Phe Glu Asp Tyr Leu Asp Pro Leu Lys Ile Tyr
100 105 110
Leu Ala Arg Tyr Arg Glu Met Glu Gly Asp Thr Lys Gly Ser Ala Lys
115 120 125
Val Gly Glu Ala Ser Thr Lys Arg Asp Gly Ala Ala Val Gln Ser Val
130 135 140
Pro Asn Ala Gln Ile Ala His Gln Gly Ser Phe Ser His Gly Thr Asn
145 150 155 160
Tyr Ser His Ser Gln Val His His Pro Ala Leu Pro Met His Gly Ser
165 170 175
Glu
155
983
DNA
Zea mays
155
gcacgagccg gagcgcctcc tcttctccag cgtccgatcc ccattcccca cctctcctcc 60
ctccgccgcc agctcccgcc cccttctctc ccctcctcgc ctccccgcgc gcgcgttttt 120
ataagggttt cggcggaggc gcccggtcgc tggcgatggc cgacgacggc gggagccacg 180
agggcagcgg cggcggcgga ggcgtccggg agcaggaccg gttcctgccc atcgccaaca 240
tcagccggat catgaagaag gccgtcccgg ccaacggcaa gatcgccaag gacgctaagg 300
agaccctgca ggagtgcgtc tccgagttca tatcattcgt gaccagcgag gccagcgaca 360
aatgccagaa ggagaaacga aagacaatca acggggacga tttgctctgg gcgatggcca 420
ctttaggatt cgaggagtac gtcgagcctc tcaagattta cctacaaaag tacaaagaga 480
tggagggtga tagcaagctg tctacaaagg ctggcgaggg ctctgtaaag aaggatgcaa 540
ttagtcccca tggtggcacc agtagctcaa gtaatcagtt ggttcagcat ggagtctaca 600
accaagggat gggctatatg cagccacagt accacaatgg ggaaacctaa taaagggcta 660
atacagcagc aatttatgct agggaagtct ctgcattgct taccatgtgt attggcagaa 720
aacaggaggc acttacaaag ggtgttaatc tctgcgatgg ctgcctctca ggtgtaaatt 780
ggcttcggtt tagcgctgct tttgtccgta tatttaggat gatttgactg ttgctacttt 840
tggcaacctt ttacatttac agatatgtat tattcagcat aaatataata tagtagtcct 900
aggcctaaat aatggtgatt aacataccaa gtcttttatc aggctactcg ttttctggaa 960
caaaaaaaaa aaaaaaaaaa aaa 983
156
164
PRT
Zea mays
156
Met Ala Asp Asp Gly Gly Ser His Glu Gly Ser Gly Gly Gly Gly Gly
1 5 10 15
Val Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile
20 25 30
Met Lys Lys Ala Val Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys
35 40 45
Glu Thr Leu Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Ser
50 55 60
Glu Ala Ser Asp Lys Cys Gln Lys Glu Lys Arg Lys Thr Ile Asn Gly
65 70 75 80
Asp Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu Glu Tyr Val
85 90 95
Glu Pro Leu Lys Ile Tyr Leu Gln Lys Tyr Lys Glu Met Glu Gly Asp
100 105 110
Ser Lys Leu Ser Thr Lys Ala Gly Glu Gly Ser Val Lys Lys Asp Ala
115 120 125
Ile Ser Pro His Gly Gly Thr Ser Ser Ser Ser Asn Gln Leu Val Gln
130 135 140
His Gly Val Tyr Asn Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His
145 150 155 160
Asn Gly Glu Thr
157
1021
DNA
Zea mays
157
ggcacgagcg ctcctgttct tctcgcatcc ccagcccagg tggtgtcccc tgtcgcgttg 60
atgcatgctc cctcggcggt ggccttgagc tgaggcggcg gagcgatgcc ggactcggac 120
aacgactccg gcgggccgag caacgccggg ggcgagctgt cgtcgccgcg ggagcaggac 180
cggttcctgc ccatcgccaa cgtgagccgg atcatgaaga aggcgctccc ggccaacgcc 240
aagatcagca aggacgccaa ggagacggtg caggagtgcg tgtccgagtt catctccttc 300
atcaccggcg aggcctccga caagtgccag cgcgagaagc gcaagaccat caacggcgac 360
gacctgctgt gggccatgac cacgctcggc ttcgaggact acgtcgagcc gctcaagcac 420
tacctgcaca agttccgcga gatcgagggc gagagggccg ccgcgtccgc cggcgcctcg 480
ggctcgcagc agcagcagca gcagggcgag ctgcccagag gcgccgccaa tgccgccggg 540
tacgccgggt acggcgcgcc tggctccggc ggcatgatga tgatgatgat ggggcagccc 600
atgtacggcg gctcgcagcc gcagcaacag ccgccgccgc ctcagccgcc acagcagcag 660
cagcaacatc aacagcatca catggcaata ggaggcagag gaggattcgg ccaacaaggc 720
ggcggcggcg gctcctcgtc gtcgtcaggg cttggccggc aagacagggc gtgagttgcg 780
acgatacgtt cagaatcaga atcgctgata ctcctacgta gaattatacc tcctacctaa 840
ttgatgacac cgcaccgcac ctcgttgtgc tgcctgtcct tgtacgttta ctaattactg 900
ctgcctgtat gtaaatcaaa atctgaggct cccatttcga aacggacggt gaactactct 960
tcccgtttcg tttcatacga gaatcgaact cgttttcaat taaaaaaaaa aaaaaaaaaa 1020
a 1021
158
222
PRT
Zea mays
158
Met Pro Asp Ser Asp Asn Asp Ser Gly Gly Pro Ser Asn Ala Gly Gly
1 5 10 15
Glu Leu Ser Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn
20 25 30
Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile Ser
35 40 45
Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser
50 55 60
Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys
65 70 75 80
Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly Phe
85 90 95
Glu Asp Tyr Val Glu Pro Leu Lys His Tyr Leu His Lys Phe Arg Glu
100 105 110
Ile Glu Gly Glu Arg Ala Ala Ala Ser Ala Gly Ala Ser Gly Ser Gln
115 120 125
Gln Gln Gln Gln Gln Gly Glu Leu Pro Arg Gly Ala Ala Asn Ala Ala
130 135 140
Gly Tyr Ala Gly Tyr Gly Ala Pro Gly Ser Gly Gly Met Met Met Met
145 150 155 160
Met Met Gly Gln Pro Met Tyr Gly Gly Ser Gln Pro Gln Gln Gln Pro
165 170 175
Pro Pro Pro Gln Pro Pro Gln Gln Gln Gln Gln His Gln Gln His His
180 185 190
Met Ala Ile Gly Gly Arg Gly Gly Phe Gly Gln Gln Gly Gly Gly Gly
195 200 205
Gly Ser Ser Ser Ser Ser Gly Leu Gly Arg Gln Asp Arg Ala
210 215 220
159
1055
DNA
Oryza sativa
159
gcacgagctt acatctctct ctctcctctc ttctcttctt cctcccagac tagtcagtct 60
ctcccaagaa cacccactcc tctagtctct ctctcgagag agagaaaatt gatgattctt 120
gggatgattt tgaggcgtct gatttgctga agaggaggag gaggatgccg gactcggaca 180
acgactccgg cgggccgagc aactacgcgg gaggggagct gtcgtcgccg cgggagcagg 240
acaggttcct gccgatcgcg aacgtgagca ggatcatgaa gaaggcgctg ccggcgaacg 300
ccaagatcag caaggacgcc aaggagacgg tgcaggagtg cgtctccgag ttcatctcct 360
tcatcaccgg cgaggcctcc gacaagtgcc agcgcgagaa gcgcaagacc atcaacggcg 420
acgacctgct ctgggccatg accaccctcg gcttcgagga ctacgtcgac cccctcaagc 480
actacctcca caagttccgc gagatcgagg gcgagcgcgc cgccgcctcc accaccggcg 540
ccggcaccag cgccgcctcc accacgccgc cgcagcagca gcacaccgcc aatgccgccg 600
gcggctacgc cgggtacgcc gccccgggag ccggccccgg cggcatgatg atgatgatgg 660
ggcagcccat gtacggctcg ccgccaccgc cgccacagca gcagcagcag caacaccacc 720
acatggcaat gggaggaaga ggcggcttcg gtcatcatcc cggcggcggc ggcggcgggt 780
cgtcgtcgtc gtcggggcac ggtcggcaaa acaggggcgc ttgacatcgc tccgagacga 840
gtagcatgca ccatggtaca tatatacagt aatcagcagc tgttcatttt tctatgatta 900
ctagttgact taagcttgca aatttgctaa tctgagctcc tgagtttttt tttttggtca 960
gcaatttcaa gatggtcaga agctaaattt gtctatttgt tactgataaa ttatttgttc 1020
tctcaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 1055
160
219
PRT
Oryza sativa
160
Met Pro Asp Ser Asp Asn Asp Ser Gly Gly Pro Ser Asn Tyr Ala Gly
1 5 10 15
Gly Glu Leu Ser Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala
20 25 30
Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile
35 40 45
Ser Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile
50 55 60
Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg
65 70 75 80
Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly
85 90 95
Phe Glu Asp Tyr Val Asp Pro Leu Lys His Tyr Leu His Lys Phe Arg
100 105 110
Glu Ile Glu Gly Glu Arg Ala Ala Ala Ser Thr Thr Gly Ala Gly Thr
115 120 125
Ser Ala Ala Ser Thr Thr Pro Pro Gln Gln Gln His Thr Ala Asn Ala
130 135 140
Ala Gly Gly Tyr Ala Gly Tyr Ala Ala Pro Gly Ala Gly Pro Gly Gly
145 150 155 160
Met Met Met Met Met Gly Gln Pro Met Tyr Gly Ser Pro Pro Pro Pro
165 170 175
Pro Gln Gln Gln Gln Gln Gln His His His Met Ala Met Gly Gly Arg
180 185 190
Gly Gly Phe Gly His His Pro Gly Gly Gly Gly Gly Gly Ser Ser Ser
195 200 205
Ser Ser Gly His Gly Arg Gln Asn Arg Gly Ala
210 215
161
873
DNA
Oryza sativa
161
gtttttggag ggcggcgcgg ggatggcgga cgcggggcac gacgagagcg ggagcccgcc 60
gaggagcggc ggggtgaggg agcaggacag gttcctgccc atcgccaaca tcagccgcat 120
catgaagaag gccgtcccgg cgaacggcaa gatcgccaag gacgccaagg agaccctgca 180
ggagtgcgtc tcggagttca tctccttcgt caccagcgag gcgagcgaca aatgtcagaa 240
ggagaagcgc aagaccatca acggggaaga tctcctcttt gcgatgggta cgcttggctt 300
tgaggagtac gttgatccgt tgaagatcta tttacacaag tacagagaga tggagggtga 360
tagtaagctg tcctcaaagg ctggtgatgg ttcagtaaag aaggatacaa ttggtccgca 420
cagtggcgct agtagctcaa gtgcgcaagg gatggttggg gcttacaccc aagggatggg 480
ttatatgcaa cctcagtatc ataatgggga cacctaaaga tgaggacagt gaaaattttc 540
agtaactggt gtcctctgtg agttattatc catctgttaa ggaagaaccc acattagggc 600
catatttatt agtagaagac taaagcactt gaagggtgtt ggtttagaaa gggtgttaac 660
agttggctgt ggcgattgct tcacagatgt aaattgcttc ataagtggtt taatgcttgt 720
ttttgcctgt atattcagag caattttcac atattggtag ttctgcaatc ttttgcattc 780
ccatacatgt atcaggtggc acaaatctat tgcaagtacc ctagcattga ataatgctgg 840
ttaacatata aaaaaaaaaa aaaaaaaaaa aaa 873
162
164
PRT
Oryza sativa
162
Met Ala Asp Ala Gly His Asp Glu Ser Gly Ser Pro Pro Arg Ser Gly
1 5 10 15
Gly Val Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg
20 25 30
Ile Met Lys Lys Ala Val Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala
35 40 45
Lys Glu Thr Leu Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr
50 55 60
Ser Glu Ala Ser Asp Lys Cys Gln Lys Glu Lys Arg Lys Thr Ile Asn
65 70 75 80
Gly Glu Asp Leu Leu Phe Ala Met Gly Thr Leu Gly Phe Glu Glu Tyr
85 90 95
Val Asp Pro Leu Lys Ile Tyr Leu His Lys Tyr Arg Glu Met Glu Gly
100 105 110
Asp Ser Lys Leu Ser Ser Lys Ala Gly Asp Gly Ser Val Lys Lys Asp
115 120 125
Thr Ile Gly Pro His Ser Gly Ala Ser Ser Ser Ser Ala Gln Gly Met
130 135 140
Val Gly Ala Tyr Thr Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His
145 150 155 160
Asn Gly Asp Thr
163
799
DNA
Glycine max
163
gcacgagacg aaagcaacgg tgaagatgaa taatgagtga ggcaatccaa tggtgagaaa 60
ggagtccgtg aaagcagaga cttatcgaga aacaacggca cagaaggttc cacgtgggaa 120
gcagataaag gaatattaag cagagagatc caacggacac tgctagtgaa ggcagaagaa 180
gaagattcct ggattgattg tgaagatggc tgagtcggac aacgactcgg gaggggcgca 240
gaacgcggga aacagtggaa acttgagcga gttgtcgcct cgggaacagg accggtttct 300
ccccatagcg aacgtgagca ggatcatgaa gaaggccttg ccggcgaacg cgaagatctc 360
gaaggacgcg aaggagacgg tgcaggaatg cgtgtcggag ttcatcagct tcataacggg 420
tgaggcgtcg gacaagtgcc agagggagaa gcgcaagacc atcaacggcg acgatcttct 480
ctgggccatg acaaccctgg gattcgaaga gtacgtggag cctctgaaga tttacctcca 540
gcgcttccgc gagatggagg gagagaagac cgtggccgcc cgcgactctt ctaaggactc 600
ggcctccgcc tcctcctatc atcagggaca cgtgtacggc tcccctgcct accatcatca 660
agtgcctggg cccacttatc ctgcccctgg tagacccaga tgacgtgctc ctctattcgc 720
cactccctag actttttata ttatattatt taattaaact ctcttctcca ctcaaccttt 780
gcaaaaaaaa aaaaaaaaa 799
164
165
PRT
Glycine max
164
Met Ala Glu Ser Asp Asn Asp Ser Gly Gly Ala Gln Asn Ala Gly Asn
1 5 10 15
Ser Gly Asn Leu Ser Glu Leu Ser Pro Arg Glu Gln Asp Arg Phe Leu
20 25 30
Pro Ile Ala Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn
35 40 45
Ala Lys Ile Ser Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser
50 55 60
Glu Phe Ile Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg
65 70 75 80
Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr
85 90 95
Thr Leu Gly Phe Glu Glu Tyr Val Glu Pro Leu Lys Ile Tyr Leu Gln
100 105 110
Arg Phe Arg Glu Met Glu Gly Glu Lys Thr Val Ala Ala Arg Asp Ser
115 120 125
Ser Lys Asp Ser Ala Ser Ala Ser Ser Tyr His Gln Gly His Val Tyr
130 135 140
Gly Ser Pro Ala Tyr His His Gln Val Pro Gly Pro Thr Tyr Pro Ala
145 150 155 160
Pro Gly Arg Pro Arg
165
165
644
DNA
Glycine max
165
gcacgagcag tttctggggc atctcaaaat caatggaaga tattggaggc agttcctcaa 60
acgacaacaa caacaatggt ggcatcatca aggaacagga ccggttgctg ccaatagcca 120
atgttggtcg gctcatgaag cggattcttc ctcagaacgc caaaatctcg aaggaggcga 180
aggagacgat gcaggaatgt gtgtcggagt tcataagctt cgtgacgagt gaggcttcgg 240
agaagtgcag gaaggagagg aggaagacag tgaatggtga tgacatttgt tgggccttgg 300
caacactagg ctttgataac tatgctgaac caatgagaag gtacttgcat agatatagag 360
aggttgaggt agatcataat aaggtcaatc ttcaagaaaa agggaatagt cctgaagaga 420
aagacgatga attatttaaa ttgagcaata gaggggttgg gctttgacca attattatgc 480
ttatagtaga caggaactcg ttaatccatt catactcatc actgattact gattagatga 540
attagtaatt ttaaggtttt tgtgaggatg agataatata tgtaataatt ttcttgtctt 600
aattggaatt tatcgagctt agaacaaaaa aaaaaaaaaa aaaa 644
166
152
PRT
Glycine max
166
Ser Phe Trp Gly Ile Ser Lys Ser Met Glu Asp Ile Gly Gly Ser Ser
1 5 10 15
Ser Asn Asp Asn Asn Asn Asn Gly Gly Ile Ile Lys Glu Gln Asp Arg
20 25 30
Leu Leu Pro Ile Ala Asn Val Gly Arg Leu Met Lys Arg Ile Leu Pro
35 40 45
Gln Asn Ala Lys Ile Ser Lys Glu Ala Lys Glu Thr Met Gln Glu Cys
50 55 60
Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala Ser Glu Lys Cys
65 70 75 80
Arg Lys Glu Arg Arg Lys Thr Val Asn Gly Asp Asp Ile Cys Trp Ala
85 90 95
Leu Ala Thr Leu Gly Phe Asp Asn Tyr Ala Glu Pro Met Arg Arg Tyr
100 105 110
Leu His Arg Tyr Arg Glu Val Glu Val Asp His Asn Lys Val Asn Leu
115 120 125
Gln Glu Lys Gly Asn Ser Pro Glu Glu Lys Asp Asp Glu Leu Phe Lys
130 135 140
Leu Ser Asn Arg Gly Val Gly Leu
145 150
167
879
DNA
Glycine max
167
gcacgagaag gaacgtgaaa gtaaaacgga cggtggcgat agaagcgtct ctcatctcca 60
tcgtctcctc actcctctct tctccagcgt tcattttttc tcgcgcccaa atacaaaatc 120
acatcacaac agggttccgg cgaccatgtc cgatgctccg gcgagtccat gcggcggcgg 180
cggcggaggc agccacgaga gcggcgagca cagtccccgc tccaatttcc gcgagcagga 240
ccgcttcctc cccatcgcca acatcagccg catcatgaag aaagcgcttc ctcccaacgg 300
gaaaatcgcc aaggacgcca aggaaaccgt gcaggaatgc gtctccgagt tcatcagctt 360
cgtcaccagc gaagcgagcg ataagtgtca gagagagaag aggaagacca tcaacggcga 420
cgatttgctt tgggctatga ccactttagg tttcgaggag tatattgatc cgctcaaggt 480
ttacctcgcc gcttacagag agattgaggg tgattcaaag ggttcggcca agggtggaga 540
tgcatctgct aagagagatg tttatcagag tcctaatggc caggttgctc atcaaggttc 600
tttctcacaa ggtgttaatt atacgaattc ttagccccag gctcaacata tgatagttcc 660
gatgcaaggc caagagtaga tattgatcct ctccttcagt gtttgacatg tgtgatctaa 720
atgccagtgg aacttttatg tcaatatgtg cccttggtat aatgaatgca ttttatgtta 780
tgtaaacact acatgcgggg atgttggttc ttgtgaccag atattattta ttaagactta 840
catttatctt tggaaaaaaa aaaaaaaaaa aaaaaaaaa 879
168
162
PRT
Glycine max
168
Met Ser Asp Ala Pro Ala Ser Pro Cys Gly Gly Gly Gly Gly Gly Ser
1 5 10 15
His Glu Ser Gly Glu His Ser Pro Arg Ser Asn Phe Arg Glu Gln Asp
20 25 30
Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu
35 40 45
Pro Pro Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln Glu
50 55 60
Cys Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala Ser Asp Lys
65 70 75 80
Cys Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp
85 90 95
Ala Met Thr Thr Leu Gly Phe Glu Glu Tyr Ile Asp Pro Leu Lys Val
100 105 110
Tyr Leu Ala Ala Tyr Arg Glu Ile Glu Gly Asp Ser Lys Gly Ser Ala
115 120 125
Lys Gly Gly Asp Ala Ser Ala Lys Arg Asp Val Tyr Gln Ser Pro Asn
130 135 140
Gly Gln Val Ala His Gln Gly Ser Phe Ser Gln Gly Val Asn Tyr Thr
145 150 155 160
Asn Ser
169
771
DNA
Glycine max
169
gcacgagagt ctttagaaaa gatatccatg gctgagtccg acaacgagtc aggaggtcac 60
acggggaacg cgagcgggag caacgagttg tccggttgca gggagcaaga caggttcctc 120
ccaatagcaa acgtgagcag gatcatgaag aaggcgttgc cggcgaacgc gaagatatcg 180
aaggaggcga aggagacggt gcaggagtgc gtgtcggagt tcatcagctt cataacagga 240
gaggcttccg ataagtgcca gaaggagaag aggaagacga tcaacggcga cgatcttctc 300
tgggccatga ctaccctggg cttcgaggac tacgtggatc ctctcaagat ttacctgcac 360
aagtataggg agatggaggg ggagaaaacc gctatgatgg gaaggccaca tgagagggat 420
gagggttatg gccatggcca tggtcatgca actcctatga tgacgatgat gatggggcat 480
cagccccagc accagcacca gcaccagcac cagcaccagc accagggaca cgtgtatgga 540
tctggatcag catcttctgc aagaactaga tagcatgtgt catctgttta agcttaattg 600
attttattat gaggatgata tgatataaga tttatattcg tatatgtttg gttttagaaa 660
tacaccagct ccagcttgta attgcttgaa acttccttgt tgagagaata tagacattat 720
tgtggatggt gatgtggcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 771
170
181
PRT
Glycine max
170
Met Ala Glu Ser Asp Asn Glu Ser Gly Gly His Thr Gly Asn Ala Ser
1 5 10 15
Gly Ser Asn Glu Leu Ser Gly Cys Arg Glu Gln Asp Arg Phe Leu Pro
20 25 30
Ile Ala Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala
35 40 45
Lys Ile Ser Lys Glu Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu
50 55 60
Phe Ile Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Lys Glu
65 70 75 80
Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr
85 90 95
Leu Gly Phe Glu Asp Tyr Val Asp Pro Leu Lys Ile Tyr Leu His Lys
100 105 110
Tyr Arg Glu Met Glu Gly Glu Lys Thr Ala Met Met Gly Arg Pro His
115 120 125
Glu Arg Asp Glu Gly Tyr Gly His Gly His Gly His Ala Thr Pro Met
130 135 140
Met Thr Met Met Met Gly His Gln Pro Gln His Gln His Gln His Gln
145 150 155 160
His Gln His Gln His Gln Gly His Val Tyr Gly Ser Gly Ser Ala Ser
165 170 175
Ser Ala Arg Thr Arg
180
171
848
DNA
Glycine max
171
gcgccaaata caaattcgtg tcaacccaac ccagggttcc ggcgagcatg gccgacggtc 60
cggctagccc aggcggcggc agccacgaga gcggcgacca cagccctcgc tctaacgtgc 120
gcgagcagga caggtacctc cctatcgcta acataagccg catcatgaag aaggcacttc 180
ctgccaacgg taaaatcgca aaggacgcca aagagaccgt tcaggaatgc gtctccgagt 240
tcatcagctt catcaccagc gagttatgtc agagagaaaa gagaaagact attaacggcg 300
atgatttgct ctgggcgatg gccactctcg gtttcgagga ttatatggat cctcttaaaa 360
tttacctcac tagataccga gagatggagg gtgatacgaa gggctctgcc aagggtggag 420
actcatctgc taagagagat gttcagccaa gtcctaatgc tcagcttgct catcaaggtt 480
ctttctcaca aaatgttact tacccgaatt ctcagggtcg acatatgatg gttccaatgc 540
aaggcccgga gtaggtatca agtttattat tgaccctctt gttgtaacgt atgttttcta 600
cgccagttac caagtgctca cggcatattg aatgtctttt tatgttatgt gaatactgac 660
aggagatgtt ggttcttgtg tccgtttttt tttttttaaa ttaaggtttg tatattatct 720
ttggattcga attattattt gaaagttatt attatattgt aaatcctaga gccctgttgt 780
ctgaatccat caggcggctt ggtaaagacc gagattttag gactgattgt aagcataaat 840
ccgaatat 848
172
168
PRT
Glycine max
172
Met Ala Asp Gly Pro Ala Ser Pro Gly Gly Gly Ser His Glu Ser Gly
1 5 10 15
Asp His Ser Pro Arg Ser Asn Val Arg Glu Gln Asp Arg Tyr Leu Pro
20 25 30
Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Gly
35 40 45
Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu
50 55 60
Phe Ile Ser Phe Ile Thr Ser Glu Leu Cys Gln Arg Glu Lys Arg Lys
65 70 75 80
Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe
85 90 95
Glu Asp Tyr Met Asp Pro Leu Lys Ile Tyr Leu Thr Arg Tyr Arg Glu
100 105 110
Met Glu Gly Asp Thr Lys Gly Ser Ala Lys Gly Gly Asp Ser Ser Ala
115 120 125
Lys Arg Asp Val Gln Pro Ser Pro Asn Ala Gln Leu Ala His Gln Gly
130 135 140
Ser Phe Ser Gln Asn Val Thr Tyr Pro Asn Ser Gln Gly Arg His Met
145 150 155 160
Met Val Pro Met Gln Gly Pro Glu
165
173
1097
DNA
Triticum aestivum
173
gcacgaggcg ccgccttctc ttctccagcg tcggatcttc ccccactcgc cgccctcacc 60
gcacctccat tcccctccac caccttccct ccctccacgc gctcctctat ataaggggga 120
gggccggatg tcggacgagg cggcgagccc cccgggcggc ggcggcggcg gaggaggcgg 180
cggcagcgac gacggcggcg gcggcggcgg cttcggcggc gtcagggagc aggacaggtt 240
cctgcccatc gccaacatca gccgcatcat gaagaaggcc atcccggcca acggcaagat 300
cgccaaggac gccaaggaga ccgtgcagga gtgcgtctcc gagttcatct ccttcatcac 360
cagcgaggcg agcgacaagt gccagaggga gaagcgcaag accatcaacg gcgacgacct 420
gctctgggcg atggccacgc tgggcttcga ggagtacatc gagcccctca aggtttatct 480
gcagaagtac agagagacgg agggtgatag taagctagct gggaagtctg gtgatgtctc 540
tgttaaaaag gatgcactgg gtcctcatgg aggagcaagt ggcacaagtg cgcaagggat 600
gggccaacaa gtagcataca atccaggaat ggtttatatg caacctcagt accataatgg 660
ggacatctca aactgaagat atggaccatc tccgagactg ctgctactct gctaggcggg 720
ttttcgtcat gtggagagca ctaagcagtt aaagaaaact cttagtaccc ccattagtct 780
cgtgttgttg ggtctgccag aactgatgct caaaggctgc ttcccagatg taaattgctt 840
tttcctgaga atagattcag ttgtggttta gcatggttgt tgttgttgtc tgtatattta 900
tgatgattag cctcgtcgtg gctgtcattc ggttccatat aatctgggta tttgggggag 960
acataactcc tccaggtgta gtttgtcctg aactagctgt atcagactct tgagaagagt 1020
tgctattagc cctccaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1080
aaaaaaaaaa aaaaaaa 1097
174
182
PRT
Triticum aestivum
174
Met Ser Asp Glu Ala Ala Ser Pro Pro Gly Gly Gly Gly Gly Gly Gly
1 5 10 15
Gly Gly Gly Ser Asp Asp Gly Gly Gly Gly Gly Gly Phe Gly Gly Val
20 25 30
Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met
35 40 45
Lys Lys Ala Ile Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu
50 55 60
Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu
65 70 75 80
Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp
85 90 95
Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu Glu Tyr Ile Glu
100 105 110
Pro Leu Lys Val Tyr Leu Gln Lys Tyr Arg Glu Thr Glu Gly Asp Ser
115 120 125
Lys Leu Ala Gly Lys Ser Gly Asp Val Ser Val Lys Lys Asp Ala Leu
130 135 140
Gly Pro His Gly Gly Ala Ser Gly Thr Ser Ala Gln Gly Met Gly Gln
145 150 155 160
Gln Val Ala Tyr Asn Pro Gly Met Val Tyr Met Gln Pro Gln Tyr His
165 170 175
Asn Gly Asp Ile Ser Asn
180
175
1016
DNA
Triticum aestivum
175
ctcgtgccgc aaagattgaa ttttcgtaca agtgtccttc cttccagtta acttcatgct 60
cctgcttgat caggctagag tggtttgatt gcttcttgat ttgagacaca gatcggggag 120
aggagccatg ccggagtcgg acaacgactc cggcgggccg agcaacaccg gcggggaggg 180
ggagctgtcg tcgccgcggg agcaggaccg cttcctgccc atcgccaacg tgagccgcat 240
catgaagaag gcgctcccgg ccaacgccaa gatcagcaag gacgccaagg agacggtgca 300
ggagtgcgtc tccgagttca tctccttcat caccggcgag gcctccgaca agtgccagcg 360
cgagaagcgc aagaccatca acggcgacga cctcctctgg gccatgacca ccctcggctt 420
cgaggactac gtcgaccccc tcaagcacta cctccacaag ttccgcgaga tcgagggcga 480
gagggccgcc gccacgtcga cgtcaaccgc gccgcagcac ctgcccgaca ataatgccac 540
cggttacgcc gactatggtg gcgccgctgt ccccgccccg gccccgggag gcatgatgat 600
gatggggcag cccatgtacg gctcaccgcc gccgcagcag cagcaccaac atcaggttgc 660
aatgggaggg agagcgggct ttccctatca cggaggcagc agcggtggcg gcgggtcgtc 720
ttcttcgtcg gggttcggac ggaaagaggg gtgacatctt ttcttttctt ttcgttttga 780
gctgaccaaa gtgagtgatt tcaacatatg ttcctctctt ggatgaagcc gtgacttgta 840
gcttagggaa atccattcag tacaaggagg aataattgtt cagcaaatca gttttcttct 900
ataaacagga ggaatgtata actacgagtc tacaaatcat acctgggaag ctctccatga 960
attacttgtt taacaacatg gcgagacaca ataccaatat attgatgtta aaaaaa 1016
176
208
PRT
Triticum aestivum
176
Met Pro Glu Ser Asp Asn Asp Ser Gly Gly Pro Ser Asn Thr Gly Gly
1 5 10 15
Glu Gly Glu Leu Ser Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile
20 25 30
Ala Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys
35 40 45
Ile Ser Lys Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe
50 55 60
Ile Ser Phe Ile Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys
65 70 75 80
Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu
85 90 95
Gly Phe Glu Asp Tyr Val Asp Pro Leu Lys His Tyr Leu His Lys Phe
100 105 110
Arg Glu Ile Glu Gly Glu Arg Ala Ala Ala Thr Ser Thr Ser Thr Ala
115 120 125
Pro Gln His Leu Pro Asp Asn Asn Ala Thr Gly Tyr Ala Asp Tyr Gly
130 135 140
Gly Ala Ala Val Pro Ala Pro Ala Pro Gly Gly Met Met Met Met Gly
145 150 155 160
Gln Pro Met Tyr Gly Ser Pro Pro Pro Gln Gln Gln His Gln His Gln
165 170 175
Val Ala Met Gly Gly Arg Ala Gly Phe Pro Tyr His Gly Gly Ser Ser
180 185 190
Gly Gly Gly Gly Ser Ser Ser Ser Ser Gly Phe Gly Arg Lys Glu Gly
195 200 205
177
982
DNA
Triticum aestivum
177
gcacgaggca ttccccaccc ctcctcgcag cgccaaccac cgtctcctcc tcccccctcc 60
cttctctccc ctccgctcct ccccccccgc gcgcgcgttt tttataaggg tttcggggcg 120
cgggatggcc gacgacgaca gcgggagccc ccggggcggc ggcggggtca gggagcagga 180
ccgcttcctc cccatcgcca acatcagccg catcatgaag aaggccgtgc cggccaacgg 240
caagatcgcc aaggacgcca aggagaccct ccaggagtgc gtctccgagt tcatctcctt 300
cgtcaccagc gaggccagcg acaagtgcca gaaggagaag cgcaagacca tcaacgggga 360
cgatctgctc tgggccatgg ccacgctcgg attcgaggag tacgtagacc ccctcaagat 420
ctacctgcaa aagtacagag atatggaggg tgatagtaaa ttgacctcaa aatctggtga 480
aggatccgtg aagaaagata taattggtgc tcatagtggt gcgactagct caaacgccca 540
agcgatggtt cagcatggag cttacgccca agggatgggt tatatgcaac cccagtacca 600
taatggggac acctgaaact gaagatcagg caattttcgg caatgggtat tgctccatga 660
gtggttatct atctgttaag gaagccgccc caacattagg ttcatgatga tcattggctg 720
gaaactaaag cacctggaag ggtgcttaac agttggttgt gatggctgcc tccaagatgt 780
aaattgcttc cgagagaata gattcaccta ttatggttta gtgcttgttt ttatctgtac 840
attcagaata attcagccgt tggtagtttg gcaatctttt gtttcagata tttgtattag 900
gaagcataaa tatattacaa ctgggtatta acttataaaa aaaaaaaaaa aaaaaaaaaa 960
aaaaaaaaaa aaaaaaaaaa aa 982
178
163
PRT
Triticum aestivum
178
Met Ala Asp Asp Asp Ser Gly Ser Pro Arg Gly Gly Gly Gly Val Arg
1 5 10 15
Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys
20 25 30
Lys Ala Val Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr
35 40 45
Leu Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala
50 55 60
Ser Asp Lys Cys Gln Lys Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp
65 70 75 80
Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu Glu Tyr Val Asp Pro
85 90 95
Leu Lys Ile Tyr Leu Gln Lys Tyr Arg Asp Met Glu Gly Asp Ser Lys
100 105 110
Leu Thr Ser Lys Ser Gly Glu Gly Ser Val Lys Lys Asp Ile Ile Gly
115 120 125
Ala His Ser Gly Ala Thr Ser Ser Asn Ala Gln Ala Met Val Gln His
130 135 140
Gly Ala Tyr Ala Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His Asn
145 150 155 160
Gly Asp Thr
179
272
PRT
Arabidopsis thaliana
misc_feature
gi 11282597
179
Met Gln Ser Lys Pro Gly Arg Glu Asn Glu Glu Glu Val Asn Asn His
1 5 10 15
His Ala Val Gln Gln Pro Met Met Tyr Ala Glu Pro Trp Trp Lys Asn
20 25 30
Asn Ser Phe Gly Val Val Pro Gln Ala Arg Pro Ser Gly Ile Pro Ser
35 40 45
Asn Ser Ser Ser Leu Asp Cys Pro Asn Gly Ser Glu Ser Asn Asp Val
50 55 60
His Ser Ala Ser Glu Asp Gly Ala Leu Asn Gly Glu Asn Asp Gly Thr
65 70 75 80
Trp Lys Asp Ser Gln Ala Ala Thr Ser Ser Arg Ser Val Asp Asn His
85 90 95
Gly Met Glu Gly Asn Asp Pro Ala Leu Ser Ile Arg Asn Met His Asp
100 105 110
Gln Pro Leu Val Gln Pro Pro Glu Leu Val Gly His Tyr Ile Ala Cys
115 120 125
Val Pro Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly Leu Met Gly Ala
130 135 140
Tyr Gly His Gln Gln Leu Gly Phe Arg Pro Tyr Leu Gly Met Pro Arg
145 150 155 160
Glu Arg Thr Ala Leu Pro Leu Asp Met Ala Gln Glu Pro Val Tyr Val
165 170 175
Asn Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg Arg Lys Ala Arg Ala
180 185 190
Lys Ala Glu Leu Glu Arg Lys Val Ile Arg Asp Arg Lys Pro Tyr Leu
195 200 205
His Glu Ser Arg His Lys His Ala Met Arg Arg Ala Arg Ala Ser Gly
210 215 220
Gly Arg Phe Ala Lys Lys Ser Glu Val Glu Ala Gly Glu Asp Ala Gly
225 230 235 240
Gly Arg Asp Arg Glu Arg Gly Ser Ala Thr Asn Ser Ser Gly Ser Glu
245 250 255
Gln Val Glu Thr Asp Ser Asn Glu Thr Leu Asn Ser Ser Gly Ala Pro
260 265 270
180
215
PRT
Vitis riparia
misc_feature
gi 7141243
180
Met Met Pro Met Thr Met Ala Glu Tyr His Leu Ala Pro Pro Ser Gln
1 5 10 15
Leu Glu Leu Val Gly His Ser Ile Val Gln Ser Gln Phe Leu Gly Val
20 25 30
Asn Val Ala Arg Met Ala Leu Pro Ile Glu Met Ala Glu Glu Pro Val
35 40 45
Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser
50 55 60
Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Val Arg Lys Pro
65 70 75 80
Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala Arg Gly
85 90 95
Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Asp Ser Asn Ala Ser
100 105 110
Tyr Asp Met Pro Asp Lys Gly Ser Asp Pro Asp Val Asn Leu Ser Thr
115 120 125
Arg Pro Ile Ser Ser Ser Val Ser Glu Ser Leu Pro Phe Asn Ser Ser
130 135 140
Arg Asn Glu Asp Ser Pro Thr Ser His Leu Asp Ala Arg Gly Pro Ser
145 150 155 160
Val Gln Glu Leu His Asn Arg Gln Thr Ser Ser Met Glu Met Ala Thr
165 170 175
Ser Leu Leu Ser Thr Gln Pro Gly Ile Ser Val Gly Arg Thr Tyr His
180 185 190
Ser Leu Lys Met Met Ile Gly Val Glu Arg Arg Arg Pro Arg Lys Ala
195 200 205
Ala Ser Ile Arg Glu Phe Trp
210 215
181
238
PRT
Oryza sativa
misc_feature
gi 7489565
181
Met Leu Pro Pro His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe
1 5 10 15
Gly His Lys Met Pro Asp Tyr Glu Ser Ser Ala Thr Gln Ser Thr Ser
20 25 30
Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu Asn Glu
35 40 45
Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu
50 55 60
Gly Lys Met Met Ser Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr
65 70 75 80
Ala His Ser Glu Pro Asp Arg Ser Gln Pro Phe Gly Ile Ser Tyr Pro
85 90 95
Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr His
100 105 110
Ala Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val
115 120 125
Pro Leu Pro Ile Glu Pro Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala
130 135 140
Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu
145 150 155 160
Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu
165 170 175
Ser Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg
180 185 190
Phe Leu Asn Thr Lys Gln Gln Pro Glu Ala Ser Asp Gly Gly Thr Pro
195 200 205
Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys His Glu His Ser
210 215 220
Leu Ser Ser Ser Asp Leu His His Arg Ala Lys Glu Gly Ala
225 230 235
182
197
PRT
Arabidopsis thaliana
misc_feature
gi 6634774
182
Met Thr His Thr Thr Glu Asn Thr Asn Lys Asn Arg Ala Thr Gly Arg
1 5 10 15
Asp Asn Ile Gly Ser His Glu Lys Gln Glu Gln Arg Asp Ser His Phe
20 25 30
Gln Pro Pro Ile Pro Ser Ala Arg Asn Tyr Glu Ser Ile Val Thr Ser
35 40 45
Leu Val Tyr Ser Asp Pro Gly Thr Thr Asn Ser Met Ala Pro Gly Gln
50 55 60
Tyr Pro Tyr Pro Asp Pro Tyr Tyr Arg Ser Ile Phe Ala Pro Pro Pro
65 70 75 80
Gln Pro Tyr Thr Gly Val His Leu Gln Leu Met Gly Val Gln Gln Gln
85 90 95
Gly Val Pro Leu Pro Ser Asp Ala Val Glu Glu Pro Val Phe Val Asn
100 105 110
Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser Arg Ala Arg
115 120 125
Leu Glu Ser Gln Asn Lys Val Ile Lys Ser Arg Lys Pro Tyr Leu His
130 135 140
Glu Ser Arg His Leu His Ala Ile Arg Arg Pro Arg Gly Cys Gly Gly
145 150 155 160
Arg Phe Leu Asn Ala Lys Lys Glu Asp Glu His His Glu Asp Ser Ser
165 170 175
His Glu Glu Lys Ser Asn Leu Ser Ala Gly Lys Ser Ala Met Ala Ala
180 185 190
Ser Ser Gly Thr Ser
195
183
298
PRT
Arabidopsis thaliana
misc_feature
gi 9293997
183
Met His Ser Lys Ser Asp Ser Gly Gly Asn Lys Val Asp Ser Glu Val
1 5 10 15
His Gly Thr Val Ser Ser Ser Ile Asn Ser Leu Asn Pro Trp His Arg
20 25 30
Ala Ala Ala Ala Cys Asn Ala Asn Ser Ser Val Glu Ala Gly Asp Lys
35 40 45
Ser Ser Lys Ser Ile Ala Leu Ala Leu Glu Ser Asn Gly Ser Lys Ser
50 55 60
Pro Ser Asn Arg Asp Asn Thr Val Asn Lys Glu Ser Gln Val Thr Thr
65 70 75 80
Ser Pro Gln Ser Ala Gly Asp Tyr Ser Asp Lys Asn Gln Glu Ser Leu
85 90 95
His His Gly Ile Thr Gln Pro Pro Pro His Pro Gln Leu Val Gly His
100 105 110
Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln Asp Pro Tyr Tyr Ala
115 120 125
Gly Val Met Gly Ala Tyr Gly His His Pro Leu Gly Phe Val Pro Tyr
130 135 140
Gly Gly Met Pro His Ser Arg Met Pro Leu Pro Pro Glu Met Ala Gln
145 150 155 160
Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg
165 170 175
Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Ser
180 185 190
Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg
195 200 205
Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asn Thr Glu Ala
210 215 220
Ser Lys Arg Lys Ala Glu Glu Lys Ser Asn Gly His Val Thr Gln Ser
225 230 235 240
Pro Ser Ser Ser Asn Ser Asp Gln Gly Glu Ala Trp Asn Gly Asp Tyr
245 250 255
Arg Thr Pro Gln Gly Asp Glu Met Gln Ser Ser Ala Tyr Lys Arg Arg
260 265 270
Glu Glu Gly Glu Cys Ser Gly Gln Gln Trp Asn Ser Leu Ser Ser Asn
275 280 285
His Pro Ser Gln Ala Arg Leu Ala Ile Lys
290 295
184
340
PRT
Arabidopsis thaliana
misc_feature
gi 5903072
184
Met Met His Gln Met Leu Asn Lys Lys Asp Ser Ala Thr His Ser Thr
1 5 10 15
Leu Pro Tyr Leu Asn Thr Ser Ile Ser Trp Gly Val Val Pro Thr Asp
20 25 30
Ser Val Ala Asn Arg Arg Gly Ser Ala Glu Ser Leu Ser Leu Lys Val
35 40 45
Asp Ser Arg Pro Gly His Ile Gln Thr Thr Lys Gln Ile Ser Phe Gln
50 55 60
Asp Gln Asp Ser Ser Ser Thr Gln Ser Thr Gly Gln Ser Tyr Thr Glu
65 70 75 80
Val Ala Ser Ser Gly Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Ser
85 90 95
Ala Lys Ser Gly Ser Glu Ile Thr Gln Arg Lys Gly Phe Ala Ser Asn
100 105 110
Pro Lys Gln Gly Ser Met Thr Gly Phe Pro Asn Ile His Phe Ala Pro
115 120 125
Ala Gln Ala Asn Phe Ser Phe His Tyr Ala Asp Pro His Tyr Gly Gly
130 135 140
Leu Leu Ala Ala Thr Tyr Leu Pro Gln Ala Pro Thr Cys Asn Pro Gln
145 150 155 160
Met Val Ser Met Ile Pro Gly Arg Val Pro Leu Pro Ala Glu Leu Thr
165 170 175
Glu Thr Asp Pro Val Phe Val Asn Ala Lys Gln Tyr His Ala Ile Met
180 185 190
Arg Arg Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile
195 200 205
Arg Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His Val His Ala Leu
210 215 220
Lys Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu
225 230 235 240
Leu Gln Glu Ser Glu Gln Ala Ala Ala Arg Glu Gln Glu Gln Asp Lys
245 250 255
Leu Gly Gln Gln Val Asn Arg Lys Thr Asn Met Ser Arg Phe Glu Ala
260 265 270
His Met Leu Gln Asn Asn Lys Asp Arg Ser Ser Thr Thr Ser Gly Ser
275 280 285
Asp Ile Thr Ser Val Ser Asp Gly Ala Asp Ile Phe Gly His Thr Glu
290 295 300
Phe Gln Phe Ser Gly Phe Pro Thr Pro Ile Asn Arg Ala Met Leu Val
305 310 315 320
His Gly Gln Ser Asn Asp Met His Gly Gly Gly Asp Met His His Phe
325 330 335
Ser Val His Ile
340
185
355
PRT
Arabidopsis thaliana
misc_feature
gi 8778470
185
Met Asp Lys Lys Val Ser Phe Thr Ser Ser Val Ala His Ser Thr Pro
1 5 10 15
Pro Tyr Leu Ser Thr Ser Ile Ser Trp Gly Leu Pro Thr Lys Ser Asn
20 25 30
Gly Val Thr Glu Ser Leu Ser Leu Lys Val Val Asp Ala Arg Pro Glu
35 40 45
Arg Leu Ile Asn Thr Lys Asn Ile Ser Phe Gln Asp Gln Asp Ser Ser
50 55 60
Ser Thr Leu Ser Ser Ala Gln Ser Ser Asn Asp Val Thr Ser Ser Gly
65 70 75 80
Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Leu Ala His Ser Asp Val
85 90 95
Cys Lys Gly Phe Glu Glu Thr Gln Arg Lys Arg Phe Ala Ile Lys Ser
100 105 110
Gly Ser Ser Thr Ala Gly Ile Ala Asp Ile His Ser Ser Pro Ser Lys
115 120 125
Val Pro Val Tyr Leu Leu Arg Val Thr Ile Ser Ser Thr Cys Asp Cys
130 135 140
Leu Leu Thr Ser Cys Val Ile Leu Trp Phe Gln Ala Asn Phe Ser Phe
145 150 155 160
His Tyr Ala Asp Pro His Phe Gly Gly Leu Met Pro Ala Ala Tyr Leu
165 170 175
Pro Gln Ala Thr Ile Trp Asn Pro Gln Met Thr Arg Val Pro Leu Pro
180 185 190
Phe Asp Leu Ile Glu Asn Glu Pro Val Phe Val Asn Ala Lys Gln Phe
195 200 205
His Ala Ile Met Arg Arg Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln
210 215 220
Asn Lys Leu Ile Lys Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His
225 230 235 240
Val His Ala Leu Lys Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn
245 250 255
Thr Lys Lys Leu Gln Glu Ser Thr Asp Pro Lys Gln Asp Met Pro Ile
260 265 270
Gln Gln Gln His Ala Thr Gly Asn Met Ser Arg Phe Val Leu Tyr Gln
275 280 285
Leu Gln Asn Ser Asn Asp Cys Asp Cys Ser Thr Thr Ser Arg Ser Asp
290 295 300
Ile Thr Ser Ala Ser Asp Ser Val Asn Leu Phe Gly His Ser Glu Phe
305 310 315 320
Leu Ile Ser Asp Cys Pro Ser Gln Thr Asn Pro Thr Met Tyr Val His
325 330 335
Gly Gln Ser Asn Asp Met His Gly Gly Arg Asn Thr His His Phe Ser
340 345 350
Val His Ile
355
186
271
PRT
Arabidopsis thaliana
misc_feature
gi 2398521
186
Met Gln Ser Lys Pro Gly Arg Glu Asn Glu Glu Glu Val Asn Asn His
1 5 10 15
His Ala Val Gln Gln Pro Met Met Tyr Ala Glu Pro Trp Trp Lys Asn
20 25 30
Asn Ser Phe Gly Val Val Pro Gln Ala Arg Pro Ser Gly Ile Pro Ser
35 40 45
Asn Ser Ser Ser Leu Asp Cys Pro Asn Gly Ser Glu Ser Asn Asp Val
50 55 60
His Ser Ala Ser Glu Asp Gly Ala Leu Asn Gly Glu Asn Asp Gly Thr
65 70 75 80
Trp Lys Asp Ser Gln Ala Ala Thr Ser Ser Arg Ser Asp Asn His Gly
85 90 95
Met Glu Gly Asn Asp Pro Ala Leu Ser Ile Arg Asn Met His Asp Gln
100 105 110
Pro Leu Val Gln Pro Pro Glu Leu Val Gly His Tyr Ile Ala Cys Val
115 120 125
Pro Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly Leu Met Gly Ala Tyr
130 135 140
Gly His Gln Gln Leu Gly Phe Arg Pro Tyr Leu Gly Met Pro Arg Glu
145 150 155 160
Arg Thr Ala Leu Pro Leu Asp Met Ala Gln Glu Pro Val Tyr Val Asn
165 170 175
Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg Arg Lys Ala Arg Ala Lys
180 185 190
Ala Glu Leu Glu Arg Lys Val Ile Arg Asp Arg Lys Pro Tyr Leu His
195 200 205
Glu Ser Arg His Lys His Ala Met Arg Arg Ala Arg Ala Ser Gly Gly
210 215 220
Arg Phe Ala Lys Lys Ser Glu Val Glu Ala Gly Glu Asp Ala Gly Gly
225 230 235 240
Arg Asp Arg Glu Arg Gly Ser Ala Thr Asn Ser Ser Gly Ser Glu Gln
245 250 255
Val Glu Thr Asp Ser Asn Glu Thr Leu Asn Ser Ser Gly Ala Pro
260 265 270
187
315
PRT
Brassica napus
misc_feature
gi 1586551
187
Met Ile Ser Leu Thr Val Thr Thr Pro Ser Leu Arg Met Glu Thr Glu
1 5 10 15
Asp Met His Ser Lys Ser Glu Ser Gly Asn Gln Ile Val Ser Glu Ala
20 25 30
His His His Thr Ser Ser Thr Ser Ile Asn Ser Leu Asn Pro Trp Leu
35 40 45
Arg Ala Ala Ala Ser Cys Asn Ala Asn Ser Ser Val Glu Glu Ala Gly
50 55 60
Asp Lys Ser Ile Ala Leu Glu Asn Gln Thr Asn Leu Glu Ser Ser Asn
65 70 75 80
Gly Ser Lys Ser Pro Ser Asn Arg Asp Glu Asn Gly Asn Lys Glu Ser
85 90 95
Gln Val Thr Ala Ser Pro Gln Gln Ser Ala Ala Asp Tyr Ser Glu Lys
100 105 110
Ser Gln Glu Leu Val His Pro Gly Ser Thr Pro Pro Pro His Pro Gln
115 120 125
Leu Val Ser His Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln Asp
130 135 140
Ser Tyr Tyr Ala Gly Met Met Gly Ala Tyr Pro Leu Thr Tyr Val Pro
145 150 155 160
His Gly Gly Met Pro His Ser Arg Met Gln Leu Pro Pro Glu Met Ala
165 170 175
Gln Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr Gln Ala Ile Met Arg
180 185 190
Arg Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys
195 200 205
Ser Arg Lys Arg Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg
210 215 220
Arg Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asn Thr Glu
225 230 235 240
Ala Ser Gln Gln Lys Asp Gly Glu Lys Arg Asn Ala Cys Ala Thr Gln
245 250 255
Ser Pro Thr Ser Ser His Ser Asp Gln His Glu Gly Cys Ser Asp Glu
260 265 270
Tyr Arg Thr Asn Gln Ser Asp Glu Met Gln Ser Ser Ala Tyr Lys Ile
275 280 285
Arg Glu Glu Ala Asp Cys Ser Gly Gln Gln Trp Asn Asn Ile Ser Ser
290 295 300
Asn His Pro Ser Gln Pro Leu Leu Ala Ile Lys
305 310 315
188
295
PRT
Arabidopsis thaliana
misc_feature
gi 6714441
188
Met Ala Met Gln Thr Val Arg Glu Gly Leu Phe Ser Ala Pro Gln Thr
1 5 10 15
Ser Trp Trp Thr Ala Phe Gly Ser Gln Pro Leu Ala Pro Glu Ser Leu
20 25 30
Ala Gly Asp Ser Asp Ser Phe Ala Gly Val Lys Val Gly Ser Val Gly
35 40 45
Glu Thr Gly Gln Arg Val Asp Lys Gln Ser Asn Ser Ala Thr His Leu
50 55 60
Ala Phe Ser Leu Gly Asp Val Lys Ser Pro Arg Leu Val Pro Lys Pro
65 70 75 80
His Gly Ala Thr Phe Ser Met Gln Ser Pro Cys Leu Glu Leu Gly Phe
85 90 95
Ser Gln Pro Pro Ile Tyr Thr Lys Tyr Pro Tyr Gly Glu Gln Gln Tyr
100 105 110
Tyr Gly Val Val Ser Ala Tyr Gly Ser Gln Ser Arg Val Met Leu Pro
115 120 125
Leu Asn Met Glu Thr Glu Asp Ser Thr Ile Tyr Val Asn Ser Lys Gln
130 135 140
Tyr His Gly Ile Ile Arg Arg Arg Gln Ser Arg Ala Lys Ala Ala Ala
145 150 155 160
Val Leu Asp Gln Lys Lys Leu Ser Ser Arg Cys Arg Lys Pro Tyr Met
165 170 175
His His Ser Arg His Leu His Ala Leu Arg Arg Pro Arg Gly Ser Gly
180 185 190
Gly Arg Phe Leu Asn Thr Lys Ser Gln Asn Leu Glu Asn Ser Gly Thr
195 200 205
Asn Ala Lys Lys Gly Asp Gly Ser Met Gln Ile Gln Ser Gln Pro Lys
210 215 220
Pro Gln Gln Ser Asn Ser Gln Asn Ser Glu Val Val His Pro Glu Asn
225 230 235 240
Gly Thr Met Asn Leu Ser Asn Gly Leu Asn Val Ser Gly Ser Glu Val
245 250 255
Thr Ser Met Asn Tyr Phe Leu Ser Ser Pro Val His Ser Leu Gly Gly
260 265 270
Met Val Met Pro Ser Lys Trp Ile Ala Ala Ala Ala Ala Met Asp Asn
275 280 285
Gly Cys Cys Asn Phe Lys Thr
290 295
189
205
PRT
Oryza sativa
misc_feature
gi 5257260
189
Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro Pro Pro Pro Pro Val
1 5 10 15
Leu Gly Ala Pro Val Pro Tyr Pro Pro Ala Gly Ala Tyr Pro Pro Pro
20 25 30
Val Gly Pro Tyr Ala His Ala Pro Pro Leu Tyr Ala Pro Pro Pro Pro
35 40 45
Ala Ala Ala Ala Ala Ser Ala Ala Ala Thr Ala Ala Ser Gln Gln Ala
50 55 60
Ala Ala Ala Gln Leu Gln Asn Phe Trp Ala Glu Gln Tyr Arg Glu Ile
65 70 75 80
Glu His Thr Thr Asp Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile
85 90 95
Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu
100 105 110
Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu
115 120 125
Thr His Arg Gly Trp Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu
130 135 140
Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala Arg Thr Glu Val Phe Asp
145 150 155 160
Phe Leu Val Asp Ile Val Pro Arg Asp Glu Ala Lys Asp Ala Glu Ala
165 170 175
Ala Ala Ala Val Ala Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro
180 185 190
Ala Thr Asp Pro Met Ala Tyr Tyr Tyr Val Gln Pro Gln
195 200 205
190
234
PRT
Arabidopsis thaliana
misc_feature
gi 6523090
190
Met Asp Thr Asn Asn Gln Gln Pro Pro Pro Ser Ala Ala Gly Ile Pro
1 5 10 15
Pro Pro Pro Pro Gly Thr Thr Ile Ser Ala Ala Gly Gly Gly Ala Ser
20 25 30
Tyr His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Leu Phe Trp
35 40 45
Thr Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His
50 55 60
Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp
65 70 75 80
Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys
85 90 95
Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu
100 105 110
Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile
115 120 125
Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Asp
130 135 140
Glu Ile Lys Asp Glu Ala Ala Val Leu Gly Gly Gly Met Val Val Ala
145 150 155 160
Pro Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro
165 170 175
Ala Gly Pro Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro Asn
180 185 190
Gly Val Tyr Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln
195 200 205
Thr Ser Thr Gly Thr Gly Asp Asp Val Ser Tyr Gly Ser Gly Gly Ser
210 215 220
Ser Gly Gln Gly Asn Leu Asp Gly Gln Gly
225 230
191
217
PRT
Arabidopsis thaliana
misc_feature
gi 3776575
191
Met Asp Gln Gln Gly Gln Ser Ser Ala Met Asn Tyr Gly Ser Asn Pro
1 5 10 15
Tyr Gln Thr Asn Ala Met Thr Thr Thr Pro Thr Gly Ser Asp His Pro
20 25 30
Ala Tyr His Gln Ile His Gln Gln Gln Gln Gln Gln Leu Thr Gln Gln
35 40 45
Leu Gln Ser Phe Trp Glu Thr Gln Phe Lys Glu Ile Glu Lys Thr Thr
50 55 60
Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met
65 70 75 80
Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val
85 90 95
Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser
100 105 110
Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp
115 120 125
Ile Ala Ala Ala Val Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp
130 135 140
Ile Val Pro Arg Glu Asp Leu Arg Asp Glu Val Leu Gly Gly Val Gly
145 150 155 160
Ala Glu Ala Ala Thr Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Pro
165 170 175
Gly Thr Ala Pro Ile Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly
180 185 190
Ala Tyr Pro Pro Asn Pro Tyr Met Gly Gln Pro Met Trp Gln Gln Pro
195 200 205
Gly Pro Glu Gln Gln Asp Pro Asp Asn
210 215
192
231
PRT
Arabidopsis thaliana
misc_feature
gi 6289057
192
Met Asp Gln Gln Asp His Gly Gln Ser Gly Ala Met Asn Tyr Gly Thr
1 5 10 15
Asn Pro Tyr Gln Thr Asn Pro Met Ser Thr Thr Ala Ala Thr Val Ala
20 25 30
Gly Gly Ala Ala Gln Pro Gly Gln Leu Ala Phe His Gln Ile His Gln
35 40 45
Gln Gln Gln Gln Gln Gln Leu Ala Gln Gln Leu Gln Ala Phe Trp Glu
50 55 60
Asn Gln Phe Lys Glu Ile Glu Lys Thr Thr Asp Phe Lys Lys His Ser
65 70 75 80
Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val
85 90 95
Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu
100 105 110
Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu
115 120 125
Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr
130 135 140
Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Asp
145 150 155 160
Leu Arg Asp Glu Val Leu Gly Ser Ile Pro Arg Gly Thr Val Pro Glu
165 170 175
Ala Ala Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Ala Gly Thr Ala
180 185 190
Pro Ile Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly Gly Ala Tyr
195 200 205
Pro Pro Asn Pro Tyr Met Gly Gln Pro Met Trp Gln Gln Gln Ala Pro
210 215 220
Asp Gln Pro Asp Gln Glu Asn
225 230
193
137
PRT
Arabidopsis thaliana
misc_feature
gi 6056368
193
Met Gln Glu Ile Glu His Thr Thr Asp Phe Lys Asn His Thr Leu Pro
1 5 10 15
Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met
20 25 30
Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe
35 40 45
Ile Leu Glu Leu Thr Leu Arg Ala Trp Ile His Thr Glu Glu Asn Lys
50 55 60
Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Thr
65 70 75 80
Asp Val Phe Asp Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys
85 90 95
Glu Glu Gly Leu Gly Val Thr Lys Gly Thr Ile Pro Ser Val Val Gly
100 105 110
Ser Pro Pro Tyr Tyr Tyr Leu Gln Gln Gln Gly Met Met Gln His Trp
115 120 125
Pro Gln Glu Gln His Pro Asp Glu Ser
130 135
194
250
PRT
Arabidopsis thaliana
misc_feature
gi 9758288
194
Met Asp Asn Asn Asn Asn Asn Asn Asn Gln Gln Pro Pro Pro Thr Ser
1 5 10 15
Val Tyr Pro Pro Gly Ser Ala Val Thr Thr Val Ile Pro Pro Pro Pro
20 25 30
Ser Gly Ser Ala Ser Ile Val Thr Gly Gly Gly Ala Thr Tyr His His
35 40 45
Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe Trp Thr Tyr Gln
50 55 60
Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His Gln Leu Pro
65 70 75 80
Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met
85 90 95
Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu Leu Phe
100 105 110
Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu Asn Lys
115 120 125
Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr
130 135 140
Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Glu Ile Lys
145 150 155 160
Glu Glu Glu Asp Ala Ala Ser Ala Leu Gly Gly Gly Gly Met Val Ala
165 170 175
Pro Ala Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro
180 185 190
Ala Val Pro Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro Ser
195 200 205
Gly Val Tyr Ala Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln
210 215 220
Asn Ser Ala Gly Gly Gly Asp Asp Val Ser Tyr Gly Ser Gly Gly Ser
225 230 235 240
Ser Gly His Gly Asn Leu Asp Ser Gln Gly
245 250
195
208
PRT
Arabidopsis thaliana
misc_feature
gi 6552738
195
Met Thr Ser Ser Val Val Val Ala Gly Ala Gly Asp Lys Asn Asn Gly
1 5 10 15
Ile Val Val Gln Gln Gln Pro Pro Cys Val Ala Arg Glu Gln Asp Gln
20 25 30
Tyr Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Lys Thr Leu Pro
35 40 45
Ser His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile Gln Glu Cys
50 55 60
Val Ser Glu Tyr Ile Ser Phe Val Thr Gly Glu Ala Asn Glu Arg Cys
65 70 75 80
Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Ile Leu Trp Ala
85 90 95
Met Ser Lys Leu Gly Phe Asp Asn Tyr Val Asp Pro Leu Thr Val Phe
100 105 110
Ile Asn Arg Tyr Arg Glu Ile Glu Thr Asp Arg Gly Ser Ala Leu Arg
115 120 125
Gly Glu Pro Pro Ser Leu Arg Gln Thr Tyr Gly Gly Asn Gly Ile Gly
130 135 140
Phe His Gly Pro Ser His Gly Leu Pro Pro Pro Gly Pro Tyr Gly Tyr
145 150 155 160
Gly Met Leu Asp Gln Ser Met Val Met Gly Gly Gly Arg Tyr Tyr Gln
165 170 175
Asn Gly Ser Ser Gly Gln Asp Glu Ser Ser Val Gly Gly Gly Ser Ser
180 185 190
Ser Ser Ile Asn Gly Met Pro Ala Phe Asp His Tyr Gly Gln Tyr Lys
195 200 205
196
205
PRT
Arabidopsis thaliana
misc_feature
gi 9758795
196
Met Ala Glu Gly Ser Met Arg Pro Pro Glu Phe Asn Gln Pro Asn Lys
1 5 10 15
Thr Ser Asn Gly Gly Glu Glu Glu Cys Thr Val Arg Glu Gln Asp Arg
20 25 30
Phe Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Arg Ile Leu Pro
35 40 45
Ala His Ala Lys Ile Ser Asp Asp Ser Lys Glu Thr Ile Gln Glu Cys
50 55 60
Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn Glu Arg Cys
65 70 75 80
Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Val Leu Trp Ala
85 90 95
Met Ser Lys Leu Gly Phe Asp Asp Tyr Ile Glu Pro Leu Thr Leu Tyr
100 105 110
Leu His Arg Tyr Arg Glu Leu Glu Gly Glu Arg Gly Val Ser Cys Ser
115 120 125
Ala Gly Ser Val Ser Met Thr Asn Gly Leu Val Val Lys Arg Pro Asn
130 135 140
Gly Thr Met Thr Glu Tyr Gly Ala Tyr Gly Pro Val Pro Gly Ile His
145 150 155 160
Met Ala Gln Tyr His Tyr Arg His Gln Asn Gly Phe Val Phe Ser Gly
165 170 175
Asn Glu Pro Asn Ser Lys Met Ser Gly Ser Ser Ser Gly Ala Ser Gly
180 185 190
Ala Arg Val Glu Val Phe Pro Thr Gln Gln His Lys Tyr
195 200 205
197
178
PRT
Zea mays
misc_feature
gi 22380
197
Met Ala Glu Ala Pro Ala Ser Pro Gly Gly Gly Gly Gly Ser His Glu
1 5 10 15
Ser Gly Ser Pro Arg Gly Gly Gly Gly Gly Gly Ser Val Arg Glu Gln
20 25 30
Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala
35 40 45
Ile Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln
50 55 60
Glu Cys Val Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu Ala Ser Asp
65 70 75 80
Lys Cys Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu
85 90 95
Trp Ala Met Ala Thr Leu Gly Phe Glu Asp Tyr Ile Glu Pro Leu Lys
100 105 110
Val Tyr Leu Gln Lys Tyr Arg Glu Met Glu Gly Asp Ser Lys Leu Thr
115 120 125
Ala Lys Ser Ser Asp Gly Ser Ile Lys Lys Asp Ala Leu Gly His Val
130 135 140
Gly Ala Ser Ser Ser Ala Ala Glu Gly Met Gly Gln Gln Gly Ala Tyr
145 150 155 160
Asn Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His Asn Gly Asp Ile
165 170 175
Ser Asn
198
228
PRT
Arabidopsis thaliana
misc_feature
gi 6729485
198
Met Ala Glu Ser Gln Thr Gly Gly Gly Gly Gly Gly Ser His Glu Ser
1 5 10 15
Gly Gly Asp Gln Ser Pro Arg Ser Leu Asn Val Arg Glu Gln Asp Arg
20 25 30
Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Arg Gly Leu Pro
35 40 45
Leu Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Met Gln Glu Cys
50 55 60
Val Ser Glu Phe Ile Ser Phe Val Thr Ser Glu Ala Ser Asp Lys Cys
65 70 75 80
Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala
85 90 95
Met Ala Thr Leu Gly Phe Glu Asp Tyr Ile Asp Pro Leu Lys Val Tyr
100 105 110
Leu Met Arg Tyr Arg Glu Met Glu Gly Asp Thr Lys Gly Ser Gly Lys
115 120 125
Gly Gly Glu Ser Ser Ala Lys Arg Asp Gly Gln Pro Ser Gln Val Ser
130 135 140
Gln Phe Ser Gln Val Pro Gln Gln Gly Ser Phe Ser Gln Gly Pro Tyr
145 150 155 160
Gly Asn Ser Gln Ser Leu Arg Phe Gly Asn Ser Ile Glu His Leu Glu
165 170 175
Val Leu Met Ser Ser Thr Arg Thr Leu Phe Ile Thr Ile Phe Arg Asp
180 185 190
Ser Thr Met Pro Val Val Ser Glu Asn Leu Ser Asp Pro Leu Ser Ile
195 200 205
Asp Met Asp Cys Glu Ala Ile Tyr His His Phe Ile Gly Leu Leu Ile
210 215 220
Leu Ser Cys Lys
225
199
161
PRT
Arabidopsis thaliana
misc_feature
gi 2244810
199
Met Ala Asp Ser Asp Asn Asp Ser Gly Gly His Lys Asp Gly Gly Asn
1 5 10 15
Ala Ser Thr Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala Asn Val Ser
20 25 30
Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile Ser Lys Asp
35 40 45
Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Ile
50 55 60
Thr Gly Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys Thr Ile
65 70 75 80
Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly Phe Glu Asp
85 90 95
Tyr Val Glu Pro Leu Lys Val Tyr Leu Gln Lys Tyr Arg Glu Val Glu
100 105 110
Gly Glu Lys Thr Thr Thr Ala Gly Arg Gln Gly Asp Lys Glu Gly Gly
115 120 125
Gly Gly Gly Gly Gly Ala Gly Ser Gly Ser Gly Gly Ala Pro Met Tyr
130 135 140
Gly Gly Gly Met Val Thr Thr Met Gly His Gln Phe Ser His His Phe
145 150 155 160
Ser
200
187
PRT
Arabidopsis thaliana
misc_feature
gi 2398529
200
Arg Asp Arg Asp Ser Gly Gly Gly Gln Asn Gly Asn Asn Gln Asn Gly
1 5 10 15
Gln Ser Ser Leu Ser Pro Arg Glu Gln Asp Arg Phe Leu Pro Ile Ala
20 25 30
Asn Val Ser Arg Ile Met Lys Lys Ala Leu Pro Ala Asn Ala Lys Ile
35 40 45
Ser Lys Asp Ala Lys Glu Thr Met Gln Glu Cys Val Ser Glu Phe Ile
50 55 60
Ser Phe Val Thr Gly Glu Ala Ser Asp Lys Cys Gln Lys Glu Lys Arg
65 70 75 80
Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr Thr Leu Gly
85 90 95
Phe Glu Asp Tyr Val Glu Pro Leu Lys Val Tyr Leu Gln Arg Phe Arg
100 105 110
Glu Ile Glu Gly Glu Arg Thr Gly Leu Gly Arg Pro Gln Thr Gly Gly
115 120 125
Glu Val Gly Glu His Gln Arg Asp Ala Val Gly Asp Gly Gly Gly Phe
130 135 140
Tyr Gly Gly Gly Gly Gly Met Gln Tyr His Gln His His Gln Phe Leu
145 150 155 160
His Gln Gln Asn His Met Tyr Gly Ala Thr Gly Gly Gly Ser Asp Ser
165 170 175
Gly Gly Gly Ala Ala Ser Gly Arg Thr Arg Thr
180 185
201
160
PRT
Arabidopsis thaliana
misc_feature
gi 3738293
201
Met Ala Gly Asn Tyr His Ser Phe Gln Asn Pro Ile Pro Arg Tyr Gln
1 5 10 15
Asn Tyr Asn Phe Gly Ser Ser Ser Ser Asn His Gln His Glu His Asp
20 25 30
Gly Leu Val Val Val Val Glu Asp Gln Gln Gln Glu Glu Ser Met Met
35 40 45
Val Lys Glu Gln Asp Arg Leu Leu Pro Ile Ala Asn Val Gly Arg Ile
50 55 60
Met Lys Asn Ile Leu Pro Ala Asn Ala Lys Val Ser Lys Glu Ala Lys
65 70 75 80
Glu Thr Met Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Val Thr Gly
85 90 95
Glu Ala Ser Asp Lys Cys His Lys Glu Lys Arg Lys Thr Val Asn Gly
100 105 110
Asp Asp Ile Cys Trp Ala Met Ala Asn Leu Gly Phe Asp Asp Tyr Ala
115 120 125
Ala Gln Leu Lys Lys Tyr Leu His Arg Tyr Arg Val Leu Glu Gly Glu
130 135 140
Lys Pro Asn His His Gly Lys Gly Gly Pro Lys Ser Ser Pro Asp Asn
145 150 155 160
202
308
PRT
Arabidopsis thaliana
misc_feature
gi 4587559
202
Met Gln Val Phe Gln Arg Lys Glu Asp Ser Ser Trp Gly Asn Ser Met
1 5 10 15
Pro Thr Thr Asn Ser Asn Ile Gln Gly Ser Glu Ser Phe Ser Leu Thr
20 25 30
Lys Asp Met Ile Met Ser Thr Thr Gln Leu Pro Ala Met Lys His Ser
35 40 45
Gly Leu Gln Leu Gln Asn Gln Asp Ser Thr Ser Ser Gln Ser Thr Glu
50 55 60
Glu Glu Ser Gly Gly Gly Glu Val Ala Ser Phe Gly Glu Tyr Lys Arg
65 70 75 80
Tyr Gly Cys Ser Ile Val Asn Asn Asn Leu Ser Gly Tyr Ile Glu Asn
85 90 95
Leu Gly Lys Pro Ile Glu Asn Tyr Thr Lys Ser Ile Thr Thr Ser Ser
100 105 110
Met Val Ser Gln Asp Ser Val Phe Pro Ala Pro Thr Ser Gly Gln Ile
115 120 125
Ser Trp Ser Leu Gln Cys Ala Glu Thr Ser His Phe Asn Gly Phe Leu
130 135 140
Ala Pro Glu Tyr Ala Ser Thr Pro Thr Ala Leu Pro His Leu Glu Met
145 150 155 160
Met Gly Leu Val Ser Ser Arg Val Pro Leu Pro His His Ile Gln Glu
165 170 175
Asn Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg
180 185 190
Arg Arg Lys His Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys
195 200 205
Cys Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Leu Lys
210 215 220
Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Gln
225 230 235 240
Glu Ser Ser Asn Ser Leu Cys Ser Ser Gln Met Ala Asn Gly Gln Asn
245 250 255
Phe Ser Met Ser Pro His Gly Gly Gly Ser Gly Ile Gly Ser Ser Ser
260 265 270
Ile Ser Pro Ser Ser Asn Ser Asn Cys Ile Asn Met Phe Gln Asn Pro
275 280 285
Gln Phe Arg Phe Ser Gly Tyr Pro Ser Thr His His Ala Ser Ala Leu
290 295 300
Met Ser Gly Thr
305
203
25
DNA
synthetic construct
203
acagtacagt acagtacagt acagt 25
204
25
DNA
synthetic construct
204
actgtactgt actgtacgtg actgt 25
205
765
DNA
Oryza sativa
205
atggaggccg gctacccggg cgcggcggcg aacggcgctg ccgccgacgg gaacggtggc 60
gcgcagcagg cggcggccgc gccggctata cgtgagcagg accggctgat gccgatcgcg 120
aacgtgatcc gcatcatgcg ccgcgtgctc ccggcgcacg ccaagatctc ggacgacgcc 180
aaggagacga tccaggagtg cgtgtcggag tacatcagct tcatcaccgg ggaggccaac 240
gagcggtgcc agcgcgagca gcgcaagacc atcaccgccg aggacgtgct ctgggccatg 300
agccgcctcg gcttcgacga ctacgtcgag cccctcggcg tctacctcca ccgctaccgc 360
gagttcgagg gggagtcccg cggcgtcggc gtcggcgtcg gcgccgcgcg cggcgaccac 420
caccatggtc acgtcggtgg gatgctcaag tcccgcgcgc agggctccat ggtgacgcac 480
cacgacatgc agatgcacgc ggccatgtac ggtggcggcg cggtgccgcc gccgccgcat 540
cctcctccgc accaccacgc gttccaccag ctcatgccgc cgcaccacgg ccagtacgcg 600
ccgccgtacg acatgtacgg cggcgagcac gggatggcgg cgtactacgg cgggatgtac 660
gcgcccggca gcggcggcga cgggagcggc agcagcggca gcggtggcgc cggcacgccg 720
cagaccgtca acttcgagca ccagcatccg ttcggataca agtag 765
206
254
PRT
Oryza sativa
206
Met Glu Ala Gly Tyr Pro Gly Ala Ala Ala Asn Gly Ala Ala Ala Asp
1 5 10 15
Gly Asn Gly Gly Ala Gln Gln Ala Ala Ala Ala Pro Ala Ile Arg Glu
20 25 30
Gln Asp Arg Leu Met Pro Ile Ala Asn Val Ile Arg Ile Met Arg Arg
35 40 45
Val Leu Pro Ala His Ala Lys Ile Ser Asp Asp Ala Lys Glu Thr Ile
50 55 60
Gln Glu Cys Val Ser Glu Tyr Ile Ser Phe Ile Thr Gly Glu Ala Asn
65 70 75 80
Glu Arg Cys Gln Arg Glu Gln Arg Lys Thr Ile Thr Ala Glu Asp Val
85 90 95
Leu Trp Ala Met Ser Arg Leu Gly Phe Asp Asp Tyr Val Glu Pro Leu
100 105 110
Gly Val Tyr Leu His Arg Tyr Arg Glu Phe Glu Gly Glu Ser Arg Gly
115 120 125
Val Gly Val Gly Val Gly Ala Ala Arg Gly Asp His His His Gly His
130 135 140
Val Gly Gly Met Leu Lys Ser Arg Ala Gln Gly Ser Met Val Thr His
145 150 155 160
His Asp Met Gln Met His Ala Ala Met Tyr Gly Gly Gly Ala Val Pro
165 170 175
Pro Pro Pro His Pro Pro Pro His His His Ala Phe His Gln Leu Met
180 185 190
Pro Pro His His Gly Gln Tyr Ala Pro Pro Tyr Asp Met Tyr Gly Gly
195 200 205
Glu His Gly Met Ala Ala Tyr Tyr Gly Gly Met Tyr Ala Pro Gly Ser
210 215 220
Gly Gly Asp Gly Ser Gly Ser Ser Gly Ser Gly Gly Ala Gly Thr Pro
225 230 235 240
Gln Thr Val Asn Phe Glu His Gln His Pro Phe Gly Tyr Lys
245 250
207
1499
DNA
Catalpa speciosa
207
gcacgaggtg ctctttaaaa ttcacaagta catctgacct ctacatcaac acacattgac 60
tctaaattct ctctctaaat tctgtcaacc cccaaattct agggttttgt tttaattgtc 120
atcagatttc gccttaacag gacacattgg ttgatttctt tggagaaatt aggggagcat 180
gcaatccaag tcccagagcg gcaaccaagg agaatccaac ctttataatg ttcctaactc 240
caaagtaaat ccggattctt ggtggaataa tactggatat aattcctttt cctcaacaat 300
gatgggtgga aatgcatcag attcatcatc cctagaacaa tctgtggatg gacagtcgca 360
gtctaaaggt ggtataaatg aggaagatga tgatactacc aaacgatcac caagtagtac 420
acctctgctg ccagatagaa actataggca ggagggtccg agtctccagc aagctccacc 480
taccatacat ccaagaaaca atgggatcgt taatcaggcc ccacagcttg agcttggtgg 540
gcattcagta gcttgtgggt caaatcctta tgatccatat tacggaggaa tgatggcagc 600
ttatggccag ccattggttc ctcctcattt atatgatatg catcatgcaa ggatggcact 660
gcccctggag atgactcaag agcctgtata tgtgaatgcc aagcagtacc atggcattct 720
gcggaggcgg cagtctcgtg ctaaagctga gcttgaaaag aagttaataa aagttcggaa 780
gccttatctc catgagtctc gacaccaaca tgccttaagg agggcaaggg ggactggagg 840
acgatttgca aagaagtccg atgcagatac ttccaagggg actggacccg gctcatccat 900
cccatcgcag cttattagct catcacgagg ttctgagcca gtgcctgagg ctcagaattt 960
gtacaacgct gatgatggca attttagaag gcaaaccaac ttgcaggaac cggcacttca 1020
gttgggcaag acaggtgaag ggcccacttc aagtcacaag tggggaaata caacctcgaa 1080
ccatgcactt gctatgcagt aaagtcatac ttattggaag gtacaaatgc tggttacttg 1140
tttaaatctt ggctttccca agctgagcgg caattcattc ttggctgttt ctattttatc 1200
tcgtggagga ggaaggatga gagtctttgt ttcttagctt ctcttaatgt ctattgttct 1260
tcccttgtgt acaaaatgtc ttttagcatt agaggcaaag tttgagttag gacaagacaa 1320
ccgaagtttg ggtagggaaa acttggttta taacttaaga ttcttgtaaa gttccgcaag 1380
gagtcgcatg catgtgtttg ctacttacat ttgttgcact ttcgaattgt gaacccaaaa 1440
gcatcaatgg tgtttgaata gaacttttaa aagccaaaaa aaaaaaaaaa aaaaaaaaa 1499
208
307
PRT
Catalpa speciosa
208
Met Gln Ser Lys Ser Gln Ser Gly Asn Gln Gly Glu Ser Asn Leu Tyr
1 5 10 15
Asn Val Pro Asn Ser Lys Val Asn Pro Asp Ser Trp Trp Asn Asn Thr
20 25 30
Gly Tyr Asn Ser Phe Ser Ser Thr Met Met Gly Gly Asn Ala Ser Asp
35 40 45
Ser Ser Ser Leu Glu Gln Ser Val Asp Gly Gln Ser Gln Ser Lys Gly
50 55 60
Gly Ile Asn Glu Glu Asp Asp Asp Thr Thr Lys Arg Ser Pro Ser Ser
65 70 75 80
Thr Pro Leu Leu Pro Asp Arg Asn Tyr Arg Gln Glu Gly Pro Ser Leu
85 90 95
Gln Gln Ala Pro Pro Thr Ile His Pro Arg Asn Asn Gly Ile Val Asn
100 105 110
Gln Ala Pro Gln Leu Glu Leu Gly Gly His Ser Val Ala Cys Gly Ser
115 120 125
Asn Pro Tyr Asp Pro Tyr Tyr Gly Gly Met Met Ala Ala Tyr Gly Gln
130 135 140
Pro Leu Val Pro Pro His Leu Tyr Asp Met His His Ala Arg Met Ala
145 150 155 160
Leu Pro Leu Glu Met Thr Gln Glu Pro Val Tyr Val Asn Ala Lys Gln
165 170 175
Tyr His Gly Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu
180 185 190
Glu Lys Lys Leu Ile Lys Val Arg Lys Pro Tyr Leu His Glu Ser Arg
195 200 205
His Gln His Ala Leu Arg Arg Ala Arg Gly Thr Gly Gly Arg Phe Ala
210 215 220
Lys Lys Ser Asp Ala Asp Thr Ser Lys Gly Thr Gly Pro Gly Ser Ser
225 230 235 240
Ile Pro Ser Gln Leu Ile Ser Ser Ser Arg Gly Ser Glu Pro Val Pro
245 250 255
Glu Ala Gln Asn Leu Tyr Asn Ala Asp Asp Gly Asn Phe Arg Arg Gln
260 265 270
Thr Asn Leu Gln Glu Pro Ala Leu Gln Leu Gly Lys Thr Gly Glu Gly
275 280 285
Pro Thr Ser Ser His Lys Trp Gly Asn Thr Thr Ser Asn His Ala Leu
290 295 300
Ala Met Gln
305
209
1626
DNA
Zea mays
209
ccacgcgtcc gcgatcagcg tcagttacca cgacgaccga tcttgctcgc cagcgagagc 60
gacccctccc ctccctactt cccatgctga tctcggcgcg cttctcttcc tcctccccca 120
gagccgggca ctgatttccc ttggctgctg ctgctggatt ctttggtgtt ccatcaggcc 180
aaggatcccg caaagagctc cggagccaag cctgctgcag ccgtcgcgtc gggtgaggca 240
ggcttcagct tcagtctcct actcgacgag gcaagcggat cggagcgggc ctccgctccg 300
ccatgatgag cttcaagggc cacgaggggt ttggccaggt ggccgccgcc ggtgccggga 360
gccaggctgc ctcccatggt ggagcaggcc cgctgccatg gtgggcgggg ccccagctgc 420
tgttcggcga gccggcgccc ccgtcaccgg aggagacgcg ccgggacgcc cagttccagg 480
tcgtgccggg ggttcagggc acgccggatc cagcgccgcc caagacaggg acacctgagg 540
tcctcaaatt ctctgtcttt caagggaatt tggagtcggg tggtaaagga gagaaaaccc 600
caaagaactc taccactatt gctcttcagt caccgttccc agaatacaat ggccgtttcg 660
agattggtct tggtcaatct atgctggccc cttccaatta tccttgtgct gaccagtgct 720
atggcatgct tgcggcttat ggaatgagat cgatgtctgg tgggagaatg ctgttgccac 780
taaatgcgac agctgatgca cccatctatg tgaatccgaa gcagtacgaa ggcatcctcc 840
gccgtcgccg tgctcgcgcc aaggcggaga gcgagaacag gctcgccaaa ggcagaaagc 900
cctatctcca cgagtcgcgc cacctccacg cgatgcgtcg ggtaagaggc accggcgggc 960
gcttcgtcaa cacgaagaaa gaagggcgtg gcacgggcgt tgcttcgaac gggggcagca 1020
agacggctgc agcggcaccg tcgcgcctcg ccatgccccc tagcttccag agtagcgtcg 1080
ccagcctgtc tggctccgac gtgtcaaaca tgtacagcgg cggcttggag cagcaccttc 1140
gggcgccgca cttcttcacc ccgctgccac ccatcatgga ggacggcgac cacggtggtc 1200
cccccacccg catctcctcc tccttcaagt gggcagccag cgacggctgc tgcgagctcc 1260
tcaaggcgtg aaccgacgag gaggagggga tggctactca gacgaacggc cttctcgccg 1320
atggctggtc gtctgtaggc aaatcattct tggctgttcc gcattggggt gcaacctcat 1380
ccacatcatc tacctaccca gtaggccagt accccctgtt ccctgaacag tgcttgggtt 1440
acaggggtcc tcctgtgtgt gtgatgatgt ggtgtgcctc ccccacatgc atttgctgta 1500
acataatagt gtacccaaac cactgcttcg gactatcatt gtctgtctcg gtatggattc 1560
tctgttgtca cagtgtctga ataattgagg cgtcagactt caaagttaaa aaaaaaaaaa 1620
aaaaaa 1626
210
322
PRT
Zea mays
210
Met Met Ser Phe Lys Gly His Glu Gly Phe Gly Gln Val Ala Ala Ala
1 5 10 15
Gly Ala Gly Ser Gln Ala Ala Ser His Gly Gly Ala Gly Pro Leu Pro
20 25 30
Trp Trp Ala Gly Pro Gln Leu Leu Phe Gly Glu Pro Ala Pro Pro Ser
35 40 45
Pro Glu Glu Thr Arg Arg Asp Ala Gln Phe Gln Val Val Pro Gly Val
50 55 60
Gln Gly Thr Pro Asp Pro Ala Pro Pro Lys Thr Gly Thr Pro Glu Val
65 70 75 80
Leu Lys Phe Ser Val Phe Gln Gly Asn Leu Glu Ser Gly Gly Lys Gly
85 90 95
Glu Lys Thr Pro Lys Asn Ser Thr Thr Ile Ala Leu Gln Ser Pro Phe
100 105 110
Pro Glu Tyr Asn Gly Arg Phe Glu Ile Gly Leu Gly Gln Ser Met Leu
115 120 125
Ala Pro Ser Asn Tyr Pro Cys Ala Asp Gln Cys Tyr Gly Met Leu Ala
130 135 140
Ala Tyr Gly Met Arg Ser Met Ser Gly Gly Arg Met Leu Leu Pro Leu
145 150 155 160
Asn Ala Thr Ala Asp Ala Pro Ile Tyr Val Asn Pro Lys Gln Tyr Glu
165 170 175
Gly Ile Leu Arg Arg Arg Arg Ala Arg Ala Lys Ala Glu Ser Glu Asn
180 185 190
Arg Leu Ala Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu
195 200 205
His Ala Met Arg Arg Val Arg Gly Thr Gly Gly Arg Phe Val Asn Thr
210 215 220
Lys Lys Glu Gly Arg Gly Thr Gly Val Ala Ser Asn Gly Gly Ser Lys
225 230 235 240
Thr Ala Ala Ala Ala Pro Ser Arg Leu Ala Met Pro Pro Ser Phe Gln
245 250 255
Ser Ser Val Ala Ser Leu Ser Gly Ser Asp Val Ser Asn Met Tyr Ser
260 265 270
Gly Gly Leu Glu Gln His Leu Arg Ala Pro His Phe Phe Thr Pro Leu
275 280 285
Pro Pro Ile Met Glu Asp Gly Asp His Gly Gly Pro Pro Thr Arg Ile
290 295 300
Ser Ser Ser Phe Lys Trp Ala Ala Ser Asp Gly Cys Cys Glu Leu Leu
305 310 315 320
Lys Ala
211
1569
DNA
Oryza sativa
211
gcacgaggcg atctttcccc agagagagag agagagagag agagagtctt gattggggga 60
ggagagaggg agagagagaa agagagagga cagaaaatgt ttgtggatct tgagtaatgc 120
cttctaataa tgataatgct gttgcaagaa atggagaatc atcctgtcca atgcatggcc 180
aagaccaact atgattttct tgccaggaat aactatccaa tgaaacagtt agttcagagg 240
aactctgatg gtgactcgtc accaacaaag tctggggagt ctcaccaaga agcatctgca 300
gtaagtgaca gcagtctcaa cggacaacac acctcaccac aatcagtgtt tgtcccctca 360
gatattaaca acaatgatag ttgtggggag cgggaccatg gcactaagtc ggtattgtct 420
ttgggcaaca cagaagctgc ctttcctcct tcaaagttcg attacaacca gccttttgca 480
tgtgtttctt atccatatgg tactgatcca tattatggtg gagtattaac aggatacact 540
tcacatgcat ttgttcatcc tcaaattact ggtgctgcaa actctaggat gccattgcct 600
gttgatcctt ctgtagaaga gcccatattt gtcaatgcaa agcaatacaa tgcgatcctt 660
agaagaaggc aaacgcgtgc aaaattggag gcccaaaata aggcggtgaa aggtcggaag 720
ccttacctcc atgaatctcg acatcatcat gctatgaagc gagcccgtgg atcaggtggt 780
cggyyactta ccaaaaagga gctgctggaa cagcagcagc agcagcagca gcagaagcca 840
ccaccggcat cagctcagtc tccaacaggt agagccagaa cgagcggcgg tgccgttgtc 900
cttggcaaga acctgtgccc agagaacagc acatcctgct cgccatcgac accgacaggc 960
tccgagatct ccagcatctc atttgggggc ggcatgctgg ctcaccaaga gcacatcagc 1020
ttcgcatccg ctgatcgcca ccccacaatg aaccagaacc accgtgtccc cgtcatgagg 1080
tgaaaacctc gggatcgcgg gacacgggcg gttctggttt accctcactg gcgcactccg 1140
gtgtgcccgt ggcaattcat ccttggctta tgaagtatct acctgataat agtctgctgt 1200
cagtttatat gcaatgcaac ctctgtcaga taaactctta tagtttgttt tattgtaagc 1260
tatgactgaa cgaactgtcg agcagatggc taatttgtat gttgtgggta cagaaatcct 1320
gaagcttttg atgtacctaa ttgccttttg cttatactct tggtgtatac ccattaccaa 1380
gttgccttaa aaaccctcca attatgtaat cagtcatggt tttatagaac cttgccacat 1440
gtaatcaatc acctgttttt gtaaattgat ctataaacgc taaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1560
aaaaaaaaa 1569
212
317
PRT
Oryza sativa
212
Met Ile Met Leu Leu Gln Glu Met Glu Asn His Pro Val Gln Cys Met
1 5 10 15
Ala Lys Thr Asn Tyr Asp Phe Leu Ala Arg Asn Asn Tyr Pro Met Lys
20 25 30
Gln Leu Val Gln Arg Asn Ser Asp Gly Asp Ser Ser Pro Thr Lys Ser
35 40 45
Gly Glu Ser His Gln Glu Ala Ser Ala Val Ser Asp Ser Ser Leu Asn
50 55 60
Gly Gln His Thr Ser Pro Gln Ser Val Phe Val Pro Ser Asp Ile Asn
65 70 75 80
Asn Asn Asp Ser Cys Gly Glu Arg Asp His Gly Thr Lys Ser Val Leu
85 90 95
Ser Leu Gly Asn Thr Glu Ala Ala Phe Pro Pro Ser Lys Phe Asp Tyr
100 105 110
Asn Gln Pro Phe Ala Cys Val Ser Tyr Pro Tyr Gly Thr Asp Pro Tyr
115 120 125
Tyr Gly Gly Val Leu Thr Gly Tyr Thr Ser His Ala Phe Val His Pro
130 135 140
Gln Ile Thr Gly Ala Ala Asn Ser Arg Met Pro Leu Pro Val Asp Pro
145 150 155 160
Ser Val Glu Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile
165 170 175
Leu Arg Arg Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala
180 185 190
Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His His His Ala
195 200 205
Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Thr Lys Lys Glu
210 215 220
Leu Leu Glu Gln Gln Gln Gln Gln Gln Gln Gln Lys Pro Pro Pro Ala
225 230 235 240
Ser Ala Gln Ser Pro Thr Gly Arg Ala Arg Thr Ser Gly Gly Ala Val
245 250 255
Val Leu Gly Lys Asn Leu Cys Pro Glu Asn Ser Thr Ser Cys Ser Pro
260 265 270
Ser Thr Pro Thr Gly Ser Glu Ile Ser Ser Ile Ser Phe Gly Gly Gly
275 280 285
Met Leu Ala His Gln Glu His Ile Ser Phe Ala Ser Ala Asp Arg His
290 295 300
Pro Thr Met Asn Gln Asn His Arg Val Pro Val Met Arg
305 310 315
213
1375
DNA
Glycine max
213
gcacgaggag gttgcagact tagaaagaga gagagagaga gaatgggtct catctcaatg 60
caatttaggt tctgaaaacc aaagcttttc ataggaaaag ttgtgctaag atgccaggga 120
aacctgacac tgatgattgg cgtgtagagc gtggggagca gattcagttt cagtcttcca 180
tttactctca tcatcagcct tggtggcgcg gagtggggga aaatgcctcc aaatcatctt 240
cagatgatca gttaaatggt tcaatcgtga atggtatcac gcggtctgag accaatgata 300
agtcaggcgg aggtgttgcc aaagaatacc aaaacatcaa acatgccatg ttgtcaaccc 360
catttaccat ggagaaacat cttgctccaa atccccagat ggaacttgtt ggtcattcag 420
ttgttttaac atctccttat tcagatgcac agtatggtca aatcttgact acttacgggc 480
aacaagttat gataaatcct cagttgtatg gaatgcatca tgctagaatg cctttgccac 540
ttgaaatgga agaggagcct gtttatgtca atgcgaagca gtatcatggt attttgaggc 600
gaagacagtc acgtgctaag gctgagattg aaaagaaagt aatcaaaaac aggaagccat 660
acctccatga atcccgtcac cttcatgcaa tgagaagggc aagaggcaac ggtggtcgct 720
ttctcaacac aaagaagctt gaaaataaca attctaattc cacttcagac aaaggcaaca 780
atactcgtgc aaacgcctca acaaactcgc ctaacactca acttttgttc accaacaatt 840
tgaatctagg ctcatcaaat gtttcacaag ccacagttca gcacatgcac acagagcaga 900
gtttcactat aggttaccat aatggaaatg gtcttacagc actataccgt tcacaagcaa 960
atgggaaaaa ggagggaaac tgctttggta aagagaggga ccctaatggg gatttcaaat 1020
aacacttccc tcagccatac agcaagagtg aagatgaagg gctttatctc atccaacttg 1080
tgatgctgta tagaaggcaa ttcattcttg gcttagttaa gtggtgagac cagtgacatg 1140
gtgtacacta tggccttgtt tggtctctcc cttgcttttg tttctctcta caagtccata 1200
tgtaaaatgg ataacagaaa gaaaaagaaa aatcactttg gtttgagaac tttttaaagt 1260
ttatattaac tgtgttaagg ttcataaaac tgtagactga tttgtgtgac atgctccaca 1320
gaaccttaaa ttttcctcta ttttgtccta aaaaaaaaaa aaaaaaaaaa aaaaa 1375
214
303
PRT
Glycine max
214
Met Pro Gly Lys Pro Asp Thr Asp Asp Trp Arg Val Glu Arg Gly Glu
1 5 10 15
Gln Ile Gln Phe Gln Ser Ser Ile Tyr Ser His His Gln Pro Trp Trp
20 25 30
Arg Gly Val Gly Glu Asn Ala Ser Lys Ser Ser Ser Asp Asp Gln Leu
35 40 45
Asn Gly Ser Ile Val Asn Gly Ile Thr Arg Ser Glu Thr Asn Asp Lys
50 55 60
Ser Gly Gly Gly Val Ala Lys Glu Tyr Gln Asn Ile Lys His Ala Met
65 70 75 80
Leu Ser Thr Pro Phe Thr Met Glu Lys His Leu Ala Pro Asn Pro Gln
85 90 95
Met Glu Leu Val Gly His Ser Val Val Leu Thr Ser Pro Tyr Ser Asp
100 105 110
Ala Gln Tyr Gly Gln Ile Leu Thr Thr Tyr Gly Gln Gln Val Met Ile
115 120 125
Asn Pro Gln Leu Tyr Gly Met His His Ala Arg Met Pro Leu Pro Leu
130 135 140
Glu Met Glu Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly
145 150 155 160
Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Ile Glu Lys Lys
165 170 175
Val Ile Lys Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His
180 185 190
Ala Met Arg Arg Ala Arg Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys
195 200 205
Lys Leu Glu Asn Asn Asn Ser Asn Ser Thr Ser Asp Lys Gly Asn Asn
210 215 220
Thr Arg Ala Asn Ala Ser Thr Asn Ser Pro Asn Thr Gln Leu Leu Phe
225 230 235 240
Thr Asn Asn Leu Asn Leu Gly Ser Ser Asn Val Ser Gln Ala Thr Val
245 250 255
Gln His Met His Thr Glu Gln Ser Phe Thr Ile Gly Tyr His Asn Gly
260 265 270
Asn Gly Leu Thr Ala Leu Tyr Arg Ser Gln Ala Asn Gly Lys Lys Glu
275 280 285
Gly Asn Cys Phe Gly Lys Glu Arg Asp Pro Asn Gly Asp Phe Lys
290 295 300
215
1192
DNA
Triticum aestivum
215
gcacgaggga gtgacgcggt cgaggagggg cgtgcggggg gcagacagag agggagcgca 60
aagggacggc ggaggcaagc tagcttcccg ggggcggacg caccgagaga gggcggcggg 120
agggaggagg cgcgtgggag ccatgcttct cccctcttct tcgtcttcct cctacgatcc 180
caaaggtgac tcctttggga aatcggttga cgatcatatg aggtcaactt tgacttttgg 240
tgataagcat tctgtatttg caagtcaaaa cactgactat ggccacccaa tggcttgcat 300
ttcataccca ttcaatgatt ctggttctgt ttgggcggcc tatgggtcac gggctatgtt 360
ccagcccctc atggcggaag gaggggcatc tgcgaccgca agagttccat tgcctgtcga 420
attagcagcg gatgagccca tatttgtcaa tcccaaacaa tataatggga ttctccggcg 480
aaggcagctg cgcgccaagt tagaggccca gaataaactc acaaaaaaca gaaagcccta 540
cctccacgag tctcgccatc ttcacgcgat gaagcgggca agaggttccg ggggacgttt 600
cctcaattcc aaacagctga agcagcagca gcagcagtct ggcagtgcat gcacgaaggc 660
cattgcggat ggcgcgaatt ccttgggttc aacccatcta cggctaggca gcggcgcagc 720
cggagaccga agcaactcgg cgtccaaggc gatgtcctcc caagagaaca gcaagagagt 780
cgccgccccg gctcccgcct tcaccatgat tcaagcggcg cgcaaagacg acgacttctt 840
ccaccatcac ggccaccatc tcagcttctc cgaccacttc ggccagtcga gcgaccggta 900
tacgtaacaa ggggtcctct gtgccccggt gtggtctggc aactcatcct tggctttatt 960
tctggcgtgt tagggtttca gagatagtgt atctcatagt actactgttg tactgctttg 1020
cacccacata gttctctgct tgatgttcgg catgcaaatg ttggtgtact ggtgcgttgg 1080
gacaaaagtt tgatgtgttt acatgacaat tggtcgcgga actcatcttg tgttctgctc 1140
gactctaatg tgtgtgctca catgtgaatt ccgtaaaaaa aaaaaaaaaa aa 1192
216
254
PRT
Triticum aestivum
216
Met Leu Leu Pro Ser Ser Ser Ser Ser Ser Tyr Asp Pro Lys Gly Asp
1 5 10 15
Ser Phe Gly Lys Ser Val Asp Asp His Met Arg Ser Thr Leu Thr Phe
20 25 30
Gly Asp Lys His Ser Val Phe Ala Ser Gln Asn Thr Asp Tyr Gly His
35 40 45
Pro Met Ala Cys Ile Ser Tyr Pro Phe Asn Asp Ser Gly Ser Val Trp
50 55 60
Ala Ala Tyr Gly Ser Arg Ala Met Phe Gln Pro Leu Met Ala Glu Gly
65 70 75 80
Gly Ala Ser Ala Thr Ala Arg Val Pro Leu Pro Val Glu Leu Ala Ala
85 90 95
Asp Glu Pro Ile Phe Val Asn Pro Lys Gln Tyr Asn Gly Ile Leu Arg
100 105 110
Arg Arg Gln Leu Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Thr Lys
115 120 125
Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Met Lys
130 135 140
Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Ser Lys Gln Leu Lys
145 150 155 160
Gln Gln Gln Gln Gln Ser Gly Ser Ala Cys Thr Lys Ala Ile Ala Asp
165 170 175
Gly Ala Asn Ser Leu Gly Ser Thr His Leu Arg Leu Gly Ser Gly Ala
180 185 190
Ala Gly Asp Arg Ser Asn Ser Ala Ser Lys Ala Met Ser Ser Gln Glu
195 200 205
Asn Ser Lys Arg Val Ala Ala Pro Ala Pro Ala Phe Thr Met Ile Gln
210 215 220
Ala Ala Arg Lys Asp Asp Asp Phe Phe His His His Gly His His Leu
225 230 235 240
Ser Phe Ser Asp His Phe Gly Gln Ser Ser Asp Arg Tyr Thr
245 250
217
298
PRT
Arabidopsis thaliana
misc_feature
gi 9293997
217
Met His Ser Lys Ser Asp Ser Gly Gly Asn Lys Val Asp Ser Glu Val
1 5 10 15
His Gly Thr Val Ser Ser Ser Ile Asn Ser Leu Asn Pro Trp His Arg
20 25 30
Ala Ala Ala Ala Cys Asn Ala Asn Ser Ser Val Glu Ala Gly Asp Lys
35 40 45
Ser Ser Lys Ser Ile Ala Leu Ala Leu Glu Ser Asn Gly Ser Lys Ser
50 55 60
Pro Ser Asn Arg Asp Asn Thr Val Asn Lys Glu Ser Gln Val Thr Thr
65 70 75 80
Ser Pro Gln Ser Ala Gly Asp Tyr Ser Asp Lys Asn Gln Glu Ser Leu
85 90 95
His His Gly Ile Thr Gln Pro Pro Pro His Pro Gln Leu Val Gly His
100 105 110
Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln Asp Pro Tyr Tyr Ala
115 120 125
Gly Val Met Gly Ala Tyr Gly His His Pro Leu Gly Phe Val Pro Tyr
130 135 140
Gly Gly Met Pro His Ser Arg Met Pro Leu Pro Pro Glu Met Ala Gln
145 150 155 160
Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg
165 170 175
Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Ser
180 185 190
Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg
195 200 205
Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys Thr Asn Thr Glu Ala
210 215 220
Ser Lys Arg Lys Ala Glu Glu Lys Ser Asn Gly His Val Thr Gln Ser
225 230 235 240
Pro Ser Ser Ser Asn Ser Asp Gln Gly Glu Ala Trp Asn Gly Asp Tyr
245 250 255
Arg Thr Pro Gln Gly Asp Glu Met Gln Ser Ser Ala Tyr Lys Arg Arg
260 265 270
Glu Glu Gly Glu Cys Ser Gly Gln Gln Trp Asn Ser Leu Ser Ser Asn
275 280 285
His Pro Ser Gln Ala Arg Leu Ala Ile Lys
290 295
218
238
PRT
Oryza sativa
misc_feature
gi 7489565
218
Met Leu Pro Pro His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe
1 5 10 15
Gly His Lys Met Pro Asp Tyr Glu Ser Ser Ala Thr Gln Ser Thr Ser
20 25 30
Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu Asn Glu
35 40 45
Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu
50 55 60
Gly Lys Met Met Ser Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr
65 70 75 80
Ala His Ser Glu Pro Asp Arg Ser Gln Pro Phe Gly Ile Ser Tyr Pro
85 90 95
Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr His
100 105 110
Ala Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val
115 120 125
Pro Leu Pro Ile Glu Pro Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala
130 135 140
Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu
145 150 155 160
Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu
165 170 175
Ser Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg
180 185 190
Phe Leu Asn Thr Lys Gln Gln Pro Glu Ala Ser Asp Gly Gly Thr Pro
195 200 205
Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys His Glu His Ser
210 215 220
Leu Ser Ser Ser Asp Leu His His Arg Ala Lys Glu Gly Ala
225 230 235
219
215
PRT
Vitis riparia
misc_feature
gi 7141243
219
Met Met Pro Met Thr Met Ala Glu Tyr His Leu Ala Pro Pro Ser Gln
1 5 10 15
Leu Glu Leu Val Gly His Ser Ile Val Gln Ser Gln Phe Leu Gly Val
20 25 30
Asn Val Ala Arg Met Ala Leu Pro Ile Glu Met Ala Glu Glu Pro Val
35 40 45
Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln Ser
50 55 60
Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Val Arg Lys Pro
65 70 75 80
Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala Arg Gly
85 90 95
Cys Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Asp Ser Asn Ala Ser
100 105 110
Tyr Asp Met Pro Asp Lys Gly Ser Asp Pro Asp Val Asn Leu Ser Thr
115 120 125
Arg Pro Ile Ser Ser Ser Val Ser Glu Ser Leu Pro Phe Asn Ser Ser
130 135 140
Arg Asn Glu Asp Ser Pro Thr Ser His Leu Asp Ala Arg Gly Pro Ser
145 150 155 160
Val Gln Glu Leu His Asn Arg Gln Thr Ser Ser Met Glu Met Ala Thr
165 170 175
Ser Leu Leu Ser Thr Gln Pro Gly Ile Ser Val Gly Arg Thr Tyr His
180 185 190
Ser Leu Lys Met Met Ile Gly Val Glu Arg Arg Arg Pro Arg Lys Ala
195 200 205
Ala Ser Ile Arg Glu Phe Trp
210 215
220
1329
DNA
Glycine max
220
gcacgagtag ggttttctcc tcccccattg acccaccgtc catcgcaaag gaagtcgcgc 60
ccaatttcca tggtttgtag attaaatctt aaagcagtaa gtcatcatgg ataaatcaga 120
gcagactcag cagcaacatc agcatgggat gggcgttgcc acaggtgcta gccaaatggc 180
ctattcttct cactacccga ctgctcccat ggtggcttct ggcacgcctg ctgtagctgt 240
tccttcccca actcaggctc cagctgcctt ctctagttct gctcaccagc ttgcatacca 300
gcaagcacag catttccacc accaacagca gcaacaccaa caacagcagc ttcaaatgtt 360
ctggtcaaac caaatgcaag aaattgagca aacaattgac tttaaaaacc acagtcttcc 420
tcttgctcgg ataaaaaaga taatgaaagc tgatgaagat gtccggatga tttctgcaga 480
agctccagtc atatttgcaa aagcatgtga aatgttcata ttagagttga cgttgagatc 540
ttggatccac acagaagaga acaagaggag aactctacaa aagaatgata tagcagctgc 600
tatttcgaga aacgatgttt ttgatttctt ggttgatatt atcccaagag atgagttgaa 660
agaggaagga cttggaataa ccaaggctac tattccattg gtgaattctc cagctgatat 720
gccatattac tatgtccctc cacagcatcc tgttgtagga cctcctggga tgatcatggg 780
caagcccgtt ggtgctgagc aagcaacgct gtattctaca cagcagcctc gacctcccat 840
ggcgttcatg ccatggcccc atacacaacc ccagcaacag cagccacccc aacatcaaca 900
aacagactca tgatgacaat gcaattcaat taggtcggaa agtagcatgc accttatgat 960
tattacaaat ttacttaatg cctttaagtc agctgtagtt tagtgttttg cattgaaaaa 1020
tgccaaagat tgtttgaggt ttcttgcact catttatgat tgtatgagct cttatgctga 1080
gttacttttg gttgtgttta tttgaggtac tggtgtggta gttaaattag tttgtagctg 1140
tccataagta aacagcgtag ctgcttaatt aggaggtctg aaatgatgaa atagtttgta 1200
ttgttattgc agaaggtagg ttttattcag tatttcaaaa aaaaaaaaaa aaaaaaaaaa 1260
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1320
aaaaaaaaaa 1329
221
268
PRT
Glycine max
221
Met Asp Lys Ser Glu Gln Thr Gln Gln Gln His Gln His Gly Met Gly
1 5 10 15
Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr Pro Thr
20 25 30
Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro Ser Pro
35 40 45
Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu Ala Tyr
50 55 60
Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln Gln Gln
65 70 75 80
Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu Gln Thr
85 90 95
Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile
100 105 110
Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val
115 120 125
Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg
130 135 140
Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn
145 150 155 160
Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe Leu Val
165 170 175
Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly Ile Thr
180 185 190
Lys Ala Thr Ile Pro Leu Val Asn Ser Pro Ala Asp Met Pro Tyr Tyr
195 200 205
Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met Ile Met
210 215 220
Gly Lys Pro Val Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr Gln Gln
225 230 235 240
Pro Arg Pro Pro Met Ala Phe Met Pro Trp Pro His Thr Gln Pro Gln
245 250 255
Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser
260 265
222
199
PRT
Arabidopsis thaliana
misc_feature
gi 15223482
222
Met Glu Gln Ser Glu Glu Gly Gln Gln Gln Gln Gln Gln Gly Val Met
1 5 10 15
Asp Tyr Val Pro Pro His Ala Tyr Gln Ser Gly Pro Val Asn Ala Ala
20 25 30
Ser His Met Ala Phe Gln Gln Ala His His Phe His His His His Gln
35 40 45
Gln Gln Gln Gln Gln Gln Leu Gln Met Phe Trp Ala Asn Gln Met Gln
50 55 60
Glu Ile Glu His Thr Thr Asp Phe Lys Asn His Thr Leu Pro Leu Ala
65 70 75 80
Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser
85 90 95
Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu
100 105 110
Glu Leu Thr Leu Arg Ala Trp Ile His Thr Glu Glu Asn Lys Arg Arg
115 120 125
Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Thr Asp Val
130 135 140
Phe Asp Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu
145 150 155 160
Gly Leu Gly Val Thr Lys Gly Thr Ile Pro Ser Val Val Gly Ser Pro
165 170 175
Pro Tyr Tyr Tyr Leu Gln Gln Gln Gly Met Met Gln His Trp Pro Gln
180 185 190
Glu Gln His Pro Asp Glu Ser
195
You are contracting for Alteration of oil traits in plants
Expert Alteration of oil traits in plants
You are commenting for Alteration of oil traits in plants