(en)The present invention provides an expression cassette containing a polynucleotide coding sequence for a hydroxycinnamoyl-CoA hydratase-lyase (HCHL), which is operably linked to a heterologous promoter. Also provided are methods of engineering plants that have reduced lignification, as well as cells, plant parts, and plant tissues from such engineered plants.
1.ApplicationNumber: US-201214232018-A
1.PublishNumber: US-2015013033-A1
2.Date Publish: 20150108
3.Inventor: LOQUÉ DOMINIQUE
EUDES AMYERICK GUILLAUME
4.Inventor Harmonized: LOQUÉ DOMINIQUE(US)
EUDES AMYERICK GUILLAUME(US)
5.Country: US
6.Claims:
(en)The present invention provides an expression cassette containing a polynucleotide coding sequence for a hydroxycinnamoyl-CoA hydratase-lyase (HCHL), which is operably linked to a heterologous promoter. Also provided are methods of engineering plants that have reduced lignification, as well as cells, plant parts, and plant tissues from such engineered plants.
7.Description:
(en)CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims benefit of U.S. provisional application No. 61/507,484, filed Jul. 13, 2011, which application is herein incorporated by reference.
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
This invention was made with government support under Contract No. DE-AC02-05CH11231 awarded by the U.S. Department of Energy. The government has certain rights in this invention.
BACKGROUND OF THE INVENTION
Lignocellulosic plant biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic and hydrophobic branched polymer incrusted within biomass that negatively affects extraction and hydrolysis of polysaccharides during industrial processes. Engineering the monomer composition of lignin offers attractive potential for reducing its recalcitrance. The present invention offers a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers, which incorporate as end-groups in the polymer and reduce lignin chain extension. Biosynthesis of these lignification stoppers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes. Stems from plants that express HCHL accumulate higher amount of hydroxybenzaldehyde and hydroxybenzoate derivates compared to wild type plants. Part of these C 6 C 1 phenolics are alcohol-extractable from plant tissues and are released from extract-free cell walls upon mild alkaline hydrolysis. Engineered plants with intermediate HCHL activity level show no reduction of total lignin, sugar content and biomass yield compared to wild type plants. However, cell wall characterization by 2D-NMR reveals the presence of new molecules in the aromatic region and the analysis of lignin isolated from these plants revealed an increased amount of C 6 C 1 phenolic end-groups and a reduced molecular mass distribution. In addition, these engineered lines show saccharification improvement of pretreated cell wall biomass. Enhancing the incorporation of C 6 C 1 phenolic end-groups in lignin represents a promising strategy to alter lignin structure and reduce cell wall recalcitrance to enzymatic hydrolysis.
BRIEF SUMMARY OF THE INVENTION
In the first aspect, the present invention provides an isolated expression cassette comprising a polynucleotide sequence encoding a hydroxycinnamoyl-CoA hydratase-lyase (HCHL) and a heterologous promoter, and the promoter is operably linked to the polynucleotide sequence. In some embodiments, the HCHL is Pseudomonas fluorescens HCHL, which has the amino acid sequence set forth in SEQ ID NO:1. In some embodiments, the promoter used in this expression cassette is a secondary cell wall specific promoter, such as pIRX5, which is within the polynucleotide sequence set forth in SEQ ID NO:3.
In a second aspect, the present invention provides a method for engineering a plant having reduced lignification. The method includes these steps: (1) introducing the expression cassette described herein into the plant; and (2) culturing the plant under conditions under which the HCHL is expressed, thereby reducing lignification in the plant. In some embodiments, the plant is selected from the group consisting of Arabidopsis , poplar, eucalyptus, rice, corn, switchgrass, sorghum, millet, miscanthus, sugarcane, pine, alfalfa, wheat, soy, barley, turfgrass, tobacco, hemp, bamboo, rape, sunflower, willow, and Brachypodium.
In a third aspect, the present invention provides a plant that is engineered by the methods described herein, and a plant cell from such a plant, a seed, flower, leaf, or fruit from such a plant, a plant cell that contains the expression cassette described herein, and biomass comprising plant tissue from the plant or part of the plant described herein. Thus, the invention provides an engineered plant comprising a heterologous hydroxycinnamoyl-CoA hydratase-lyase (HCHL) operably linked to a promoter. In some embodiments, the polynucleotide encoding the heterologous HCHL is integrated into a plant genome. In some embodiments, the promoter is heterologous to the plant. In some embodiments, the promoter is an endogenous promoter. In some embodiment, the promoter is a secondary cell wall-specific promoter, such as an IRX5 promoter. In some embodiments, the HCHL is Pseudomonas fluorescens HCHL. The plant may be a monocot or a dicot. In some embodiments, the plant is selected from the group consisting of Arabidopsis , poplar, eucalyptus, rice, corn, switchgrass, sorghum, millet, miscanthus, sugarcane, pine, alfalfa, wheat, soy, barley, turfgrass, tobacco, hemp, bamboo, rape, sunflower, willow, and Brachypodium.
In further aspects, the invention provide methods of using an engineered plant of the invention, or parts of the plant, or plant biomass comprising material from the plant. In some embodiments, plant material is used in a saccharificatoni reaction, e.g., enzymatic saccharification, to generate soluble sugars at an increased level of efficiency as compared to wild-type plants that have not been modified to express HCHL. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase biomass yield or simplify downstream processing for wood industries (such as paper, pulping, and construction) as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase the quality of wood for construction purposes. In some embodiments the plants, parts of plants, or plant biomass material can be used in a combustion reaction, gasification, pyrolysis, or polysaccharide hydrolysis (enzymatic or chemical). In some embodiments, the plants, plant parts, or plant biomass material are used as forage that is more readily digested compared to wild-type plants.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 . HCHL-mediated conversion of hydroxycinnamoyl-CoAs into hydroxybenzaldehydes. HCHL performs the hydration and cleavage of hydroxycinnamoyl-CoAs (R=H, coumaroyl-CoA; R=OH, caffeoyl-CoA; R=OCH 3 , feruloyl-CoA) to produce hydroxybenzaldehydes (R=H, 4-hydroxybenzaldehyde; R=OH, 3,4-dihydroxybenzaldehyde; R=OCH 3 , 4-hydroxy-3-methoxybenzaldehyde) and acetyl-CoA via the formation of the corresponding reaction intermediates 4-hydroxyphenyl-β-hydroxypropionyl-CoAs.
FIG. 2 . Analysis of HCHL expression in IRX5:HCHL lines. (A) Detection by RT-PCR of HCHL transcripts using mRNA isolated from secondary stems of five independent five-week-old transformants in the T1 generation. cDNA synthesized from mRNA purified from wild type (WT) stems were used as a negative control. Tub8-specific primers were used to assess cDNA quality for each sample. (B) Detection by western blot of HCHL tagged with the AttB2 peptide (approximate size 32 kDa) using the universal antibody and 5 μg of total protein extracted from the primary stem of five independent five-week-old IRX5:HCHL transformants in the T2 generation. A protein extract from wild type stems (WT) was used as a negative control.
FIG. 3 . Histochemical staining of stem sections from five-week-old Arabidopsis plants. (A) Mäule staining. (B) Phloroglucinol-HCl staining. (C) Toluidine blue O staining. i, interfascicular fibers; x, xylem. Bars represent 50 μm for (A) and (B), and 20 μm for (C). Note the collapsed xylem vessels (yellow arrows) observed for line IRX5:HCHL (4).
FIG. 4 . Spectral analysis of IRX5:HCHL and wild type plants. (A) Lignin and polysaccharide content in CWR of mature senesced stems from wild type (WT) and line IRX5:HCHL (2) using FT-Raman spectroscopy. Values represent integrated intensities over the range of 1555-1690 cm −1 and 1010-1178 cm −1 for lignin and polysaccharides (cellulose/hemicellulose) quantification, respectively. Values are means of three biological replicates±SE. (B) Comparison of FT-IR spectra obtained from xylem (black line) and interfascicular fibers (grey line) in basal stem sections of wild type and line IRX5:HCHL (2). A Student's t-test was performed on absorbance values of wild type versus transgenic and plotted against wave numbers. At each wavelength, the zone between −2 and +2 corresponds to non-significant differences (p-value<0.05) between the two genotypes tested. Significant positive t-values indicated a higher absorbance value in wild type than in IRX5:HCHL plants.
FIG. 5 . 2D-HSQC NMR spectra analysis of line IRX5:HCHL plants. 2D-HSQC NMR spectra of lignin from wild type (WT) stems (A) and from IRX5:HCHL (FCA1) stems (B); Difference spectrum (IRX5:HCHL (2)—wild type) showing the presence of new components in the aromatic region (C).
FIG. 6 . Polydispersity profiles of CEL lignin purified from stems of wild type and line IRX:HCHL (2) plants. SEC chromatograms were obtained using (A) UV-A 300 absorbance and (B) UV-F ex250/em450 fluorescence.
FIG. 7 . Saccharification of biomass from mature senesced stems of IRX5:HCHL and wild type plants. Amount of reducing sugars released from 10 mg of biomass after hot water, dilute alkaline, or dilute acid pretreatment followed by 72-h enzymatic hydrolysis were measured using the DNS assay. Values are means of four biological replicates±SE.
FIG. 8 . Alignment of amino acid sequences of Pseudomonas fluorescens HCHL (SEQ ID NO:1) and other homologous proteins.
FIG. 9 . Organ and tissue-specific activity of the IRX5 promoter in Arabidopsis . Line CS70758, which contains a pIRX5:GUS expression cassette, was used to localize the activity of the IRX5 promoter. Young seedlings (A and B), rosettes leaves (C and D), siliques (E and F), cauline leaves (G and H), flowers (I and J), and inflorescence stems (K and L) were incubated in the GUS assay buffer for 1 h and 8 h at 37° C. Gus activity was essentially detected in the stem xylem vessels after a 1-h incubation (K). For longer incubations (8 h), GUS staining was also observed in interfascicular fibers of the stem (L), the vascular system of young seedlings (A), siliques (F) rosette (D) and cauline leaves (H), as well as in the style and anthers (J). x: xylem vessels, if: interfascicular fibers. Scale bars: 2 mm (A-B, E-F), 4 mm (C-D, G-H), 500 μm (I-J), 100 μm (K-L).
FIG. 10 . Growth and development of IRX5:HCHL and wild type (WT) plants at different stages. (A) Three-week-old rosette (B) Five-week-old flowering stage. (C) Eight-week-old senescing stage.
FIG. 11 . Synthesis of C 6 C 1 phenolics production upon HCHL activity and probable associated enzymes. The phenylpropanoid pathway (center box) and monolignol pathway (left box) are represented. HCHL converts hydroxycinnamoyl-CoAs into their corresponding hydroxybenzaldehydes. Metabolomic data showed occurrence of hydroxycinnamic acids and alcohols, suggesting involvement of aldehyde dehydrogenases (DH) and reductases (left box). UDP-glucosyltransferases (UGT) are responsible for the formation of C6-C1 phenolic glucose conjugates. Syringaldehyde is possibly derived from vanillin and 5OH-vanillin after successive monooxyenase (Monox) and O-methyltransferase activities (OMT). Asterisks indicate compounds found in higher amount in lignin of Arabidopsis expressing HCHL. Abbreviations for enzymes are: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; CCR, hydroxycinnamoyl-CoA reductase; CAD, coniferyl alcohol dehydrogenase; HCT, p-hydroxycinnamoyl-CoA:quinate shikimate p-hydroxycinnamoyl-CoA transferase; C3H, p-coumarate 3-hydroxylase; CCoAOMT, caffeoyl-CoA O-methyltransferase; FSH, ferulate 5-hydroxylase (coniferaldehyde 5-hydroxylase); COMT, caffeic acid/5-hydroxyferulic acid O-methyltransferase.
FIG. 12 . Transgenic rice lines that express pAtIRX5::HCHL.
FIG. 13 . Expression analysis of HCHL in the engineered rice lines. Results of an RT-PCR using RNA extracted from rice plants and HCHL-specific primers.
FIG. 14 . Detection of pHBA in stems from the engineered rice lines.
DETAILED DESCRIPTION OF THE INVENTION
I. Definitions
As used herein, the term “hydroxycinnamoyl-CoA hydratase-lyase” or “HCHL” refers to an enzyme that catalyzes the hydration of the double bond of lignin precursor p-coumaroy-CoA, caffeoyl-CoA, or feruloyl-CoA thioester, which is followed by a retro aldol cleavage reaction to produce a corresponding C 6 C 1 hydroxylbenzaldehyde and acetyl-CoA. A typical HCHL within the meaning of this invention is an HCHL from bacterium Pseudomonas fluorescens (EC 4.2.1.101-trans-feruloyl-CoA hydratase), which has the amino acid sequence set forth in FIG. 11 as SEQ ID NO:1 (GenBank Accession No. CAA73502), encoded by cDNA sequence set forth in GenBank Accession No. Y13067.1 or by a codon-optimized polynucleotide sequence set forth in SEQ ID NO:2 (synthesized by GenScript, Piscatway, N.J.). In this application, the term HCHL includes polymorphic variants, alleles, mutants, and interspecies homologs to the Pseudomonas fluorescens HCHL, some examples of which are provided in FIG. 8 . A nucleic acid that encodes an HCHL refers to a gene, pre-mRNA, mRNA, and the like, including nucleic acids encoding polymorphic variants, alleles, mutants, and interspecies homologs of the particular sequences described herein. Thus, an HCHL nucleic acid (1) has a polynucleotide sequence that has greater than about 50% nucleotide sequence identity, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or higher nucleotide sequence identity, preferably over a region of at least about 10, 15, 20, 25, 50, 100, 200, 500 or more nucleotides or over the length of the entire polynucleotide, to a polynucleotide sequence encoding SEQ ID NO:1 (e.g., SEQ ID NO:2 or the polynucleotide sequence set forth in Y13067.1); or (2) encodes a polypeptide having an amino acid sequence that has greater than about 50% amino acid sequence identity, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of at least about 25, 50, 100, 200 or more amino acids or over the length of the entire polypeptide, to a polypeptide having the amino acid sequence set forth in SEQ ID NO:1 or to any one of the amino acid sequences shown in FIG. 8 (SEQ ID NOs:4-34). The enzymatic activity of an HCHL within the meaning of this application can be verified by functional assays known in the art or described in the example section of this application, for its ability to convert any one of lignin precursors p-coumaroy-CoA, caffeoyl-CoA, and feruloyl-CoA thioester to a corresponding C 6 C 1 hydroxylbenzaldehyde and acetyl-CoA.
The term “substantially localized,” when used in the context of describing a plant expressing an exogenous HCHL that is substantially localized to a particular tissue, refers to the enzymatic activity and modified monolignols produced therefore in substantially higher amounts in the particular cell or tissue type of interest as compared to other cell or tissue types. In some embodiments, the presence of HCHL and modified monolignols is substantially localized to the secondary cell wall of a plant cell and in the stem of a plant.
The terms “polynucleotide” and “nucleic acid” are used interchangeably and refer to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5′ to the 3′ end. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs may be used that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); positive backbones; non-ionic backbones, and non-ribose backbones. Thus, nucleic acids or polynucleotides may also include modified nucleotides that permit correct read-through by a polymerase. “Polynucleotide sequence” or “nucleic acid sequence” includes both the sense and antisense strands of a nucleic acid as either individual single strands or in a duplex. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc.
The term “substantially identical,” used in the context of two nucleic acids or polypeptides, refers to a sequence that has at least 50% sequence identity with a reference sequence. Percent identity can be any integer from 50% to 100%. Some embodiments include at least: 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below. For example, an HCHL may have an amino acid sequence that is at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:1, the amino acid sequence of Pseudomonas fluorescens HCHL.
Two nucleic acid sequences or polypeptide sequences are said to be “identical” if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated according to, e.g., the algorithm of Meyers & Miller, Computer Applic. Biol. Sci. 4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).
For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
A “comparison window,” as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection.
Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and Altschul et al. (1977) Nucleic Acids Res. 25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits acts as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=1, N=−2, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).
The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10 5 , and most preferably less than about 10.
Nucleic acid or protein sequences that are substantially identical to a reference sequence include “conservatively modified variants.” With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.
As to amino acid sequences, one of skill will recognize that individual substitutions, in a nucleic acid, peptide, polypeptide, or protein sequence which alters a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art.
The following six groups each contain amino acids that are conservative substitutions for one another:
1) Alanine (A), Serine (S), Threonine (T);
2) Aspartic acid (D), Glutamic acid (E);
3) Asparagine (N), Glutamine (Q);
4) Arginine (R), Lysine (K);
5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and
6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
(see, e.g., Creighton, Proteins (1984)).
Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other, or a third nucleic acid, under stringent conditions. Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 60° C. For example, stringent conditions for hybridization, such as RNA-DNA hybridizations in a blotting technique are those which include at least one wash in 0.2×SSC at 55° C. for 20 minutes, or equivalent conditions.
The term “promoter,” refers to a polynucleotide sequence capable of driving transcription of a DNA sequence in a cell. Thus, promoters used in the polynucleotide constructs of the invention include cis- and trans-acting transcriptional control elements, translational control elements (5′UTR: untranslated region) and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene. For example, a promoter can be a cis-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5′ and 3′ untranslated regions, or an intronic or exonic sequence, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) gene transcription. Promoters are located 5′ to the transcribed gene, and as used herein, include the sequence 5′ from the translation start codon (i.e., including the 5′ untranslated region of the mRNA, typically comprising 50-200 bp). Most often the core promoter sequences lie within 1-3 kb of the translation start site, more often within 1 kbp and often within 500 bp of the translation start site. By convention, the promoter sequence is usually provided as the sequence on the coding strand of the gene it controls.
A “constitutive promoter” is one that is capable of initiating transcription in nearly all cell types, whereas a “cell type-specific promoter” initiates transcription only in one or a few particular cell types or groups of cells forming a tissue. In some embodiments, the promoter is secondary cell wall specific. Secondary cell wall is mainly composed of cellulose, hemicellulose, and lignin and is deposited in some, but not all, tissues of a plant, such as woody tissue. As used herein, a “secondary cell wall specific” promoter refers to a promoter that initiates higher levels of transcription in cell types that have secondary cell walls, e.g., lignified tissues such as vessels and fibers, which may be found in wood and bark cells of a tree, as well as other parts of plants such as the leaf stalk. In some embodiments, a promoter is secondary cell wall specific if the transcription levels initiated by the promoter in secondary cell walls are at least 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 50-fold, 100-fold, 500-fold, 1000-fold higher or more as compared to the transcription levels initiated by the promoter in other tissues, resulting in the encoded protein substantially localized in plant cells that possess secondary cell wall, e.g., the stem of a plant. Non-limiting examples of secondary cell wall specific promoters include the promoters directing expression of genes IRX1, IRX3, IRX5, IRX7, IRX8, IRX9, IRX10, IRX14, NST1, NST2, NST3, MYB46, MYB58, MYB63, MYB83, MYB85, MYB103, PAL1, PAL2, C3H, CcOAMT, CCR1, F5H, LAC4, LAC17, CADc, and CADd. See, e.g., Turner et al 1997; Meyer et al 1998; Jones et al 2001; Franke et al 2002; Ha et al 2002; Rohde et al 2004; Chen et al 2005; Stobout et al 2005; Brown et al 2005; Mitsuda et al 2005; Zhong et al 2006; Mitsuda et al 2007; Zhong et al 2007a, 2007b; Zhou et al 2009; Brown et al 2009; McCarthy et al 2009; Ko et al 2009; Wu et al 2010; Berthet et al 2011. In some embodiments, the promoter is substantially identical to the native promoter sequence directing expression of the IRX5 gene (see, e.g., the promoter and transcriptional regulatory elements for IRX5 are contained in SEQ ID NO:3). Some of the above mentioned secondary cell wall promoter sequences can be found within the polynucleotide sequences provided herein as SEQ ID NOs:36-61. A promoter originated from one plant species may be used to direct gene expression in another plant species.
A polynucleotide is “heterologous” to an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, when a polynucleotide encoding a polypeptide sequence is said to be operably linked to a heterologous promoter, it means that the polynucleotide sequence encoding the polypeptide is derived from one species whereas the promoter sequence is derived from another, different species; or, if both are derived from the same species, the coding sequence is not naturally associated with the promoter (e.g., is a genetically engineered coding sequence, e.g., from a different gene in the same species, or an allele from a different ecotype or variety).
The term “operably linked” refers to a functional relationship between two or more polynucleotide (e.g., DNA) segments. Typically, it refers to the functional relationship of a transcriptional regulatory sequence to a transcribed sequence. For example, a promoter or enhancer sequence is operably linked to a DNA or RNA sequence if it stimulates or modulates the transcription of the DNA or RNA sequence in an appropriate host cell or other expression system. Generally, promoter transcriptional regulatory sequences that are operably linked to a transcribed sequence are physically contiguous to the transcribed sequence, i.e., they are cis-acting. However, some transcriptional regulatory sequences, such as enhancers, need not be physically contiguous or located in close proximity to the coding sequences whose transcription they enhance.
The term “expression cassette” refers to a nucleic acid construct that, when introduced into a host cell, results in transcription and/or translation of an RNA or polypeptide, respectively. Antisense or sense constructs that are not or cannot be translated are expressly included by this definition. In the case of both expression of transgenes and suppression of endogenous genes (e.g., by antisense, RNAi, or sense suppression) one of skill will recognize that the inserted polynucleotide sequence need not be identical, but may be only substantially identical to a sequence of the gene from which it was derived. As explained herein, these substantially identical variants are specifically covered by reference to a specific nucleic acid sequence. One example of an expression cassette is a polynucleotide construct that comprises a polynucleotide sequence encoding a HCHL protein operably linked to a promoter that is heterologous to the plant cell into which the expression cassette may be introduced. In some embodiments, an expression cassette comprises a polynucleotide sequence encoding a HCHL protein that is targeted to a position in the genome of a plant such that expression of the HCHL polynucleotide sequence is driven by a promoter that is present in the plant.
The term “plant,” as used herein, refers to whole plants and includes plants of a variety of a ploidy levels, including aneuploid, polyploid, diploid and haploid. The term “plant part,” as used herein, refers to shoot vegetative organs and/or structures (e.g., leaves, stems and tubers), branches, roots, flowers and floral organs (e.g., bracts, sepals, petals, stamens, carpels, anthers), ovules (including egg and central cells), seed (including zygote, embryo, endosperm, and seed coat), fruit (e.g., the mature ovary), seedlings, and plant tissue (e.g., vascular tissue, ground tissue, and the like), as well as individual plant cells, groups of plant cells (e.g., cultured plant cells), protoplasts, plant extracts, and seeds. The class of plants that can be used in the methods of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae.
The term “biomass,” as used herein, refers to plant material that is processed to provide a product, e.g., a biofuel such as ethanol, or livestock feed, or a cellulose for paper and pulp industry products. Such plant material can include whole plants, or parts of plants, e.g., stems, leaves, branches, shoots, roots, tubers, and the like.
The term “reduced lignification” encompasses both reduced size of a lignin polymer, e.g., a shorter lignin polymer chain due to a smaller number of monolignols being incorporated into the polymer, a reduced degree of branching of the lignin polymer or a reduced space filling (also called a reduced pervaded volume). Typically, a reduced lignin polymer can be shown by detecting a decrease in it molecular weight or a decrease in the number of monolignols by at least 2%, 5%, 10%, 20%, 25%, 30%, 40%, 50%, or more, when compared to the average lignin molecule in a control plant. Methods for detecting reduced lignification are described in detail in the example section of this application.
As used herein and in the appended claims, the singular “a”, “an” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “plant cell” includes a plurality of such plant cells.
II. Introduction
Plant cell walls are constituted by a polysaccharidic network of cellulose microfibrils and hemicellulose embedded in an aromatic polymer known as lignin. This ramified polymer is mainly composed of three phenylpropanoid-derived phenolics (i.e., monolignols) named p-coumaryl, coniferyl, and sinapyl alcohols which represent the p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) lignin units (Boerjan et al., 2003). Monolignols have a C 6 C 3 carbon skeleton which consists of a phenyl ring (C 6 ) and a propane (C3) side chain. Lignin is crucial for the development of terrestrial plants as it confers recalcitrance to plant cell walls. It also provides mechanical strength for upright growth, confers hydrophobicity to vessels that transport water, and acts as a physical barrier against pathogens that degrade cell walls (Boudet, 2007). Notably, lignin content and composition are finely regulated in response to environmental biotic and abiotic stresses (Moura et al., 2010).
Economically, lignocellulosic biomass from plant cell walls is widely used as raw material for the production of pulp in paper industry and as ruminant livestock feed. Plant feedstocks also represent a source of fermentable sugars for the production of synthetic molecules such as pharmaceuticals and transportation fuels using engineered microorganisms (Keasling, 2010). However, negative correlations exist between lignin content in plant biomass and pulp yield, forage digestibility, or polysaccharides enzymatic hydrolysis (de Vrije et al., 2002; Reddy et al., 2005; Dien et al., 2006; Chen and Dixon, 2007; Dien et al., 2009; Taboada et al., 2010; Elissetche et al., 2011; Studer et al., 2011). Consequently, reducing lignin recalcitrance in plant feedstocks is a major focus of interest, especially in the lignocellulosic biofuels field for which efficient enzymatic conversion of polysaccharides into monosaccharides is crucial to achieve economically and environmentally sustainable production (Carroll and Somerville, 2009).
Lignin biosynthesis is well characterized and well conserved across land plants (Weng and Chapple 2010). Genetic modifications such as silencing of genes involved in particular steps of this pathway or its regulation have been employed to reduce lignin content (Simmons et al., 2010; Umezawa, 2010) but this approach often results in undesired phenotypes such as dwarfism, sterility, reduction of plant biomass, and increased susceptibly to environmental stress and pathogens (Bonawitz and Chapple, 2010). These pleiotropic effects are generally the consequences of a loss of secondary cell wall integrity, accumulation of toxic intermediates, constitutive activation of defense responses, or depletion of other phenylpropanoid-derived metabolites which are essential for plant development and defense (Li et al., 2008; Naoumkina et al., 2010, Gallego-Giraldo et al., 2011). Alternatively, changing the recalcitrant structure and physico-chemical properties of lignin can be achieved by modifying its monomer composition. For example, incorporation of coniferyl ferulate into lignin improves enzymatic degradation of cell wall polysaccharides (Grabber et al., 2008). Recently, it has been demonstrated that enrichment in 5-hydroxy-G units and reduction in S units in lignin contribute to enhanced saccharification efficiencies without affecting drastically biomass yields and lignin content (Weng et al., 2010; Dien et al., 2011; Fu et al., 2011).
In this study, as an alternative strategy to reduce lignin recalcitrance, the inventors developed a dominant approach that uses precursors derived from the lignin biosynthetic pathways to enhance production of non-conventional monolignols, namely C 6 C 1 phenolics. These phenol units lack propane side chain and thus have different polymerization properties compared to classic C 6 C 3 monolignols. Such C 6 C 1 phenolics are usually found in trace amount in some lignins and form the so-called ‘benzyl end-groups’ (Kim et al., 2000; Ralph et al., 2001; Kim et al., 2003; Morreel et al., 2004; Ralph et al., 2008; Kim and Ralph, 2010). The inventors considered increasing C 6 C 1 end-group phenolics in lignin to reduce its polymerization degree and native branched structure. For this purpose, a hydroxycinnamoyl-CoA hydratase-lyase (HCHL, EC 4.2.2.101/EC 4.1.2.41) from Pseudomonas fluorescens was expressed in stems of Arabidopsis . HCHL is an enzyme that catalyzes the hydration of the double bond of the lignin precursor p-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA thioesters, followed by a retro aldol cleavage reaction that produces the corresponding C 6 C 1 hydroxybenzaldehydes and acetyl-CoA ( FIG. 1 ; Mitra et al., 1999). The promoter of a secondary cell wall cellulose synthase gene (Cesa4/IRX5) was used to restrict HCHL expression in lignified tissues of the stem (xylem and interfascicular fibers) and prevent depletion of hydroxycinnamoyl-CoAs in other tissues in which they are precursors of hydroxycinnamate conjugates and other derivates involved in plant defense and development (Gou et al., 2009; Luo et al., 2009; Buer et al., 2010; Milkowski and Strack, 2010). The data disclosed herein show that HCHL expression driven by the IRX5 promoter results for some lines in no significant changes in lignin content, plant development and biomass yields. It has also been demonstrated that C 6 C 1 phenolics accumulate as end-groups in the lignin of HCHL transgenics, which reduces lignin size and renders cell walls less recalcitrant to enzymatic hydrolysis.
III. Plants Having Reduced Lignification
A. Modification of Expression of an HCHL Enzyme
In one aspect, the present invention provides a method for engineering a plant having reduced lignification. This method includes these steps: first, introducing into the plant an expression cassette comprising a polynucleotide sequence encoding an HCHL enzyme and a promoter, with the coding sequence and the promoter being in an operably linked arrangement; and second, culturing the plant under conditions permissible for the expression of a functional HCHL to produce C 6 C 1 phenolics, which can be polymerized with other monolignols and thereby reducing lignification in the plant.
In particular, the present invention provides methods of engineering a plant having modified lignin polymers, which may have reduced size, molecular weight, and/or altered (especially reduced or less extensive) branching, that are substantially localized to the lignified tissue of the plant. This is achieved by first introducing into the plant an expression cassette as described above but in particular having a secondary cell wall specific promoter, and then culturing the plant under conditions in which the functional HCHL enzyme is expressed. This enzyme converts various hydroxycinnamoyl-coA into their respective hydroxybenzaldehydes that can be either directly incorporated or further modified (e.g., oxidation or reduction of the aldehyde group) by native enzymes prior to their incorporation into the lignin polymer by polymerization with native monolignols.
The expression cassette as described herein, when introduced into a plant, does not necessarily modify the lignin content. Vessel stays intact indicating that the lignin cell wall structure is still robust to prevent vessel collapse, but the lignin composition and properties are modified to a level that its recalcitrance is reduce.
One of skill in the art will understand that the HCHL that is introduced into the plant by an expression cassette described herein does not have to be identical to the Pseudomonas fluorescens HCHL, which was used in the experiments detailed in the example section of this disclosure. In some embodiments, the HCHL that is introduced into the plant by an expression cassette is substantially identical (e.g., at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to the Pseudomonas fluorescens HCHL. For example, a variant HCHL will have at least 80%, 85%, 90%, or 95% sequence identity in its amino acid residues as compared to SEQ ID NO:1, especially within one or more of the 8 highly conserved regions (shown in the 8 boxes in FIG. 8 ).
1. Hydroxycinnamoyl-CoA Hydratase-Lyase (HCHL)
In some embodiments, the expression cassette of this invention comprises a polynucleotide encoding an enzyme that produces modified monoligols that can cause reduced lignification. An example of such an enzyme is the Pseudomonas fluorescens HCHL, having the amino acid sequence set forth in SEQ ID NO:1. Additional examples of such HCHL suitable for use in the present invention include those shown in FIG. 8 . Also appropriate for use in the present invention are variants HCHL, which may be naturally occurring or recombinantly engineered, provided the variants possess (1) substantially amino acid sequence identity to an exemplary HCHL (e.g., SEQ ID NO:1) and (2) the enzymatic activity to convert at least one lignin precursor p-coumaroy-CoA, caffeoyl-CoA, or feruloyl-CoA thioester into a corresponding C 6 C 1 hydroxylbenzaldehyde, as determined by an HCHL enzymatic assay known in the art by way of various scientific publications or described herein.
Examples of naturally occurring HCHL that can be used to practice the present invention includes, p-hydroxycinnamoyl CoA hydratase/lyase (HCHL), Enoyl-CoA hydratase/isomarase (ECH), Feruloyl-CoA hydratase/lyase (FCA, FerA), as well as those named in FIG. 8 , the amino acid sequences for which are provided in SEQ ID NOs:4-34.
2. Secondary Cell Wall-Specific Promoters
In some embodiments, the polynucleotide encoding the HCHL is operably linked to a secondary cell wall-specific promoter. The secondary cell wall-specific promoter is heterologous to the polynucleotide encoding the HCHL, in other words, the promoter and the HCHL coding sequence are derived from two different species. A promoter is suitable for use as a secondary cell wall-specific promoter if the promoter is expressed strongly in the secondary cell wall, e.g., in vessel and fiber cells of the plant, but is expressed at a much lower level or not expressed in cells without the secondary cell wall.
In some embodiments, the promoter is substantially identical (e.g., at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to the native promoter of a gene encoding a secondary cell wall cellulose synthase Cesa4/IRX5, polynucleotide sequence set forth in Genebank Accession No. AF458083 — 1 and SEQ ID NO:35, and the promoter pIRX5 is contained in SEQ ID NO:3.
In some embodiments, the secondary cell wall-specific promoter comprises SEQ ID NO:3. In some embodiments, the secondary cell wall-specific promoter comprises a subsequence of SEQ ID NO:3 or a variant thereof. In some embodiments, the secondary cell wall-specific promoter comprises a subsequence of SEQ ID NO:3 comprising about 50 to about 1000 or more contiguous nucleotides of SEQ ID NO:3. In some embodiments, the secondary cell wall-specific promoter comprises a subsequence of SEQ ID NO:3 comprising 50 to 1000, 50 to 900, 50 to 800, 50 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, 50 to 100; 75 to 1000, 75 to 900, 75 to 800, 75 to 700, 75 to 600, 75 to 500, 75 to 400, 75 to 300, 75 to 200; 100 to 1000, 100 to 900, 100 to 800, 100 to 700, 100 to 600, 100 to 500, 100 to 400, 100 to 300, or 100 to 200 contiguous nucleotides of SEQ ID NO:3.
Secondary cell wall-specific promoters are also described in the art. See, for example, Mitsuda et al 2005 Plant Cell; Mitsuda et al 2007 Plant Cell; Zhou et al 2009 plant cell; Ohtani et al 2011 Plant Journal. They are contained the polynucleotide sequences provided in this application as SEQ ID NO:36-61.
It will be appreciated by one of skill in the art that a promoter region can tolerate considerable variation without diminution of activity. Thus, in some embodiments, the secondary cell wall-specific promoter is substantially identical (e.g., at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to SEQ ID NO:3. The effectiveness of a secondary cell wall-specific promoter may be confirmed by an reporter gene (e.g., β-glucuronidase or GUS) assay known in the art or as described in the example section of this application.
B. Preparation of Recombinant Expression Vectors
Once the promoter sequence and the coding sequence for the gene of interest (e.g., a Pseudomonas fluorescens HCHL or any other HCHL as shown in FIG. 8 ) are obtained, the sequences can be used to prepare an expression cassette for expressing the gene of interest in a transgenic plant. Typically, plant transformation vectors include one or more cloned plant coding sequences (genomic or cDNA) under the transcriptional control of 5′ and 3′ regulatory sequences and a selectable marker. Such plant transformation vectors may also contain a promoter (e.g., a secondary cell wall-specific promoter as described herein), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.
The plant expression vectors may include RNA processing signals that may be positioned within, upstream, or downstream of the coding sequence. In addition, the expression vectors may include regulatory sequences taken from the 3′-untranslated region of plant genes, e.g., a 3′ terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3′ terminator regions.
Plant expression vectors routinely also include selectable marker genes to allow for the ready selection of transformants. Such genes include those encoding antibiotic resistance genes (e.g., resistance to hygromycin, kanamycin, bleomycin, G418, streptomycin or spectinomycin), herbicide resistance genes (e.g., phosphinothricin acetyltransferase), and genes encoding positive selection enzymes (e.g. mannose isomerase).
Once an expression cassette comprising a polynucleotide encoding the HCHL and operably linked to a promoter (especially a secondary cell wall specific promoter) has been constructed, standard techniques may be used to introduce the polynucleotide into a plant in order to express the HCHL and effectuate reduced lignification. See, e.g., protocols described in Ammirato et al. (1984) Handbook of Plant Cell Culture—Crop Species. Macmillan Publ. Co. Shimamoto et al. (1989) Nature 338:274-276; Fromm et al. (1990) Bio/Technology 8:833-839; and Vasil et al. (1990) Bio/Technology 8:429-434.
Transformation and regeneration of plants is known in the art, and the selection of the most appropriate transformation technique will be determined by the practitioner. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumeficiens mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence. Examples of these methods in various plants include: U.S. Pat. Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.
Following transformation, plants can be selected using a selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants or the ability to grow on a specific substrate, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic, herbicide, or substrate.
The polynucleotide sequence coding for an HCHL, as well as the polynucleotide sequence comprising a promoter (e.g., a secondary cell wall-specific promoter), can be obtained according to any method known in the art. Such methods can involve amplification reactions such as polymerase chain reaction (PCR) and other hybridization-based reactions or can be directly synthesized.
C. Plants in which Lignification can be Reduced
An expression cassette comprising a polynucleotide encoding an HCHL operably linked to a promoter, especially a secondary cell wall specific promoter, as described herein, can be expressed in various kinds of plants. The plant may be a monocotyledonous plant or a dicotyledonous plant. In some embodiments of the invention, the plant is a green field plant. In some embodiments, the plant is a gymnosperm or conifer.
In some embodiments, the plant is a plant that is suitable for generating biomass. Examples of suitable plants include, but are not limited to, Arabidopsis , poplar, eucalyptus, rice, corn, switchgrass, sorghum, millet, miscanthus, sugarcane, pine, alfalfa, wheat, soy, barley, turfgrass, tobacco, hemp, bamboo, rape, sunflower, willow, Jatropha, and Brachypodium.
In some embodiments, the plant into which the expression cassette of this invention is introduced is the same species of plant as the one from which the promoter is derived. In some embodiments, the plant into which the expression cassette is introduced is a different species of plant from the plant species the promoter is derived from.
D. Screening for Plants Having Reduced Lignification
After transformed plants are selected, the plants or parts of the plants may be evaluated to determine whether expression of the exogenous HCHL can be detected, e.g., by evaluating the level of RNA or protein, by measuring enzymatic activity of the HCHL, as well as by evaluating the size, molecular weight, content, or degree of branching in the lignin molecules found in the plants. These analyses can be performed using any number of methods known in the art.
In some embodiments, plants are screened by evaluating the level of RNA or protein. Methods of measuring RNA expression are known in the art and include, for example, PCR, northern analysis, reverse-transcriptase polymerase chain reaction (RT-PCR), and microarrays. Methods of measuring protein levels are also known in the art and include, for example, mass spectroscopy or antibody-based techniques such as ELISA, Western blotting, flow cytometry, immunofluorescence, and immunohistochemistry.
In some embodiments, plants are screened by assessing HCHL activity, and also by evaluating lignin size and composition. The enzymatic assays for HCHL are well known in the art and are described in this application. Lignin molecules can be assessed, for example, by nuclear magnetic resonance (NMR), spectrophotometry, microscopy, klason lignin assays, acetyl-bromide reagent or by histochemical staining (e.g., with phloroglucinol).
IV. Methods of Using Plants Having Reduced Lignification
Plants, parts of plants, or plant biomass material from plants having reduced lignification due to the expression of an exogenous HCHL in the secondary cell wall can be used for a variety of methods. In some embodiments, the plants, parts of plants, or plant biomass material generate less recalcitrant biomass for use in a conversion reaction as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used in a saccharification reaction, e.g., enzymatic saccharification, to generate soluble sugars at an increased level of efficiency as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase biomass yield or simplify downstream processing for wood industries (such as paper, pulping, and construction) as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase the quality of wood for construction purposes. In some embodiments the plants, parts of plants, or plant biomass material can be used in a combustion reaction, gasification, pyrolysis, or polysaccharide hydrolysis (enzymatic or chemical). In further embodiments, the plants, parts of plants, or plant biomass is used as a forage crop and exhibit improved digestibility compared to wild-type plants.
Methods of conversion, for example biomass gasification, are known in the art. Briefly, in gasification plants or plant biomass material (e.g., leaves and stems) are ground into small particles and enter the gasifier along with a controlled amount of air or oxygen and steam. The heat and pressure of the reaction break apart the chemical bonds of the biomass, forming syngas, which is subsequently cleaned to remove impurities such as sulfur, mercury, particulates, and trace materials. Syngas can then be converted to products such as ethanol or other biofuels.
Methods of enzymatic saccharification are also known in the art. Briefly, plants or plant biomass material (e.g., leaves and stems) are optionally pre-treated with hot water, dilute alkaline, AFEX (Ammonia Fiber Explosion), ionic liquid or dilute acid, followed by enzymatic saccharification using a mixture of cell wall hydrolytic enzymes (such as hemicellulases, cellulases and beta-glucosidases) in buffer and incubation of the plants or plant biomass material with the enzymatic mixture. Following incubation, the yield of the saccharification reaction can be readily determined by measuring the amount of reducing sugar released, using a standard method for sugar detection, e.g. the dinitrosalicylic acid method well known to those skilled in the art. Plants engineered in accordance with the invention provide a higher saccharification efficiency as compared to wild-type plants, while the plants growth, development, or disease resistance is not negatively impacted.
Sugars generated from a saccharification reaction using plant biomass of the invention can be used for producing any product for which the sugars can serve as a carbon source. Examples of products include, but are not limited to, alcohols (e.g., ethanol, methanol, butanol); organic acids (e.g., citric acid, acetic acid, itaconic acid, lactic acid, gluconic acid); ketones (e.g., acetone); amino acids (e.g., glutamic acid); gases (e.g., H 2 and CO 2 ); antibiotics (e.g., penicillin and tetracycline); vitamins (e.g., riboflavin, B12, beta-carotene), fatty acids and fatty acid derivatives (as described, e.g., in PCT/US2008/068833); isoprenyl alkanoates (as described, e.g., PCT/US2008/068756, methyl butenol (as described, e.g., PCT/US2008/068831; fatty acid esters (as described, e.g., in PCT/US2010/033299), isoprenoid-based alternative diesel fuels (as described, e.g., in PCT/US2011/059784; a polyketide synthesized by a polyketide synthase, such as a diacid (see, e.g., PCT/US2011/061900), biofuels (see, e.g., PCT/US2009/042132) and alpha-olefins (see, e.g., PCT/US2011/053787).
EXAMPLES
The following examples are provided to illustrate but not to limit the claimed invention.
Example 1
Expression of Bacterial HCHL in Arabidopsis
I. Materials and Methods
Plant Material and Growth Conditions
Arabidopsis thaliana (ecotype Columbia, Col-0) seeds were germinated directly on soil. Growing conditions were 14 h of light per day at 100 mmol m −2 s −1 , 22° C., 55% humidity. Selection of T1 and T2 homozygote transgenic plants was made on solid Murashige and Skoog vitamin medium (PhytoTechnology Laboratories) supplemented with 1% sucrose, 1.5% agar (Sigma-Aldrich) adjusted to pH 5.6-5.8, and containing 50 μg mL −1 kanamycin.
Chemicals
4-Hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, 5-hydroxyvanillin, 4-hydroxybenzyl alcohol, vanillyl alcohol, and 1-methyl-2-pyrrolidinone were purchased from Sigma-Aldrich. Vanillic acid, syringic acid, 3,4-dihydroxybenzaldehyde, syringaldehyde, and sinapyl alcohol were purchased from Alfa Aesar. 5-Hydroxyvanillic acid was obtained from Chromadex, and 3,4-dihydroxybenzyl alcohol from TCI America.
pIRX5:GUS Line and GUS Staining
Arabidopsis line CS70758 (ecotype Columbia, Col-2) was obtained from the Arabidopsis Biological Resource Center (ABRC). This line has a pMLBART plasmid containing an expression cassette consisting of the genomic fragment located upstream of the CESA4 start codon fused to the GUS gene. Histochemical GUS activity was performed as previously described (Eudes et al., 2006). Various organs of soil-grown line CS70758 were incubated for 1 h or 8 h at 37° C. in the GUS assay buffer using 5-bromo-4-chloro-3-indolyl-D-glucuronic acid (Indofine Chemical Company, Inc.) as a substrate. After staining, stem samples (1 cm) were cross-sectioned (80 μm) using a vibratome before observation under the microscope (Leica).
IRX5:HCHL Construct and Plant Transformation
For HCHL expression in Arabidopsis , the binary vector pTKan which is derived from pPZP212 was used (Hajdukiewicz et al., 2004). A Gateway cloning cassette (Invitrogen) was inserted between XhoI and PstI restriction sites to produce a pTKan-GW vector. The nucleotide sequence of the IRX5 promoter was amplified by PCR from Arabidopsis (ecotype Columbia, Col-0) genomic DNA using oligonucleotides 5′-CCCG GCGGCCGC ATGAAGCCATCCTCTACCTCGGAAA-3′ and 5′-CCCG GCTAGC GGCGAGGTACACTGAGCTCTCGGAA-3′ (NotI and NheI restriction sites underlined), and inserted between the ApaI and SpeI restriction sites of pTKan-GW to produce a pTKan-pIRX5-GW expression vector. A codon-optimized nucleotide sequence encoding the HCHL enzyme from Pseudomonas fluorescens AN103 (accession number CAA73502) for expression in Arabidopsis was synthesized without stop codon (Genescript) and amplified by PCR using oligonucleotides 5′- GGGGACAAGTTTGTACAAAAAAGCAGGCTTC ATGTCTACTTACGAGGGAAGATG G-3′ and 5′- GGGGACCACTTTGTACAAGAAAGCTGGGTC TCTCTTGTAAGCCTGGAGTCC-3′ (attb1 and attb2 sites underlined) for cloning into the Gateway pDONR221-f1 entry vector (Lalonde et al 2010). A sequence-verified HCHL entry clone was LR recombined with the pTKan-pIRX5-GW vector to generate the final IRX5:HCHL construct. The construct was introduced into wild type Arabidopsis plants (ecotype Col0) via Agrobacterium tumefaciens -mediated transformation (Bechtold and Pelletier, 1998).
RNA Extraction and RT-PCR
Total RNA (1 μg) extracted from inflorescence stems of IRX5:HCHL T1 transformants and wild type plants using the Plant RNeasy extraction kit (Qiagen) was reverse-transcribed using the Transcriptor First Strand cDNA Synthesis Kit (Roche applied Science). The obtained cDNA preparation was quality-controlled for PCR using tub8-specific oligonucleotides (5′-GGGCTAAAGGACACTACACTG-3′/5′-CCTCCTGCACTTCCACTTCGTCTTC-3′). Oligonucleotides 5′-ATGTCTACTTACGAGGGAAGATGG-3′ and 5′-TCTCTTGTAAGCCTGGAGTCC-3′ were used for the detection of HCHL expression by PCR.
Western Blot Analysis
For protein extraction, inflorescence stems of IRX5:HCHL T2 transformants and wild type plants were ground in liquid nitrogen, and 0.25 g of the resulting powder was homogenized with the extraction buffer [100 mM Tris-HCl pH 6.5, 2% (w/v) polyvinylpyrrolidone, 2% (v/v) β-mercaptoethanol, 1% (w/v) SDS] at 1400 rpm for 30 min. The mixture was centrifuged at 20,000 g for 5 min and the supernatant collected for protein quantification using the Bradford method (Bradford, 1976) and bovine serum albumin as a standard. For electrophoresis, soluble protein (5 μg) were mixed with 0.2 M Tris-HCl, pH 6.5, 8% (w/v) SDS, 8% (v/v) β-mercaptoethanol, 40% (v/v) glycerol, and 0.04% (w/v) bromophenol blue and incubated at 40° C. for 30 min. Proteins were separated by SDS-PAGE using 8-16% (w/v) polyacrylamide gradient gels (Invitrogen) and electrotransferred (100 volts, 45 min) onto PVDF membranes (Thermo Fisher Scientific). Blotted membranes were incubated 1 h in TBS-T (20 m M Tris-HCl, 150 m M NaCl, 0.1% (v/v) Tween 20, pH 7.6) containing 2% (w/v) non-fat milk powder, and incubated overnight with the universal antibody (1:20000) in TBS-T containing 2% (w/v) non-fat milk powder. Membranes were then washed in TBS-T for 30 min and incubated for 1 h with an anti-rabbit secondary antibody conjugated to horseradish peroxidase (1:20000; Sigma-Aldrich) in TBS-T containing 2% (w/v) non-fat milk powder. Membranes were then washed in TBS-T for 30 min, and detection was performed by chemiluminescence using the SuperSignal West Dura Extended Duration Substrate (Thermo Fisher Scientific).
HCHL Activity
For protein extraction, inflorescence stems of IRX5:HCHL T2 transformants and wild type plants were ground in liquid nitrogen, and 0.25 g of the resulting powder was homogenized with 25 mg of polyvinylpolypyrrolidone and 1.25 mL of extraction buffer (EB; 100 mM Tris-HCl, pH 8.5, 20 mM DTT, and 10 mM Na 2 EDTA). Extracts were shaken at 1400 rpm for 15 min at 4° C., and centrifuged for 30 min at 20,000 g at 4° C. Supernatants were collected, adjusted to 2.5 mL with EB, and applied to PD10 columns (GE healthcare) pre-equilibrated with 25 mL of EB. Proteins were eluted with 3.5 mL of EB and quantified using the Bradford method (Bradford, 1976) and bovine serum albumin as a standard.
For HCHL activity, 5 μL of protein extract was incubated for 15 min at 30° C. with 150 μM feruloyl-CoA in 100 m M Tris-HCl pH 8.5 in a total volume of 50 μL. Total amounts of protein per reaction varied from 4 to 6.5 μg. Reactions were stopped with 50 μL of cold acidified methanol (12% glacial acetic acid/88% methanol, v/v) and stored at −70° C. until LC-MS analysis.
Biomass
For biomass measurements, IRX5:HCHL and wild type plants were grown until senescence and dried stems were collected without roots, leaves and siliques before weighing. Statistical analysis was performed using ANOVA followed by Scheffe post hoc test.
Microscopy
Five-week-old plants were use for microscopy. Stem segments cut between the first and second internodes were embedded in 4% agarose. Stem semi-thin sections (100-μm thickness) were obtained using a vibratome (Leica). For toluidine blue O (TBO) staining, sections were incubated in a 0.05% (w/v) solution of TBO (Sigma-Aldrich) in water for 30 sec and rinsed with water. For Wiesner lignin staining, sections were incubated for 3 min in phloroglucinol-HCl reagent (VWR International) and rinsed with water. For Mäulne lignin staining, sections were incubated in 4% KMnO 4 for 5 min, rinsed with water, incubated in 37% HCl/H 2 O (1:1, v/v) for 2 min, and observed after addition of a drop of aqueous ammonia. Sections were immediately observed using bright field light microscopy (Leica DM4000 B).
Soluble Phenolics Extraction
For extraction of methanol soluble phenolics, approximately 200 mg of frozen stem powder was mixed with 1 mL of 80% (v/v) methanol-water and shaken for 1 h at 1400 rpm. Extracts were cleared by centrifugation (5 min, 20,000 g), mixed with 400 μL of analytical grade water and filtered using Amicon Ultra centrifugal filters (3,000 Da MW cutoff regenerated cellulose membrane; Millipore) prior to LC-MS analysis. Alternatively, an aliquot of the filtered extracts was dried under vacuum, resuspended with 1 N HCl and incubated at 95° C. for 3 h for acid hydrolysis. The mixture was subjected to three ethyl acetate partitioning steps. Ethyl acetate fractions were pooled, dried in vacuo, and resuspended in 50% (v/v) methanol-water prior to LC-MS analysis.
Cell-Wall Bound Phenolics Extraction
For extraction of cell-wall bound phenolics, mature senesced stems were collected without the leaves and siliques, and ball-milled to a fine powder using a Mixer Mill MM 400 (Retsch) and stainless steel balls for 2 min at 30 s −1 . Extract-free cell wall residues (CWR) were obtained by sequentially washing 60 mg of ball-milled stems with 1 ml of 96% ethanol at 95° C. twice for 30 min, and vortexing with 1 mL of 70% ethanol twice for 30 sec. The resulting CWR were dried in vacuo overnight at 30° C. Approximately 6 mg of CWR was mixed with 500 μL of 2 M NaOH and shaken at 1400 rpm for 24 h at 30° C. The mixture was acidified with 100 μL of concentrated HCl, and subjected to three ethyl acetate partitioning steps. Ethyl acetate fractions were pooled, dried in vacuo, and suspended in 50% (v/v) methanol-water prior to LC-MS analysis.
LC-MS
Separation of C 6 C 1 phenolic acids and aldehydes was conducted on a Poroshell-120 column (150 mm length, 3 mm internal diameter, 2.7 μm particle size) using a 1200 Series HPLC system (Agilent Technologies Inc.). Analytes were separated using a gradient elution with mobile phase composition of 0.1% formic acid in water as solvent A, and 0.1% formic acid in acetonitrile-water (98:2, v/v) as solvent B. The elution gradient was 0-5 min 13% B, 5-7 min 50% B, 7-8 min 50% B, and 8-11 min 13% B, using a flow rate of 0.55 mL min −1 . The HPLC system was coupled to an Agilent 6210 time-of-flight (TOF) mass spectrometer (MS) via a 1:7 post-column split. Analyses were conducted using Electrospray ionization (ESI) in the positive ion mode. Detection of [M+H] + ions was carried out in full scan mode at 0.85 spectra sec and a cycle time of 1.176 sec spectrum −1 using the following parameters: capillary voltage 3500 V, fragmentor 165 V, skimmer 50 V and OCT RF 170 V, drying gas flow rate 9 L min −1 , nebulizer pressure 15 psig, drying gas temperature 325° C. Separation of C 6 C 1 phenolic alcohols was conducted on the same HPLC and MS system using the same HPLC column. Analytes were separated using gradient elution with a mobile phase composition of 0.1% formic acid in water as solvent A, and 0.1% formic acid in methanol-water (98:2, v/v) as solvent B. Elution conditions were the same as described above. Analyses were conducted using atmospheric pressure chemical ionization (APCI) in the positive ion mode. Detection of [M−H 2 O+H] + ions was carried as described above except for the following parameters: capillary voltage 3200 V, corona current 4 μA, drying gas flow rate 12 L min −1 , nebulizer pressure 30 psig, vaporizer temperature 350° C. Quantification of compounds was made by comparison with standard curves of authentic compounds prepared in 50% (v/v) methanol-water.
Lignin Analysis
Extract-free samples (CWR) of ball-milled mature senesced stems were prepared using a Soxhlet apparatus by sequentially extracting the ground material with toluene:ethanol (2:1, v/v), ethanol, and water (Sluiter et al., 2008). The determination of lignin content using the standard Klason procedure (Dente, 1992) and the thioacidolysis procedure (Lapierre et al., 1995; 1999) were carried out on CWR. The lignin-derived monomers were identified by GC-MS as their trimethyl-silylated derivatives. All the lignin analyses were performed in duplicate.
Total and Hemicellulosic Sugar Analysis
For total sugar hydrolysis, CWR of ball-milled mature senesced stems (50 mg) were swelled in 500 μL H 2 SO 4 (72%, w/v) at 30° C. for 60 min, and autoclaved at 120° C. for 1 h in dilute H 2 SO 4 (4%, w/v) after addition of deionized water (14 mL). Samples were cooled down at room temperature and filtered using pre-weighted GF/C glass microfiber filters (Whatman). Filtrates were collected and diluted 100 times with deionized water prior to HPAEC-PAD analysis. For hemicellulose hydrolysis, CWR of ball-milled mature dried stems (5 mg) were hydrolyzed in 1 ml of 2 M trifluoroacetic acid (TFA) for 1 h at 120° C. TFA was removed by drying under vacuum and the residue suspended in deionized water (1 mL) prior to HPAEC-PAD analysis.
HPAEC-PAD Analysis
Monosaccharide composition was determined by HPAEC-PAD of hydrolyzed material. Chromatography was performed on a PA20 column (Dionex) at a flow rate of 0.5 mL min −1 . Before injection of each sample (20 μL) the column was washed with 200 mM NaOH for 10 min, then equilibrated with 10 mM NaOH for 10 min. The elution program consisted of a linear gradient from 10 mM NaOH to 5 mM NaOH from 0 to 1.5 min, followed by isocratic elution with 5 mM NaOH from 1.5 to 20 min, and a linear gradient up to 800 mM NaOH from 20 to 43 min. Monosaccharides were detected using a pulsed amperometric detector (gold electrode) set on waveform A according to manufacturer's instructions. A calibration curve of monosaccharide standards that includes L -Fuc, L -Rha, L -Ara, D -Gal, D -Glc, D -Xyl, D -GalA and D -GlcA (Sigma-Aldrich) was run for verification of response factors. Statistical analysis was performed using ANOVA followed by Tukey's test.
FT-Raman and FT-IR Spectral Analyses
FT-Raman spectroscopy was conducted on CWR of ball-milled mature senesced stems (2 mg) from three independent cultures. Raman spectra were collected using a Bruker MultiRAM FT-Raman system equipped with a 1064 nm diode laser (Bruker Optics Inc.). Five spectra were acquired for each sample with spectral resolution of 4 cm −1 using a laser power of 50 mW and 256 scans to achieve good signal-to-noise ratio. White light correction of the acquired spectra was performed to correct the influence of the optics on the spectrometer. Spectra in the range of 200-3500 cm −1 were smoothed and baseline corrected using OPUS software. Lignin and polysaccharides (cellulose and hemicellulose) content were determined using integrated intensities measured over the range of 1555-1690 cm −1 and 1010-1178 cm −1 , respectively. For FT-IR spectroscopy, analyses were carried out on xylem and interfascicular fibers tissues from 50-μm thick sections of the basal region of stems of five-week-old plants. For both wild type and IRX5:HCHL (line 2), five to six sections from three different plants were analyzed. FT-IR spectra were collected from a 50 μm×50 μm window targeting xylem vessels or interfascicular fibers, and normalization of the data and statistical analysis (Student's t-test) were performed as described (Mouille et al., 2003).
Isolation of Cellulolytic Lignin (CEL) and Size Exclusion Chromatography (SEC)
CEL lignin was purified from wild type and IRX5:HCHL (line 2) plants. One gram of ball-milled mature senesced stems was mixed with 50 mM NaCl (30 ml) and incubated overnight at 4° C. After centrifugation (2,800 g, 10 min), the biomass was extracted sequentially by sonication (20 min) with 80% ethanol (three times), acetone (one time), chloroform-methanol (1:1, v/v, one time) and acetone (one time). The obtained CWR were ball-milled for 3 h per 500 mg of sample (in 10 min on/10 min off cycles) using a PM100 ball mill (Retsch) vibrating at 600 rpm with zirconium dioxide vessels (50 mL) containing ZrO 2 ball bearings (10×10 mm). Ball-milled walls (490 mg for wild type and 480 mg for IRX5:HCHL) were transferred to centrifuge tubes (50 mL) and digested four times over three days at 30° C. with crude cellulases (Cellulysin; Calbiochem; 60 mg g −1 of sample) in NaOAc pH 5.0 buffer (30 mL) under gentle rotation. The obtained CEL was washed 3 times with deionized water and lyophilized overnight. CEL recovered were 131 mg for wild type (27.3%) and 101 mg for IRX5:HCHL (20.6%). For SEC analysis, 1% (w/v) CEL lignin solutions were prepared in analytical-grade 1-methyl-2-pyrrolidinone-DMSO (1:1, v/v) and sonicated for 3 hours at 40° C.
Polydispersity of dissolved lignin was determined using analytical techniques SEC UV-F and SEC UV-A as described elsewhere (George et al., 2011, submitted). An Agilent 1200 series binary LC system (G1312B) equipped with FL (G1321A) and DA (G1315D) detectors was used. Separation was achieved with a Mixed-D column (5 mm particle size, 300 mm×7.5 mm i.d., linear molecular weight range of 200 to 400,000 u, Polymer Laboratories) at 80° C. using a mobile phase of NMP at a flow rate of 0.5 mL min −1 . Absorbance of material eluting from the column was detected at 300 nm (UV-A). Excitation 250 nm and emission 450 nm were used for UV-F detection. Intensities were area normalized and molecular mass estimates were determined after calibration of the system with polystyrene standards.
Cell Wall Pretreatments and Saccharification
Ball-milled mature senesced stems (10 mg) were mixed with 340 μL of water, 340 μL of H 2 SO 4 (1.2%, w/v), or 340 μL of NaOH (0.25%, w/v) for hot water, dilute acid, or dilute alkaline pretreatments, respectively, incubated at 30° C. for 30 min, and autoclaved at 120° C. for 1 h. After cooling down at room temperature, samples pretreated with dilute acid and dilute alkaline were neutralized with 5 N NaOH (25 μL) and 1.25 N HCl (25 μL), respectively. Saccharification was initiated by adding 635 μL of 100 m M sodium citrate buffer pH 6.2 containing 80 g ml −1 tetracycline, 5% w/w cellulase complex NS50013 and 0.5% w/w glucosidase NS50010 (Novozymes). After 72 h of incubation at 50° C. with shacking (800 rpm), samples were centrifuged (20,000 g, 3 min) and 10 μL of the supernatant was collected for reducing sugar measurement using the DNS assay and glucose solutions as standards (Miller, 1959).
Transcriptome Studies
Microarray analysis was performed on complete Arabidopsis thaliana transcriptome microarrays containing 24,576 gene-specific tags (GSTs) corresponding to 22,089 genes from Arabidopsis (Crowe et al., 2003; Hilson et al., 2004). RNA samples from three independent biological replicates were isolated and separately analyzed. For each biological replicate, RNA from the main inflorescence stem (first two internodes) of three plants were pooled. For each comparison, one technical replication with fluorochrome reversal was performed for each biological replicate (i.e. nine hybridizations per comparison). Reverse transcription of RNA was conducted in the presence of Cy3-dUTP or Cy5-dUTP (PerkinElmer-NEN Life Science Products), and hybridization and scanning of the slides were performed as described in Lurin et al. (2004).
Statistical Analysis of Microarray Data
Statistical analysis was performed with normalization based on dye swapping (i.e., four arrays, each containing 24,576 GSTs and 384 controls) as previously described (Gagnot et al., 2008). For the identification of differentially expressed genes, we performed a paired t test on log ratios, assuming that the variance of the log ratios was similar for all genes. Spots with extreme variances (too small or too large) were excluded. The raw P values were adjusted by the Bonferroni method, which controls the family-wise error rate (with a type I error equal to 5%) to minimize the number of false positives in a multiple-comparison context (Ge et al., 2003). Genes with a Bonferroni P value ≦0.05 were considered to be differentially expressed, as previously described (Gagnot et al., 2008).
Data Deposition
Microarray data from this article were deposited at GEO (http://www.ncbi.nlm.nih.gov/geo/) and at CATdb (http://urgv.evry.inra.fr/CATdb/) according to Minimum Information about a Microarray Experiment standards (MIME).
II. Results
Expression of a Bacterial HCHL Enzyme in Arabidopsis Stems
The tissue specific activity of the IRX5 promoter was verified using the beta-glucuronidase (GUS) as a reporter gene. Gus activity was essentially detected in the xylem vessels of the stem. After prolonged incubations, stem interfascicular fibers also showed strong GUS activity, and more moderate staining was observed in the vascular system of young seedlings, siliques, rosette and cauline leaves. No activity was detected in other organs or tissues except for the style and anthers ( FIG. 9 ). A codon-optimized sequence encoding HCHL from Pseudomonas fluorescens AN103 was designed and cloned downstream of the IRX5 promoter for preferential expression in lignified tissues of Arabidopsis stems. Presence of HCHL transcripts in the main stem of five independent transformants was verified by RT-PCR in the T1 generation ( FIG. 2A ). Plants homozygous for the IRX5:HCHL construct were identified in the T2 generation, and used to analyze HCHL protein expression and activity in stems. Western blotting analysis using the ‘universal antibody’ allowed detection of HCHL in stem extracts of the five selected transgenic lines ( FIG. 2B ; Eudes et al. 2010). Furthermore, HCHL activity could be detected in the stem of these lines, ranging from 0.025 to 0.16 pkat vanillin μg −1 protein using feruloyl-CoA as substrate, whereas no detectable activity was observed in protein extracts of wild type plants (Table I). Two transgenic lines showing the highest and the lowest levels of HCHL activity, and two lines exhibiting intermediate activity level were selected for detailed analysis.
Growth Characteristics and Tissue Anatomy of IRX5:HCHL Lines
IRX5:HCHL plants had growth and development characteristics visually similar to the wild type from early rosette stage and until senescence ( FIG. 10 ). However, mature senesced stems from lines IRX5:HCHL (4) and IRX5:HCHL (5) were little bit shorter (22% and 13% reduction) and had lower dry weight yield (30% and 16% reduction) compared to control plants, whereas those from lines IRX5:HCHL (1) and IRX5:HCHL (2) were not significantly different (Table II). Stem tissues of five-week-old IRX5:HCHL plants were inspected using light microscopy. Transverse stem cross-sections stained with Mäule and phloroglucinol-HCl reagents, which are indicative of S-units and hydroxycinnamaldehyde units in lignin, respectively, showed similar patterns between transgenic and wild type plants ( FIGS. 3A and 3B ). Similarly, lignin in stem sections stained with toluidine blue O did not revealed any quantitative differences between genotypes ( FIG. 3C ). A few collapsed xylem structures were, however, occasionally observed on some stem cross-sections of line IRX5:HCHL (4), but were absent in sections from other lines ( FIG. 3C ). Overall, these data suggest that lignin content is not drastically reduced in IRX5:HCHL plants.
IRX5:HCHL Lines Accumulate C 6 C 1 Soluble Phenolics
Methanol soluble fractions from stems of five-week-old wild type and IRX5:HCHL plants were extracted and analyzed by LC-MS. Analysis was performed to focus on hydroxybenzaldehydes, direct products of HCHL activity, and possible derivatives such as hydroxybenzoyl alcohols and hydroxybenzoic acids and their glucose conjugates. Trace amounts of 4-hydroxybenzaldehyde (HBAld), 3,4-dihydroxybenzaldehyde (3,4-DHBAld), and 4-hydroxybenzoic acid (HBA) were detected in IRX5:HCHL stem soluble extracts but not in wild type (Table III). Notably, much larger quantities of 4-hydroxybenzoic acid glucoside (HBAGlc) and 4-hydroxybenzoic acid glucose ester (HBAGE) were detected in IRX5:HCHL plant soluble extracts (ranging from 0.48 to 0.57 mg g −1 FW for HBAGlc, and from 0.96 to 1.65 mg g −1 FW for HBAGE), whereas trace amounts of these HBA-glucose conjugates were present in wild type extracts (Table III).
Considering that other soluble C 6 C 1 phenolics could be glycosylated, acid hydrolysis of the soluble fractions was performed to release aglycones from conjugated forms. This procedure brought down HBAGE and HBAG pools to undetectable levels, and concomitantly increased free HBA content in samples (Table IV). HBA content in the IRX5:HCHL lines ranged between 1.59 and 2.49 mg g −1 FW, which represents a 113 to 179 fold increase compared to values observed in wild type samples, and indicates that 88-94% of HBA accumulated in transgenic lines is glycosylated. In addition to HBA, other C 6 C 1 phenolics quantified in acid-treated extracts include vanillin (Van), 5-hydroxyvanillin (5OH-Van), syringaldehyde (Syrald), 5-hydroxyvanillic acid (5OH-VA), and syringic acid (SyrA), which are only detected in IRX5:HCHL extracts, as well as HBAld, 3,4-DHBAld, 3,4-dihydroxybenzoic acid (3,4-DHBA), and vanillic acid (VA), which are on average 14, 119, 1.6, and 40 times more abundant in IRX5: HCHL extracts compared to wild type, respectively (Table IV).
IRX5:HCHL Lines Show Enrichment in Cell Wall-Bound C 6 C 1 Phenolics
Extract-free cell wall residues (CWR) obtained from mature senesced stems of wild type and IRX5:HCHL plants were subjected to mild alkaline hydrolysis for the release of loosely-bound phenolics. This procedure released from the cell wall samples some HBAld, 3,4-HBAld, Van, 5OH-Van, SyrAld, HBA, VA, and SyrA, which were quantified using LC-MS analysis. 5OH-Van, undetectable in wild type cell wall, was present in that of IRX5:HCHL samples and HBAld, SyrAld, HBA, VA, and SyrA were increased on average by approx 2, 6, 68, 2 and 5 fold in cell walls of IRX5:HCHL plants compared to the wild type, respectively (Table V). These results indicate that larger amounts of C 6 C 1 phenolics are loosely-bound to cell walls in IRX5:HCHL plants. On the other hand, amount of ferulate and coumarate released from cell walls using this procedure did not differ between transgenic and wild type samples.
Spectral Analysis of IRX5:HCHL Plant Stems
Line IRX5:HCHL (2), which showed no defective xylem structures and biomass yield similar to wild type plants, was selected for further analyses. Fourier transformed Raman (FT-Raman) spectroscopy was used to determine the chemical composition of CWR obtained from senesced stems of IRX5:HCHL plants. Compared to the wild type, data showed that lignin content and amount of polysaccharides (cellulose and hemicellulose) in IRX5:HCHL plants were not significantly different ( FIG. 4A ). Moreover, Fourier transformed infrared (FT-IR) spectral analysis conducted on lignified tissues (xylem and interfascicular fibers) of transverse stem sections of five-week-old IRX5:HCHL and wild type plants revealed differences between the two genotypes ( FIG. 4B ). In particular, significant changes in spectra were observed for bands assigned to different bending or stretching of lignin (Agarwal and Atalla, 2010, Fackler et al., 2010). For example, absorptions at wavelengths 1589 cm −1 and 1506 cm −1 (aryl ring stretching), 1464 cm −1 (C—H group deformation), 1425 cm −1 (methoxyl C—H group deformation), 1379 cm −1 (aromatic skeletal vibrations combined with C—H group in plane deformation), and 1268 cm −1 (aryl ring breathing with C=O group stretch) were modified in fibers, whereas the most significant difference for xylem cell walls was observed at band 1367 cm −1 (methoxyl C—H group deformation). Overall, spectral analyses suggested compositional modifications of lignin in plants expressing HCHL.
Monosaccharide Content and Composition in IRX5:HCHL Plant Stems
Monosaccharide composition was determined after sulfuric acid hydrolysis of total cell wall polysaccharides from mature senesced stems of line IRX5:HCHL (2) and wild type plants. Although both genotypes had similar amount of total monosaccharides, IRX5:HCHL plants showed reduction in glucose (−12%) and increase in xylose (+22%) and arabinose (+16%) compared to wild type plants (Table VI). Moreover, hemicellulosic monosaccharides released from CWR using trifluoroacetic acid showed that total amount of sugar quantified in this hydrolysate was 23% higher in IRX5:HCHL stems which corresponds to higher xylose (+23%) and arabinose (+22%) contents compared to wild type (Table VI).
Incorporation of Unusual C 6 C 1 Monomers into the Lignin of IRX5:HCHL Plants
Lignin content and monomeric composition in mature senesced stems from wild type and IRX5:HCHL (2) plants was determined on CWR. In two independent cultures, klason lignin (KL) was identical and accounted for about 20% of the CWR for both wild type and IRX5:HCHL plants (Table VII). Lignin monomer composition was evaluated by thioacidolysis, a chemical degradative method that generates thioethylated monomers from lignin units involved in labile β-O-4 bonds. Data showed that total amount of conventional H, O, and S monomers released from CWR after thioacidolysis (or total yield) was reduced by 25% and 16% in the two independent cultures of IRX5:HCHL plants compared to the wild type, indicating that fewer of these three monolignols are crosslinked as β-O-4 bond in transgenics (Table VII). Considering identical KL values for both wild type and IRX5:HCHL CWR, these data indicate higher frequency of thioacidolysis-resistant bonds between lignin monomers in transgenic plants. The relative amount of G and S units recovered from this lignin fraction was unchanged, both wild type and transgenic samples showing an S/G ratio ranging between 0.34-0.36, however, molar frequency of H units was significantly higher in IRX5:HCHL plants (Table VII). Furthermore, the content of non-conventional units such as Van, Syrald, and SyrA released by thioacidolysis showed on average a 1.44-, 20.8-, and 1.65-fold increase in IRX5:HCHL plants compared to wild type plants, respectively. Interestingly, two new lignin units were released from the lignin of transgenics plants, which were identified as C 6 C 1 vanillyl alcohol (Vanalc) and syringyl alcohol (Syralc) (Table VIII). On the other hand, the content of coniferaldehyde end-groups (Cald) and VA was unchanged between the two genotypes (Table VIII). Overall, these data showed higher amount of C 6 C 1 phenolic end-groups among monomers released by thioacidolysis from IRX5:HCHL stem cell walls compared to wild type.
Lignin of IRX5:HCHL Plants has Reduced Molecular Mass
The polydispersity of cellulolytic lignin purified from wild type and IRX5:HCHL (2) stems was determined using size exclusion chromatography (SEC). Elution profiles acquired by monitoring UV-A absorbance (SEC UV-A 300 ) and UV-F fluorescence (SEC UV-F ex 250/ em 450) of the dissolved lignin revealed differences between wild type and IRX5:HCHL plants ( FIG. 6 ). First, total area corresponding to the largest mass peak detected between 7 min and 13.5 min was severely reduced in transgenics due to significant diminution of the largest lignin fragments which elute between 7 min and 9 min. Similarly, smaller molecular mass material which elutes later in a second peak between 13.5 min and 19.5 min was more abundant (increased by 27% and 16% using UV-A and UV-F detections) in IRX5:HCHL samples. Finally, the amount of the smallest lignin fragments detected between 19.5 min and 26.5 min using UV-F is increased by 55% in transgenics ( FIG. 6 ). These results demonstrate smaller chains and reduced polymerization degree in lignin purified from IRX5:HCHL plants.
IRX5:HCHL Lines Show Increased Saccharification Efficiency
To examine impact lignin size reduction on cell wall digestibility caused by the expression of the HCHL enzyme in lignifying tissues, saccharification assays were conducted biomass derived from mature senesced stems pretreated with hot water, dilute alkaline, and dilute acid. After a 72-h incubation with cellulase and glucosidase, pretreated biomass of IRX5 HCHL plants released more reducing sugars compared to wild type ( FIG. 7 ). In particular, improvement of saccharification efficiency observed for the different IRX5:HCHL lines ranged from 34% to 77% after hot water, from 43% to 71% after dilute alkaline, and from 15% to 31% after dilute acid pretreatments ( FIG. 7 ).
III. Discussion
Expression of HCHL in plants has originally been considered for in planta production of valuable and soluble compounds such as Van and HBA. Due to strong ectopic HCHL expression, however, adverse phenotypes such as chlorotic and senescing leaves, stunting, low pollen production, male sterility, collapsed xylem vessels, and reduction of biomass were observed in transgenic tobacco, and sugarcane (Mayer et al., 2001; Merali et al., 2007; McQualter et al., 2005). In this study, the inventors selected the promoter of a secondary cell wall cellulose synthase to preferentially express HCHL in the lignifying tissues of Arabidopsis stems ( FIG. 9 ). Successfully, plants transformed with the IRX5:HCHL construct were not dwarf or sterile, and young rosette leaves did not show reduced epidermal fluorescence which is symptomatic of alteration in phenylpropanoid-derived soluble phenolic pools. Although two IRX5:HCHL lines showed reduced biomass, and in one case some occasional collapsed xylem vessels caused by stronger HCHL activity and possibly modification of call wall integrity, some other IRX5:HCHL lines were comparable to wild-type plants.
As expected, the transgenic lines show increased amount of soluble C 6 C 1 aldehydes (HBAld, 3,4-DHBAld, and Van), which are produced upon HCHL activity after cleavage of hydroxybenzoyl-CoA, 3,4-dihydroxybenzoyl-CoA, and feruloyl-CoA ( FIG. 11 ). HCHL has no activity against sinapoyl-CoA, suggesting that Syrald is a conversion product of Van, which is supported by the identification of the new intermediate 5OH-Van (Mitra et al., 1999; FIG. 11 ). Similarly, the data presented herein cannot exclude that some of the 3,4-DHBald and Van accumulated in transgenics derive from HBAld after successive hydroxylation and methoxylation on the C-3 position of the phenyl ring. Interestingly, several genes encoding monooxygenases are upregulated in plants expressing HCHL, but no known or predicted O-methyltransferase showed altered expression level (Table IX). Analysis of soluble aromatics in transgenics also shows that C 6 -C 1 aldehydes are oxidized into their respective acid forms. This conversion could be a response to reduce the amount of these chemically reactive compounds since several genes from the short-chain dehydrogenase/reductase (SDR), aldo-keto reductase (AKR), and aldehyde dehydrogenase (ALDH) families are upregulated in plants expressing HCHL, ( FIG. 11 ; Kirch et al., 2004; Kavanagh et al., 2008). In particular, AKR4C9 (At3g37770) encodes an enzyme known to metabolize a range of hydroxybenzaldehydes (Simpson et al., 2009). In addition, soluble C 6 C 1 phenolics predominantly accumulate as conjugates in transgenics since we showed that glucose conjugates (phenolic glucoside and glucose ester) represented around 90% of the HBA soluble pool, presumably for vacuolar storage as previously described for other C 6 C 1 phenolics (Eudes et al., 2008). This C 6 C 1 acid glucoside accumulation is in agreement with what was observed in tobacco, sugar beet, datura and sugar cane plants expressing HCHL (Mayer et al., 2001; Mitra et al., 2002; McQualter et al., 2005; Rahman et al., 2009). Interestingly, expression analysis of HCHL plants revealed seven up-regulated genes of the UDP-glucosyltranferase (UGT) family and among them UGT75B1 and UGT73B4 were previously shown to catalyze glucose esterification and phenolic glucosylation of benzoates (Table IX; Lim et al, 2002; Eudes et al., 2008).
Furthermore, this study showed that some C 6 C 1 phenolics are released from extract-free cell wall fractions of senesced stems upon mild alkaline hydrolysis. Higher amounts of HBAld, 5OH-Van, SyrAld, HBA, VA, and SyrA were measured in the ‘loosely wall-bound’ fraction of IRX5:HCHL lines compared to wild type. Although the type of linkages involved is unclear, loosely attached C 6 C 1 phenolics were previously extracted from cell walls of Arabidopsis leaves and roots (Tan et al., 2004; Forcat et al., 2010).
The lignin from plants expressing HCHL shows increased content of C 6 C 1 phenolics. Notably, analysis of lignin monomers released after thioacidolysis identified two novel units (Vanalc and Syralc) and showed large amounts of Syrald, Van, and SyrA. This suggests part of C 6 C 1 aldehydes are converted into alcohols and acids and demonstrates that they are incorporated into the lignin as β-O-4-linked C 6 C 1 monomer end-groups in lignin ( FIG. 11 ). Due to the absence of phenyl propanoid tail, these new monolignols when incorporated in lignin end chains, should block further polymerization of the polymer and act as condensation terminator or stopper molecules. Interestingly, transgenic plants also show higher content of conventional H-units (+30%), which preferentially distribute as terminal end-groups in lignin and contribute to modifications of lignin size and structure (Lapierre, 2010; Ziebell et al., 2010). In addition, plants overproducing C 6 C 1 monolignols and with similar lignin content as wild type plants show a lower thioacidolysis release of monolignols, indicating a reduction in the availability of free propanoid tail in lignin end-chain for polymer elongation. It also indicates higher carbon-carbon linkages and increased lignin condensation degree.
It was postulated that higher incorporation of end-group units in lignin would hinder more frequently chain elongation and ultimately reduce lignin branching and polymerization degree. This hypothesis is further supported by the analysis the polydispersity of lignin in plants overproducing theses “stopper” molecules, which shows significant reduction of high molecular masses and significant increase of low molecular masses, hence supporting smaller lignin chain length. These observations are relevant for understanding the higher susceptibility of the biomass from HCHL lines to polysaccharide enzymatic hydrolysis. Although saccharification efficiency of biomass is determined by several characteristics of cell walls, the observed saccharification efficiency improvement after different pretreatments suggests that less ramified lignin would reduce cross-linkages and embedding of cell wall polysaccharides (cellulose and hemicellulose) and would favor their accessibility to hydrolytic enzymes. This hypothesis is supported by the fact that total sugar content is unchanged in cell walls of plants overproducing theses C 6 C 1 monomers.
it is concluded that in planta the over-production of lignification “stopper” molecules can be used to modify the lignin structure in order to reduce lignocellulosic biomass recalcitrance. Since this approach does not require any particular genetic background, it should be easily transferable to various energycrops. Restricting the biosynthesis of these lignification “stopper” molecules in supporting lignified tissues (i.e. schlerenchyma fibers) as well as avoiding strong production in conductive tissues (i.e. vessels) should limit the risk of adverse effects on plant development and biomass yield.
Example 2
Expression of Bacterial HCHL in Rice
This example illustrates expression of bacterial HCHL in a monocot, rice. Rice plants were transformed with the DNA constructs described in Example 1. Rice lines were engineered ( FIG. 12 ) that expressed the HCHL gene, as demonstrated by RT-PCR ( FIG. 13 ). Furthermore, evaluation of rice lines demonstrated that they accumulated pHBA (para-hydroxybenzoate) ( FIG. 14 ), which is generated from the conversion of p-coumaroyl-CoA by HCHL.
This experiment additionally demonstrated that a secondary wall promoter, pIRX5, from a dicot ( Arabidopsis in this example), can be used in a monocot (rice in this example).
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, accession numbers, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
LIST OF REFERENCES
Agarwal U P and Aralla R H (2010) Vibrational spectroscopy. In C Heitner, D Dimmel, J Schmidt eds. Lignin and Lignans: Advances in Chemistry. CRC Press, Boca Raton, pp 103-136
Bechtold N, Pelletier G (1998) In planta Agrobacterium -mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82: 259-266
Berthet et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. The Plant cell (2011) vol. 23 (3) pp. 1124-37
Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519-546
Bonawitz N D, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44: 337-363
Boudet A M (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68: 2722-2735
Bradford M M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
Brown et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell (2005) vol. 17 (8) pp. 2281-95
Brown et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis . Plant J (2009) vol. 57 (4) pp. 732-46
Buer C S, Imin N, Djordjevic M A (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52: 98-111
Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60: 165-182
Chen et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis . Plant J (2005) vol. 43 (2) pp. 273-83
Chen F, Dixon R A (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25: 759-761
Crowe M L, Serizet C, Thareau V, Aubourg S, Rouze P, Hilson P, Beynon J, Weisbeek P, van Hummelen P, Reymond P, Paz-Ares J, Nietfeld W, Trick M (2003) CATMA: a complete Arabidopsis GST database. Nucleic Acids Res 31: 156-158
Dence C (1992) Lignin determination. In C Dence, S Lin, eds, Methods in Lignin Chemistry. Springer-Verlag, Berlin, pp 33-61
de Vrije T, de Haas G G, Tan G B, Keijsers E R, Claassen P A (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii . Int J Hydrogen Energy 27: 1381-1390
Dien B S, Jung H-JG, Vogel K P, Casler M D, Lamb J F S, Iten L, Mitchell R B, Sarath G (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30: 880-891
Dien B S, Sarath G, Pedersen J F, Satler S E, Chen H, Funnell-Harris D L, Nichols N N, Cotta M A (2009) Improved sugar conversion and ethanol yield for forage sorghum ( Sorghum bicolor (L.) Moench) lines with reduced lignin contents. Bioenerg Res 2: 153-164
Dien B S, Miller D J, Hector R E, Dixon R A, Chen F, McCaslin M, Reisen P, Sarath G, Cotta M A (2011) Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol 102: 6479-6486
Elissetche J P, Valenzuela S, García R, Norambuena M, Iturra C, Rodríguez J, Teixeira Mendonça R, Balocchi C (2011) Transcript abundance of enzymes involved in lignin biosynthesis of Eucalyptus globulus genotypes with contrasting levels of pulp yield and wood density. Tree Genet Gen DOI: 10.1007/s11295-011-0367-5
Eudes A, Pollet B, Sibout R, Do C T, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana . Planta 225: 23-39
Eudes A, Baidoo E E, Yang F, Surd H, Hadi M Z, Collins F W, Keasling J D, Loqué D (2011) Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae . Appl Microbiol Biotechnol 89: 989-1000
Eudes A, Bozzo G G, Waller J C, Naponelli V, Lim E K, Bowles D J, Gregory J F 3rd, Hanson A D (2008) Metabolism of the folate precursor p-aminobenzoate in plants: glucose ester formation and vacuolar storage. J Biol Chem 283: 15451-15459
Fackler K, Stevanic J S, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2010) Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme Microb Technol 47: 257-267
Forcat S, Bennett M, Grant M, Mansfield J W (2010) Rapid linkage of indole carboxylic acid to the plant cell wall identified as a component of basal defence in Arabidopsis against hrp mutant bacteria. Phytochemistry 71: 870-876
Franke et al. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J (2002) vol. 30 (1) pp. 33-45
Fu C, Mielenz J R, Xiao X, Ge Y, Hamilton C Y, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon R A, Wang Z Y (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108: 3803-3808
Gagnot S, Tamby J P, Martin-Magniette M L, Bitton F, Taconnat L, Balzergue S, Aubourg S, Renou J-P, Lecharny A, Brunaud V (2008) CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Res 36 (database issue): D986-990
Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon R A (2011) Selective lignin downregulation leads to constitutive defense response expression in alfalfa ( Medicago sativa L.). New Phytol 190: 627-639
Gasson M J, Kitamura Y, McLauchlan W R, Narbad A, Parr A J, Parsons E L, Payne J, Rhodes M J, Walton N J (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273: 4163-4170
Ge Y C, Dudoit S, Speed T P (2003) Resampling-based multiple testing for microarray data analysis. Test 12: 1-77
George A, Tran K, Morgan T J, Benke P I, Berrueco C, Lorente E, Wu B C, Simmons B A and Holmes B M (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chemistry. (Submitted)
Gou J Y, Yu X H, Liu C J (2009) A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis . Proc Natl Acad Sci USA 106: 18855-18860
Grabber J H, Hatfield R D, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9: 2510-2516
Ha et al. Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana . Phytochemistry (2002) vol. 61 (1) pp. 7-14
Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25: 989-994
Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao R P, Bitton F, Caboche M, Cannoot B, Chardakov V, Cognet-Holliger C, Colot V, Crowe M, Darimont C, Durinck S, Eickhoff H, de Longevialle A F, Farmer E E, Grant M, Kuiper M T, Lehrach H, Leon C, Leyva A, Lundeberg J, Lurin C, Moreau Y, Nietfeld W, Paz-Ares J, Reymond P, Rouze P, Sandberg G, Segura M D, Serizet C, Tabrett A, Taconnat L, Thareau V, Van Hummelen P, Vercruysse S, Vuylsteke M, Weingartner M, Weisbeek P J, Wirta V, Wittink F R, Zabeau M, Small I (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14: 2176-2189
Jones et al. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis . Plant J (2001) vol. 26 (2) pp. 205-16
Kavanagh K L, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65: 3895-3906
Keasling J D (2010) Manufacturing molecules through metabolic engineering. Science 330: 1355-1358
Kim H, Ralph J, Yahiaoui N, Pean M, Boudet A M (2000) Cross-coupling of hydroxycinnamyl aldehydes into lignins. Org Lett 2: 2197-2200
Kim H, Ralph J, Lu F, Ralph S A, Boudet A M, MacKay J J, Sederoff R R, Ito T, Kawai S, Ohashi H, Higuchi T (2003) NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org Biomol Chem 1: 268-281
Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5). Org Biomol Chem 8: 576-591
Kirch H H, Bartels D, Wei Y, Schnable P S, Wood A J (2004) The ALDH gene superfamily of Arabidopsis . Trends Plant Sci 9: 371-377
Ko et al. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis . The Plant journal: for cell and molecular biology (2009) vol. 60 (4) pp. 649-65
Lalonde S, Sero A, Pratelli R, Pilot G, Chen J, Sardi M I, Parsa S A, Kim D Y, Acharya B R, Stein E V, Hu H C, Villiers F, Takeda K, Yang, Y, Han Y S, Schwacke R, Chiang W, Kato N, Loqué D, Assmann S M, Kwak J M, Schroeder J, Rhee S Y and Frommer W B (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2, Frontiers in Plant Physiology doi: 10.3389/fphys.2010.00024
Lapierre C, Pollet B, Rolando R (1995) New insights into the molecular architecture of hardwood lignins by chemical degradation methods. Res Chem Intermed 21: 397-412
Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple J C, Boerjan W, Ferret V V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119: 153-164
Lapierre C (2010) Determining [sic] lignin structure by chemical degradations. In C Heitner, D Dimmel, J Schmidt eds. Lignin and Lignans: Advances in Chemistry. CRC Press, Boca Raton, pp 11-48
Lim E K, Doucet C J, Li Y, Elias L, Worrall D, Spencer S P, Ross J, Bowles D J (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277: 586-592
Li X, Weng J K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54: 569-581
Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst S A, Martin C, Michael A J (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21: 318-333.
Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette M L, Mireau H, Peeters N, Renou J P, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16: 2089-2103
Mayer M J, Narbad A, Parr A J, Parker M L, Walton N J, Mellon F A, Michael A J (2001) Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-CoA hydratase/lyase enzyme function. Plant Cell 13: 1669-1682
McCarthy et al. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis . Plant Cell Physiol (2009) vol. 50 (11) pp. 1950-64
McQualter R B, Chong B F, Meyer K, Van Dyk D E, O'Shea M G, Walton N J, Viitanen P V, Brumbley S M (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3: 29-41
Merali Z, Mayer M J, Parker M L, Michael A J, Smith A C, Waldron K W (2007) Metabolic diversion of the phenylpropanoid pathway causes cell wall and morphological changes in transgenic tobacco stems. Planta 225: 1165-1178
Meyer et al. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis . Proc Natl Acad Sci USA (1998) vol. 95 (12) pp. 6619-23
Milkowski C, Strack D (2010) Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta 232: 19-35
Miller G L (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428
Mitra A, Kitamura Y, Gasson M J, Narbad A, Parr A J, Payne J, Rhodes M J, Sewter C, Walton N J (1999) 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL)—An enzyme of phenylpropanoid chain cleavage from Pseudomonas . Arch Biochem Biophys 365: 10-16
Mitra A, Mayer M J, Mellon F A, Michael A J, Narbad A, Parr A J, Waldron K W, Walton N J (2002) 4-Hydroxycinnamoyl-CoA hydratase/lyase, an enzyme of phenylpropanoid cleavage from Pseudomonas , causes formation of C(6)-C(1) acid and alcohol glucose conjugates when expressed in hairy roots of Datura stramonium L. Planta 215: 79-89
Mitsuda et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell (2005) vol. 17 (11) pp. 2993-3006
Mitsuda et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis . Plant Cell (2007) vol. 19 (1) pp. 270-80
Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant J 35: 393-404
Moura J C, Bonine C A, de Oliveira Fernandes Viana J, Dornelas M C, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52: 360-376
Morreel K, Ralph J, Lu F, Goeminne G, Busson R, Herdewijn P, Goeman J L, Van der Eycken J, Boerjan W, Messens E (2004) Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol 136: 4023-4036
Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X, Zhao P X, Dixon R A (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11: 829-846
Rahman L, Kouno H, Hashiguchi Y, Yamamoto H, Narbad A, Parr A, Walton N, Ikenaga T, Kitamura Y (2009) HCHL expression in hairy roots of Beta vulgaris yields a high accumulation of p-hydroxybenzoic acid (pHBA) glucose ester, and linkage of pHBA into cell walls. Bioresour Technol 100: 4836-4842
Ralph J, Lapierre C, Marita J M, Kim H, Lu F, Hatfield R D, Ralph S, Chapple C, Franke R, Hemm M R, Van Doorsselaere J, Sederoff R R, O'Malley D M, Scott J T, MacKay J J, Yahiaoui N, Boudet A, Pean M, Pilate G, Jouanin L, Boerjan W (2001) Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry 57: 993-1003
Ralph J, Kim H, Lu F, Grabber J H, Leple J C, Berrio-Sierra J, Derikvand M M, Jouanin L, Boerjan W, Lapierre C (2008) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J 53: 368-379
Reddy M S, Chen F, Shadle G, Jackson L, Aljoe H, Dixon R A (2005) Targeted downregulation of cytochrome P450 enzymes for forage quality improvement in alfalfa ( Medicago sativa L.). Proc Natl Acad Sci USA 102: 16573-16578
Rohde et al. Molecular phenotyping of the pall and pall mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell (2004) vol. 16 (10) pp. 2749-71
Sibout et al. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis . Plant Cell (2005) vol. 17 (7) pp. 2059-76
Simmons B A, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13: 313-320
Simpson P J, Tantitadipatak C, Reed A M, Mather O C, Bunce C M, White S A, Ride J P (2009) Characterization of two novel aldo-keto reductases from Arabidopsis : Expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J Mol Biol 392: 465-480
Sluiter A, Crocker D, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton, D (2008) Determination of Structural Carbohydrates and Lignin in Biomass NREL/TP-510-42618. Laboratory Analytical Procedure, National Renewable Energy Laboratory, Golden, Colo., USA
Studer M H, Demartini J D, Davis M F, Sykes R W, Davison B, Keller M, Tuskan G A, Wyman C E (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 108: 6300-6305
Taboada A, Novo-Uzal E, Flores G, Loureda M, Ros Barceló A, Masa A, Pomar F (2010) Digestibility of silages in relation to their hydroxycinnamic acid content and lignin composition. J Sci Food Agric 90: 1155-1162.
Tan J, Bednarek P, Liu J, Schneider B, Svatos A, Hahlbrock K (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65: 691-699
Turner and Somerville. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell (1997) vol. 9 (5) pp. 689-701
Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem rev 9: 1-17
Weng J K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytologist 187:273-285
Weng J K, Mo H, Chapple C (2010) Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. Plant J 64: 898-911
Wu et al. Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol (2010) vol. 153 (2) pp. 542-54
Zhong et al. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis . Plant Cell (2006) vol. 18 (11) pp. 3158-70
Zhong et al. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis . Plant Cell (2007) vol. 19 (9) pp. 2776-92
Zhong and Ye. Regulation of cell wall biosynthesis. Curr Opin Plant Biol (2007) vol. 10 (6) pp. 564-72
Zhou et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis . Plant Cell (2009) vol. 21 (1) pp. 248-66
Ziebell A, Gracom K, Katahira R, Chen F, Pu Y, Ragauskas A, Dixon R A, Davis M (2010) Increase in 4-coumaryl alcohol units during lignification in alfalfa ( Medicago sativa ) alters the extractability and molecular weight of lignin. J Biol Chem 285:38961
ILLUSTRATIVE SEQUENCES
SEQ ID NO: 1
Amino acid sequence for Pseudomonas fluorscens HCHL
(GenBank Accession No. CAA73502)
MSTYEGRWKTVKVEIEDGIAFVILNRPEKRNAMSPTLNREMIDVLETLEQDPAA
GVLVLTGAGEAWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRMYAKP
TIAMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTV
GHRQSLYYIMTGKTFGGQKAAEMGLVNESVPLAQLREVTIELARNLLEKNPVVL
RAAKHGFKRCRELTWEQNEDYLYAKLDQSRLLDTEGGREQGMKQFLDDKSIKPG
LQAYKR
SEQ ID NO: 2
Polynucleotide sequence encoding SEQ ID NO: 1
(codon-optimized by GenScript)
ATGTCTACTTACGAGGGAAGATGGAAGACTGTTAAGGTTGAGATCGAGGATGGA
ATCGCTTTCGTTATCCTCAACAGACCTGAGAAGAGAAACGCTATGTCTCCTACT
CTCAACAGAGAGATGATCGATGTTCTCGAGACTCTCGAGCAGGATCCTGCTGCT
GGAGTTCTCGTTCTCACTGGAGCTGGAGAGGCTTGGACTGCTGGTATGGATCTC
AAGGAGTACTTCAGAGAGGTTGATGCTGGACCTGAGATCCTCCAGGAGAAGATC
AGAAGAGAGGCTTCTCAGTGGCAGTGGAAGCTCCTCAGAATGTACGCTAAGCCT
ACTATCGCTATGGTTAACGGATGGTGCTTCGGAGGAGGATTCTCTCCTCTCGTT
GCTTGCGATCTCGCTATCTGCGCTGATGAGGCTACTTTCGGACTCTCTGAGATC
AACTGGGGAATCCCTCCTGGAAACCTCGTTTCTAAGGCTATGGCTGATACTGTT
GGACATAGACAGTCTCTCTACTACATCATGACTGGAAAGACTTTCGGAGGACAG
AAGGCTGCTGAGATGGGACTCGTTAACGAGTCTGTTCCTCTCGCTCAGCTCAGA
GAGGTTACTATCGAGCTCGCTAGAAACCTCCTCGAGAAGAACCCTGTTGTTCTC
AGAGCTGCTAAGCATGGATTCAAGAGATGCAGAGAGCTCACTTGGGAGCAGAAC
GAGGATTACCTCTACGCTAAGCTCGATCAGTCTAGACTCCTCGATACTGAGGGA
GGAAGAGAGCAGGGTATGAAGCAGTTCCTCGATGATAAGTCTATCAAGCCTGGA
CTCCAGGCTTACAAGAGA
SEQ ID NO: 3
Polynucleotide sequence containing IRX5 promoter (pIRX5)
ATGAAGCCATCCTCTACCTCGGAAAAACTTGTTGCGAGAAGAAGACATGCGATG
GCATGGATGCTTGGATCTTTGACATTGATGACACTCTTCTCTCAACCATTCCTT
ACCACAAGAGCAACGGTTGTTTCGGGTAAATAAACTAAACTTAACCATATACAT
TAGCCTTGATTCGGTTTTTGGTTTGATTTATGGATATTAAAGATCCGAATTATA
TTTGAACAAAAAAAAATGATTATGTCACATAAAAAAAAATTGGCTTGAATTTTG
GTTTAGATGGGTTTAAATGTCTACCTCTAATCATTTCATTTGTTTTCTGGTTAG
CTTTAATTCGGTTTAGAATGAAACCGGGATTGACATGTTACATTGATTTGAAAC
AGTGGTGAGCAACTGAACACGACCAAGTTCGAGGAATGGCAAAATTCGGGCAAG
GCACCAGCGGTTCCACACATGGTGAAGTTGTACCATGAGATCAGAGAGAGAGGT
TTCAAGATCTTTTTGATCTCTTCTCGTAAAGAGTATCTCAGATCTGCCACCGTC
GAAAATCTTATTGAAGCCGGTTACCACAGCTGGTCTAACCTCCTTCTGAGGTTC
GAATCATATTTAATAACCGCATTAAACCGAAATTTAAATTCTAATTTCACCAAA
TCAAAAAGTAAAACTAGAACACTTCAGATAAATTTTGTCGTTCTGTTGACTTCA
TTTATTCTCTAAACACAAAGAACTATAGACCATAATCGAAATAAAAACCCTAAA
AACCAAATTTATCTATTTAAAACAAACATTAGCTATTTGAGTTTCTTTTAGGTA
AGTTATTTAAGGTTTTGGAGACTTTAAGATGTTTTCAGCATTTATGGTTGTGTC
ATTAATTTGTTTAGTTTAGTAAAGAAAGAAAAGATAGTAATTAAAGAGTTGGTT
GTGAAATCATATTTAAAACATTAATAGGTATTTATGTCTAATTTGGGGACAAAA
TAGTGGAATTCTTTATCATATCTAGCTAGTTCTTATCGAGTTTGAACTCGGGTT
ATGATTATGTTACATGCATTGGTCCATATAAATCTATGAGCAATCAATATAATT
CCGAGCATTTTGGTATAACATAATGAGCAAGTATAACAAAAGTATCAAACCTAT
GCAGGGGAGAAGATGATGAAAAGAAGAGTGTGAGCCAATACAAAGCAGATTTGA
GGACATGGCTTACAAGTCTTGGGTACAGAGTTTGGGGAGTGATGGGTGCACAAT
GGAACAGCTTCTCTGGTTGTCCAGTTCCCAAGAGAACCTTCAAGCTCCCTAACT
CCATCTACTATGTCGCCTGATTAAATCTTATTTACTAACAAAACAATAAGATCA
GAGTTTCATTCTGATTCTTGAGTCTTTTTTTTCTCTCTCCCTCTTTTCATTTCT
GGTTTATATAACCAATTCAAATGCTTATGATCCATGCATGAACCATGATCATCT
TTGTGTTTTTTTTTCCTTCTGTATTACCATTTTGGGCCTTTGTGAAATTGATTT
TGGGCTTTTGTTATATAATCTCCTCTTTCTCTTTCTCTACCTGATTGGATTCAA
GAACATAGCCAGATTTGGTAAAGTTTATAAGATACAAAATATTAAGTAAGACTA
AAGTAGAAATACATAATAACTTGAAAGCTACTCTAAGTTATACAAATTCTAAAG
AACTCAAAAGAATAACAAACAGTAGAAGTTGGAAGCTCAAGCAATTAAATTATA
TAAAAACACTAACTACACTGAGCTGTCTCCTTCTTCCACCAAATCTTGTTGCTG
TCTCTTGAAGCTTTCTTATGACACAAACCTTAGACCCAATTTCACTCACAGTTT
GGTACAACCTCAGTTTTCTTCACAACAAATTCAAACATCTTACCCTTATATTAC
CTCTTTATCTCTTCAATCATCAAAACACATAGTCACATACATTTCTCTACCCCA
CCTTCTGCTCTGCTTCCGAGAGCTCAGTGTACCTCGCC
SEQ ID NO: 4
Sagittula _ stellata _E-37__ZP_01746375 (amino acid sequence)
MTATEATLPANDPDLSGDNVAVAFEDGIAWVKLNRPEKRNAMSVSLAEDMNVVLD
KLEIDDRCGVLVLTGEGSAFSAGMDLKDFFRATDGVSDVERMRAYRSTRAWQWRT
LMHYSKPTIAMVNGWCFGGAFTPLICCDLAISSDDAVYGLSEINWGIIPGGVVSK
AISTLMSDRQALYYVMTGEQFGGQEAVKLGLVNESVPADKLRERTVELCKVLLEK
NPTTMRQARMAYKYIREMTWEESAEYLTAKGDQTVFVDKEKGREQGLKQFLDDKT
YRPGLGAYKR
SEQ ID NO: 5
Saccharopolyspora _ erythraea _NRRL_2338_YP_001105000
(amino acid sequence)
MSTPTTDPGTTTTPWGDTVLVDFDDGIAWVTLNRPEKRNAMNPAMNDEMVRTLDA
LEADPRCRVMVLTGAGESFSAGMDLKEYFREVDQTADPSVQIRVRRASAEWQWKR
LAHWSKPTIAMVNGWCFGGAFTPLVACDLAISDEEARYGLSEINWGIPPGGVVSR
ALAAAVSQRDALYFIMTGETFDGRRAEGMRLVNEAVPAERLRERTRELALKLAST
NPVVLRAAKVGYKIAREMPWEQAEDYLYAKLEQSQFLDAERGREKGMAQFLDDKS
YRPGLSAYSTD
SEQ ID NO: 6
Solibacter _ usitatus _Ellin6076_YP_821552
(amino acid sequence)
MDQYEEKWQTVKVEVDAEGIAWVIFNRPAKRNAMSPTLNREMAQVLETLELDAAA
KVLVLTGAGESWSAGMDLKEYFREVDGQPESHQEKIRREASLWQWKLLRMYAKPT
IAMVNGWCFGGAFSPLVACDLAIADEKAVFGLSEINWGIPPGNLVSKAVADTMGH
RKALHYIMTGETFTGAQAAEMGLVNAAVPTSELREATRTLALKLASKNPVILRAA
KHGFKRCRELTWEQNEDYLYAKLDQALHRDPEDARAEGMKQFLDEKSIKPGLQSY
KRS
SEQ ID NO: 7
Ralstonia _ solanacearum _GMI1000_NP_521786
(amino acid sequence)
MATYEGRWNTVKVDVEDGIAWVTLNRPDKRNAMSPTLNREMIDVLETLELDGDAQ
VLVLTGAGESWSAGMDLKEYFRETDGQPEIMQERIRRDCSQWQWKLLRFYSKPTI
AMVNGWCFGGAFSPLVACDLAIAADDAVFGLSEINWGIPPGNLVSKAVADTMGHR
AALHYIMTGETFTGREAAEMGLVNRSVPRERLREAVTELAGKLLAKNPVVLRYAK
HGFKRCRELSWEQNEDYLYAKVDQSNHRDPEKGRQHGLKQFLDDKTIKPGLQTYK
RA
SEQ ID NO: 8
Xanthomonas _ albilineans _YP_003377516 (amino acid sequence)
MSNYQDRWQTVQVQIDAGVAWVTLNRPEKRNAMSPTLNREMIDVLETLELDSAAE
VLVLTGAGESWSAGMDLKEYFREIDGKEEIVQERMRRDCSQWQWRLLRFYSKPTI
AAVNGWCFGGAFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAVADTMGHR
NAMLYIMTGRTFTGTEAAQMGLVNASVPRAQLRAEVTKLAQELQQKNPVVLRFAK
HGFKRCRELTWEQNEDYLYAKVDQSNHRDPEKGRQQGLKULDDKTIKPGLQTYKR
SEQ ID NO: 9
Acinetobacter _ baumannii _ATCC_17978_YP_001084143
(amino acid sequence)
MKMSYENRWETVDVKVEDGIAWVTLNRPEKKNAMSPTLNREMIDVLETLELDQNA
KVLVLTGAGDSWTAGMDLKEYFREVDTQPEIFQERIRRDSCRWQWQLLRMYSKPT
IAMVNGWCFGGGESPLVACDLAIAADEATEGLSEINWGIPPGNLVSKAMADTVGH
RASLYYIMTGKTFSGKEAETMGLVNKSVPLAQLKAEVTELANCLLEKNPVVLRTA
KNGFKRCRELTWDQNEDYLYAKLDQCIHRDTENGRQEGLKQFLDEKSIKPGLQSY
KRTG
SEQ ID NO: 10
Acinetobacter _sp._ADP1_YP_046390 (amino acid sequence)
MTYDKRWETVDVQVEHGIAWVTLNRPHKKNAMSPTLNREMIDVLETLELDSEAKV
LVLTGAGDSWTAGMDLKEYFREVDAQPEIFQERIRRDSCRWQWQLLRMYSKPTIA
MVNGWCFGGGFSPLVACDLAIAADEATFGLSEINWGIPPGNLVSKAMADTVGHRA
SLYYIMTGKTFTGKEAEAMGLINKSVPLAQLKAEVTELAQCLVEKNPVVLRTAKN
GEKRCRELTWDQNEDYLYAKLDQCNHRDTEGGRQEGLKQFLDEKSIKPGLQSYKR
TG
SEQ ID NO: 11
Chromohalobacter _ salexigens _DSM_3043_YP_572340
(amino acid sequence)
MSDYTNRWQTVKVDVEDGIAWVTLNRPEKRNAMSPTLNREMIDVLETIELDQDAH
VLVLTGEGESFSAGMDLKEYFREIDASPEIVQVKVRRDASTWQWKLLRHYAKPTI
AMVNGWCFGGAFSPLVACDLAIAADESVFGLSEINWGIPPGNLVSKAMADTVGHR
QALYYIMTGETFTGPQAADMGLVNQSVPRAELRETTHKLAATLRDKNPVVLRAAK
TGFKMCRELTWEQNEEYLYAKLDQAQQLDPEHGREQGLKQFLDDKSIKPGLESYR
R
SEQ ID NO: 12
Burkholderia _ cenocepacia _AU_1054_ZP_04942909
(amino acid sequence)
MSKYDNRWQTVEVKVEAGIAWVTLNRPEKRNAMSPTLNREMLEVLDAVEFDDEA
KVLVLTGAGAAWTAGMDLKEYFREIDGGSDALQEKVRRDASEWQWRRLRMYNKP
TIAMVNGWCFGGGFSPLVACDLAIAADDAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGAEAAEMGLVNSSVPLAELRDATIALAARLMDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKTIKPG
LQAYKR
SEQ ID NO: 13
Burkholderia _ ambifaria _MC40-6_YP_776799
(amino acid sequence)
MSKYDNRWQTVEVNVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGSAWTAGMDLKEYFREIDGGSDALQEKVRRDASEWQWRRLRMYNKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGVEAAEMGLVNSSVPLAGLRDATIALAARLMDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 14
Burkholderia _ cepacia _AMMD_YP_776799 (amino acid sequence)
MSKYDNRWQTVEVNVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGSAWTAGMDLKEYFREIDGGSDALQEKVRRDASEWQWRRLRMYNKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGVEAAEMGLVNSSVPLAGLRDATIALAARLMDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 15
Burkholderia _ thailandensis _MSMB43_ZP_02468311
(amino acid sequence)
MSKYDNRWQTVEVKVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGTAWTAGMDLKEYFREIDGGPDALQEKVRRDASEWQWRRLRMYGKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRCALHYIMTGDTFTGVEAADMGLVNRSVPLAELRDATIALAARLIDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 16
Burkholderia _ ubonensis _Bu_ZP_02382374
(amino acid sequence)
MSKYENRWQTVEVKVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGAAWTAGMDLKEYFREIDGGPDALQEKVRRDASEWQWRRLRMYGKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGVEAADMGLVNRSVPLAELRDATIALAARLIDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 17
Azotobacter _ vinelandii _AvOP_YP_002798614
(amino acid sequence)
MNKYEGRWKTVIVEIEGGIAWVTLNRPDKRNAMSPTLNREMRDVLETLEQDPAAR
VLVLTGAGSAWTAGMDLKEYFREVDAGPEILQEKIRREACEWQWKLLRMYAKPTV
AMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTVGHR
QALYYIMTGKTFDGRQAAEMGLVNQSVPLAQLRETVATLCQDLLDKNPVVLRAAK
NGFKRCRELTWEQNEDYLYAKLDQSRLLDEEGGREEGMRQFLDEKSIKPGLQAYK
R
SEQ ID NO: 18
Pseudomonas _ putida _KT2440_NP_745498 (amino acid sequence)
MSKYEGRWTTVKVELEAGIAWVTLNRPEKRNAMSPTLNREMVDVLETLEQDADAG
VLVLTGAGESWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRLYAKPTI
AMVNGWCFGGGFSPLVACDLAICANEATFGLSEINWGIPPGNLVSKAMADTVGHR
QSLYYIMTGKTFDGRKAAEMGLVNDSVPLAELRETTRELALNLLEKNPVVLRAAK
NGFKRCRELTWEQNEDYLYAKLDQSRLLDTTGGREQGMKQFLDDKSIKPGLQAYK
R
SEQ ID NO: 19
Pseudomonas _ fluorescens _SBW25_YP_002872871
(amino acid sequence)
MSNYEGRWTTVKVEIEEGIAWVILNRPEKRNAMSPTLNREMIDVLETLEQDPAAG
VLVLTGAGEAWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRMYAKPTI
AMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTVGHR
QSLYYIMTGKTFGGQKAAEMGLVNESVPLAQLREVTIELARNLLEKNPVVLRAAK
HGFKRCRELTWEQNEDYLYAKLDQSRLLDTEGGREQGMKQFLDDKSIKPGLQAYK
R
SEQ ID NO: 20
Pseudomonas _ syringae _NP_792742 (amino acid sequence)
MSKYEGRWTTVKVEIEQGIAWVILNRPEKRNAMSPTLNREMIDVLETLEQDPEAG
VLVLTGAGEAWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRMYAKPTI
AMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTVGHR
QSLYYIMTGKTFDGKKAAEMGLVNESVPLAQLRQVTIDLALNLLEKNPVVLRAAK
HGFKRCRELTWEQNEDYLYAKLDQSRLLDKEGGREQGMKQFLDDKSIKPGLEAYK
R
SEQ ID NO: 21
Ralstonia _ eutropha _JMP134_YP_299062 (amino acid sequence)
MANYEGRWKTVKVSVEEGIAWVMFNRPEKRNAMSPTLNSEMIQVLEALELDADAR
VVVLTGAGDAWTAGMDLKEYFREVDAGPEILQEKIRRDACQWQWKLLRMYAKPTI
AMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHR
QALHYIMTGDTFTGQQAAAMGLVNKSVPRSQLREHVLELAGKLLEKNPVVLRAAK
HGFKRSRELTWEQNEDYLYAKLDQAQLRDPEHGREQGLKQFLDDKSIKPGLQAYK
RA
SEQ ID NO: 22
Burkholderia _ glumae _BGR1_YP_002908688
(amino acid sequence)
MSYEGRWTTVKVTVEAGIGWVVLNRPEKRNAMSPTLNKEMIDVLETLELDDEAQV
LVLTGEGDAWTAGMDLKEYFREVDAASDVVQERIRRDASRWQWQLLRMYSKPTIA
MVNGWCFGGGESPLVACDLAIAADEATFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGDTFTGKQAAQMGLVNQSVPRAALREATVALAAKLLDKNPVVLRNAKH
GFKRSRELTWEQNEDYLYAKLDQANYRDKEGGREKGLKQELDDKSIKPGLQAYKR
SEQ ID NO: 23
Burkholderia _ phytofirmans _PsJN_YP_001887778
(amino acid sequence)
MSYEGRWKTVKVDVAEGIAWVSFNRPEKRNAMSPTLNKEMIEVLEAVELDAEAQV
LVLTGEGDAWTAGMDLKEYFREVDAGPEILQEKIRRDACRWQWQLLRMYSKPTIA
MVNGWCFGGGFSPLVACDLAIAADEATFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGETFTGQEAAQMGLVNKSVPRAELREATRALAGKLLEKNPVVLRAAKH
GFKRCRELTWDQNEDYLYAKLDQAQLRDPEGGREQGLKQFLDDKAIKPGLQTYKR
SEQ ID NO: 24
Burkholderia _ mallei _ATC_23344_YP_105383
(amino acid sequence)
MSYEGRWKTVEVIVDGAIAWVTLNRPDKRNAMSPTLNAEMIDVLEAIELDPEARVL
VLTGEGEAWTAGMDLKEYFREIDAGPEILQEKIRRDASRWQWQLLRMYAKPTIAMV
NGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRQALY
YIMTGETFTGAQAAQMGLVNRSVPRAQLRDAVRALAAKLLDKNPVVLRNAKHGFKR
CRELTWEQNEDYLYAKLDQAQLRDPEHGREQGLKQFLDDKTIKPGLQAYRR
SEQ ID NO: 25
Burkholderia _ pseudomallei _Pasteur_ZP_01765668
(amino acid sequence)
MSYEGRWKTVEVIVDGAIAWVTLNRPDKRNAMSPTLNAEMIDVLEAVELDPEARV
LVLTGEGEAWTAGMDLKEYFREVDAGPEILQEKIRRDASRWQWQLLRMYAKPTIA
MVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGETFTGAQAAQMGLVNRSVPRAQLRDAVRALAAKLLDKNPVVLRNAKH
GEKRCRELTWEQNEDYLYAKLDQAQLRDPEHGREQGLKQFLDDKTIKPGLQAYRR
SEQ ID NO: 26
Burkholderia _ multivorans _ATCC_17616_YP_001583186
(amino acid sequence)
MSYEGRWKTVKVAVEGGIAWVTLNRPEKRNAMSPTLNAEMIDVLEAIELDPEAQV
LVLTGEGDAWTAGMDLKEYFREVDAGPEILQEKIRRDASRWQWQLLRMYAKPTIA
MVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGDTFTGQQAAQMGLVNKSVPRAQLRDEVRALAAKLLDKNPVVIRNAKH
GFKRCRELTWEQNEDYLYAKLDQANYRDPEGGREQGLKQFLDEKSIKPGLQAYKR
SEQ ID NO: 27
Burkholderia _ vietnamiensis _G4_YP_001116289
(amino acid sequence)
MGYEGRWKTVKVEVAGGIAWVTLNRPEKRNAMSPTLNTEMIDVLEAIELDADAQV
LVLTGEGDAWTAGMDLKEYFREIDAGPEILQEKIRRDASRWQWQLLRMYAKPTIA
MVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRE
ALYYIMTGDTFTGQQAARMGLVNKSVPRAQLRDEVRALAAKLLDKNPVVIRNAKH
GFKRCRELTWEQNEDYLYAKLDQANYRDPEGGREQGLKQFLDDKSIKPGLQAYKR
SEQ ID NO: 28
Sphingobium _ japonicum _UT26S_YP_003543683
(amino acid sequence)
MSEYLTEGPDLSRTCVDVMFDEGIAWVTLNRPEKRNAMSPTLNSEMLAILEQLELD
PRCGVVVLTGAGDSFSAGMDLKEYFRETDGLPPAQVRRIRQTAQAWQWRTLQHFGK
PTIAMVNGWCFGGAFTPLVACDLAIAANEAVEGLSEINWGIIPGGNVTKAIQERLR
PQDAALYIMTGRNFTGEKAAQMGLVAEAVPLTDLRDHTRALALELLSKNPVVLNAA
KIALKKVADMTWDVAEDYLVAKGAQTRVADKTDGRNKGITQFLDEKSYKPGLEGYR
RDK
SEQ ID NO: 29
Xanthomonas _ axonopodis _NP_641235 (amino acid sequence)
MNEHDVVSVRIENRIAWVKFARPDKRNAMSPALNRRMMDVLDELEFDDNVGVLV
LGGEGTAWSAGMDLKEYFRETEAQGLRGVRRSQRESYGWERRLRWYQKPTIAMV
NGWCFGGGFGPLFACDLAIAADEAQFGLSEINWGILPGGGVTKVAVELLSMRDA
MWMTLTGEMVDGKKAAEWRLVNESVPLERLEARTREVAELLLRKNPVALKYAKD
AVRRVGTMTYDEAEDYLVRMQEAANSFDNNARKEGIRQFIDEKSYKPGLGEYDL
SKHSA
SEQ ID NO: 30
Xanthomonas _ campestris _ATCC_33913_NP_636201
(amino acid sequence)
MNEHDVVSVHVENRIAWVKFARPDKRNAMSPALNRRMLDVLDELEFDDNVGVLVL
GGEGTAWSAGMDLKEYFRETEAQGLRGVRRSQRESYGWFRRLRWYQKPTIAMVNG
WCFGGGEGPLFACDLAIAADEAQFGLSEINWGILPGGGVTKVAVELLSMRDAMWM
TLTGELVDGRKAAEWRLVNESVPLERLETRTREVAELLLKKNPVALKYAKDAVRR
VGTMTYDEAEDYLVRMQEAANSFDNNARKEGIRQFIDEKRYKPGLGAYEPDAGTN
SEQ ID NO: 31
Azospirillum _sp._B510_YP_003451575 (amino acid sequence)
MTQQQAAARTGTAEDVVTVELDNGVAWVTLNRPDKRNAMNPALNARMHGVLDD
LEVDDRCQVLVLTGAGESFSAGMDLKEYFRETEAKGHMATRRAQRDSYGWWRR
LRWFEKPSIAMVNGWCFGGAFSPLFACDLAVAADEAQFGLSEINWGIIPGGNV
TKVVADLMSQREAMYYILTGETFDGRKAAEMKLVNFSVPHAELRAKVRAIADN
LLEKNPQTLKAAKDAFKRVVEMPFDAAEDYLVVRQESLNYLDKSEGRKQGIKQ
FIDDKTYRPGLGAYKR
SEQ ID NO: 32
Agrobacterium _ vitis _S4_YP_002549228 (amino acid sequence)
MTVAEKSDADTVLVDIEDRIAFVTFNRPEKRNAMNPALNIRMAEVLEELEADDRC
GVLVLRGAGTSWSAGMDLQQYFRDNDDKPRHATLKSRRQSGGWWQRLTYFEKPTI
AMVNGWCFGGAFNPLVACDLAIAANEATFGLSEINWGILPGGNVTRAVAEVMNHR
DSLYYIMTGEPFGGEKARDMGLVNESVPLEELETRVRKLCASLLEKNPVTMKAAK
DTFKRVRNMPWELADDYIYAKLEQMLLLDKTRGRDEGLKQFLDDKTYRPGLGAYK
RK
SEQ ID NO: 33
Rhizobium _ etli _Brasil_5_YP_001985541 (amino acid sequence)
MTENTSPVLVEFDGGIAFVTLNRPEKRNAMNPALNARMLEVLDELEGDERCGVLV
LRGAGQSWSAGMDLKEYFRDNDDKPRDATLKARRQSGGWWGRLMYFEKPTIAMVN
GWCFGGAFTPLVSCDLAIAAEEANFGLSEINWGILPGGNVTRAVAEVMRHRDALY
YIMTGELFGGRKAAEMGLVNEAVPLVDLETRVRKICASLLEKNPVTLKAAKDTYK
RVRNLPWDLADDYIYAKLEQMLFLDKTKGRDEGLKQFLDDKTYQPGLGAYKRGR
SEQ ID NO: 34
Rhizobium _ leguminosarum _bv_trifolii_WSM1325_YP_002973001
(amino acid sequence)
MTEDKSPVLVEFDSGIAFVTLNRPEKRNAMNPALNIRMLEVLDELEGDERCGVL
VLRGAGESWSAGMDLKEYFRDNDDKPRDVTLKARRQSGNWWGRLMYFEKPTIAM
VNGWCFGGAFTPLVSCDLAIAAEEANFGLSEINWGILPGGNVTRAVAEVMRHRD
ALYYIMTGELFGGRKAAEMGLVNEAVPLAELEPRVRKICASLLEKNPVTLKAAK
DTYKRVRNLPWDLADDYIYAKLEQMLFLDKTKGRDEGLKQFLDDKTYQPGLGAY
KRGR
SEQ ID NO: 35
Amino acid sequence for IRX5
(GenBank Accession No. AF458083_1)
MEPNTMASFDDEHRHSSFSAKICKVCGDEVKDDDNGQTFVACHVCVYPVCKPCYE
YERSNGNKCCPQCNTLYKRHKGSPKIAGDEENNGPDDSDDELNIKYRQDGSSIHQ
NFAYGSENGDYNSKQQCRPNGRAFSSTGSVLGKDFEAERDGYTDAEWKERVDKWK
ARQEKRGLVTKGEQTNEDKEDDEEEELLDAEARQPLWRKVPISSSKISPYRIVIV
LRLVILVFFFRFRILTPAKDAYPLWLISVICEIWFALSWILDQFPKWFPINRETY
LDRLSMRFERDGEKNKLAPVDVFVSTVDPLKEPPIITANTILSILAVDYPVNKVS
CYVSDDGASMLLFDTLSETSEFARRWVPFCKKYNVEPRAPEFYFSEKIDYLKDKV
QTTFVKDRRAMKREYEEFKVRINALVAKAQKKPEEGWVMQDGTPWPGNNTRDHPG
MIQVYLGKEGAFDIDGNELPRLVYVSREKRPGYAHHKKAGAMNAMVRVSAVLTNA
PFMLNLDCDHYINNSKAIRESMCFLMDPQLGKKLCYVQFPQRFDGIDHNDRYANR
NIVFFDINMRGLDGIQGPVYVGTGCVFNRPALYGYEPPVSEKRKKMTCDCWPSWI
CCCCGGGNRNHHKSKSSDSSSKKKSGIKSLLSKLKKKNKKKSDDKTMSSYSRKRS
ATEAIFDLEDIEEGLEGYDELEKSSLMSQKNFEKRFGMSPVFIASTLMENGGLPE
ATNTSSLIKEAIHVISCGYEEKTEWGKEIGWIYGSVTEDILTGFRMHCRGWKSVY
CMPKRPAFKGSAPINLSDRLHQVLRWALGSVEIFFSRHCPLWYAWGGKLKILERL
AYINTIVYPFTSIPLLAYCTIPAVCLLTGKFIIPTINNFASIWFLALFLSIIATA
ILELRWSGVSINDLWRNEQFWVIGGVSAHLFAVFQGLLKVLFGVDTNFTVTSKGA
SDEADEFGDLYLFKWTTLLIPPTTLIILNMVGVVAGVSDAINNGYGSWGPLFGKL
FFAFWVIVHLYPFLKGLMGRQNRTPTIVVLWSILLASIF
SLVWVRIDPFLPKQTGPLLKQCGVDC
SEQ ID NO: 36
Polynucleotide sequence PATCESA7_PATIRX3
TGGGAACTTTCGGTACATTTTCCAATAAAATCTATATACTATAAGATATTAAAT
ATACACAAATATATCTAAGTGAATCATACAAATTATGTAGGCACACAGGAAGAG
GCTGCTGAGGCTTATGACATTGCAGCCATTAAATTCAGAGGATTAAGCGCAGTG
ACTAACTTCGACATGAACAGATACAATGTTAAAGCAATCCTCGAGAGCCCGAGT
CTACCTATTGGTAGTTCTGCGAAACGTCTCAAGGACGTTAATAATCCGGTTCCA
GCTATGATGATTAGTAATAACGTTTCAGAGAGTGCAAATAATGTTAGCGGTTGG
CAAAACACTGCGTTTCAGCATCATCAGGGAATGGATTTGAGCTTATTGCAGCAA
CAGCAGGAGAGGTACGTTGGTTATTACAATGGAGGAAACTTGTCTACCGAGAGT
ACTAGGGTTTGTTTCAAACAAGAGGAGGAACAACAACACTTCTTGAGAAACTCG
CCGAGTCACATGACTAATGTTGATCATCATAGCTCGACCTCTGATGATTCTGTT
ACCGTTTGTGGAAATGTTGTTAGTTATGGTGGTTATCAAGGATTCGCAATCCCT
GTTGGAACATCGGTTAATTACGATCCCTTTACTGCTGCTGAGATTGCTTACAAC
GCAAGAAATCATTATTACTATGCTCAGCATCAGCAACAACAGCAGATTCAGCAG
TCGCCGGGAGGAGATTTTCCGGTGGCGATTTCGAATAACCATAGCTCTAACATG
TACTTTCACGGGGAAGGTGGTGGAGAAGGGGCTCCAACGTTTTCAGTTTGGAAC
GACACTTAGAAAAATAAGTAAAAGATCTTTTAGTTGTTTGCTTTGTATGTTGCG
AACAGTTTGATTCTGTTTTTCTTTTTCCTTTTTTTGGGTAATTTTCTTATAACT
TTTTTCATAGTTTCGATTATTTGGATAAAATTTTCAGATTGAGGATCATTTTAT
TTATTTATTAGTGTAGTCDTAATTTAGTTGTATAACTATAAAATTGTTGTTTGT
TTCCGAATCATAAGTTTTTTTTTTTTTTGGTTTTGTATTGATAGGTGCAAGAGA
CTCAAAATTCTGGTTTCGATGTTAACAGAATTCAAGTAGCTGCCCACTTGATTC
GATTTGTTTTGTATTTGGAAACAACCATGGCTGGTCAAGGCCCAGCCCGTTGTG
CTTCTGAACCTGCCTAGTCCCATGGACTAGATCTTTATCCGCAGACTCCAAAAG
AAAAAGGATTGGCGCAGAGGAATTGTCATGGAAACAGAATGAACAAGAAAGGGT
GAAGAAGATCAAAGGCATATATGATCTTTACATTCTCTTTAGCTTATGTATGCA
GAAAATTCACCTAATTAAGGACAGGGAACGTAACTTGGCTTGCACTCCTCTCAC
CAAACCTTACCCCCTAACTAATTTTAATTCAAAATTACTAGTATTTTGGCCGAT
CACTTTATATAATAAGATACCAGATTTATTATATTTACGAATTATCAGCATGCA
TATACTGTATATAGTTTTTTTTTTGTTAAAGGGTAAAATAATAGGATCCTTTTG
AATAAAATGAACATATATAATTAGTATAATGAAAACAGAAGGAAATGAGATTAG
GACAGTAAGTAAAATGAGAGAGACCTGCAAAGGATAAAAAAGAGAAGCTTAAGG
AAACCGCGACGATGAAAGAAAGACATGTCATCAGCTGATGGATGTGAGTGATGA
GTTTGTTGCAGTTGTGTAGAAATTTTTACTAAAACAGTTGTTTTTACAAAAAAG
AAATAATATAAAACGAAAGCTTAGCTTGAAGGCAATGGAGACTCTACAACAAAC
TATGTACCATACAGAGAGAGAAACTAAAAGCTTTTCACACATAAAAACCAAACT
TATTCGTCTCTCATTGATCACCGTTTTGTTCTCTCAAGATCGCTGCTAATCTCC
GGCCGTCCCT
SEQ ID NO: 37
Polynucleotide sequence PATCESA8_PATIRX1
TTTAGTGCAGTCTAGGAAGACGGATCCAAAGGAGATAAACAGAGTTCAAGAAGCT
CTTAACTACTATACAATCGAATCGTCAGCCGCGCTTTTTGTTTCGTTCATGATCA
ATTTGTTTGTAACTGCGGTTTTCGCGAAAGGGTTTTATGGAACCAAACAAGCTGA
TAGTATAGGACTGGTTAACGCGGGATATTACCTACAAGAGAAATATGGCGGTGGT
GTTTTCCCGATACTATACATTTGGGGGATTGGTTTATTAGCTGCTGGACAAAGCA
GTACTATAACCGGGACTTATGCTGGACAGTTTATAATGGAAGGGTTCTTAGATCT
TCAAATGGAACAATGGCTATCAGCTTTTATAACGAGAAGCTTTGCTATTGTACCT
ACTATGTTTGTTGCTATTATGTTTAACACATCCGAGGGCTCGCTCGATGTTTTAA
ACGAATGGCTTAACATTCTTCAGTCGATGCAGATTCCTTTCGCGGTTATTCCTCT
TTTGACTATGGTTTCTAATGAACATATCATGGGTGTCTTCAAGATCGGACCTTCG
CTTGAGGTAAAGCAATTTTTTGTCATCTCTCTTTATTGTTATGTGCTTTTGATTG
TAACGAGTTAGTTGGGATCTTTGCAGAAGCTAGCTTGGACTGTGGCGGTGTTTGT
GATGATGATAAATGGGTATCTTCTTCTAGATTTCTTCATGGCTGAAGTGGAAGGG
TTTCTTGTTGGGTTTCTGGTTTTTGGTGGAGTAGTTGGATACATCAGTTTCATCA
TCTATCTTGTTTCTTATAGAAGCTCACAATCTTCTTCCTGGTCGAGTTTAGAAAT
GTCAGAGAGAGTTGTTTCCACAGAGACGTAGAAACCCATAACTTTAGTATTCTTC
AACCCTTACAACTTATCTGAGCAAAATCAGAAGGTCGAATTTGATGGATGGTTTT
GCTGTATTTGGTCAACGGTTTTATTTGAGACAGTAGACCAGAGGAAACTCAGATG
TGATGATGCAAAGACTGAATTGGTTAAGAGTGTAGATTGATTTGTTCTAACATTG
CAAATGTAGAGTAGAATTATGCAAAAAACGTTAATGAACAGAGAAGTGATTAAGC
AGAAACAAAATTAGAGAAGTGATATTATATCTCAAAATTTATTTTTGGTACAGCT
AAAGCTCAAATTGTTATAGAGATTAGAGATATTAAACCAAATGACGAGTGTTTTC
TTTAGTAGTAAACGGTGAAAATTCTCTTCTGACAAAGACAATTAAAATTTTAGGT
TTAAGACTTTAATATTTGTCACAAATTGTCATTTACCTAAATAAAAAAAAAACTA
AATATTTTTTTTAGATACATATGTGTCTTATAATTTTAACTATAAATTTTAATTT
TATGTCTTAAATAATTGTTTACACTATAAATTTAAATATTTTAATGCTAAAATTA
ATTTGATTCAAAAAAGTGATTTTAATTCTTATTTTTCTTATAGAAAGTTGGTGAT
TGAAAAGATTTACTTAAAAATTATAACAACTTCAATGGTGAATAACCCGACCCGA
ATAAACCGGATATAACAACTTCAATGTTAGCTTGATATAGAAAGTACGGTGACGC
TTAGGAGGCAAGCAAGCTAGTATCTGCCGCTGGTTAGAGACAAAGAACATGTGTC
ACTCCTCTCAACTAAAACTTTCCTTCACTTTCCCGCAAAATCATTTCAAAAAAGC
TCCAAATTTAGCTTACCCATCAGCTTTCTCAGAAAACCAGTGAAAGAAACTTCTC
AACTTCCGATTTTTCACAATCCACCAAACTTTTTTTAATAACTTTTTTTCCTCTT
ATTACAAAACCTCCACTCTCATGGCTTCTCAAACTTGTTATCCATCCAAATCTCA
ATCCCTAATTAGGGTTCATTTCTCTGTTTCTCCAAACAGGGGAATTCGAAG
SEQ ID NO: 38
Polynucleotide sequence PATNST1
GTTTGTAGAGTTGGATCAGCATCCAGATTTAAACCCTTATTTTTGTTTTTGCCAA
GCATCCAGACTTAATCCTATATTAGATACTGTATATGCATCTTGATGGAATATAG
ACTATATAGAAAGACCAAAAATGGAAGAGTACGAATAAAAATGCATAATATACCT
TGGAAATTATTCTTGGTTATTGTGAAACTTAAAACATTTCAACGAAGTCATATAC
TATTATTTAATCATTGATTTAAAATTGCTAATCAAATCACGTGTTGTTGTTATAT
ATGGATAAAGAGTTAAACTATAACACAACTGAGAAAAAAATAAAGTTATCAATTT
TGTTAAGAATCAATGAAGGTTTCACAAGACTGGGAAGAAAAAAAAATAGATATAT
GGAGTACATAAAACATTAAAATTTTGCTAAATTTTACTTTTGAACTCTATTGATT
CGGGTTGACATGATGATAATGTTACATTCGTACAATTTCACAATGAAAAAAACGA
GTACTAAATATTGTCAATCAAACATATGAATGTACAAAAATCCATAAACTCTACC
AAAATAGAATGAAGATTCTGAAATCAAACCTACTTTTTCTTTTTAATTATAAATT
CAACTATATTATAAATTTATTTATCACAAATAATAGAGGAGTGAGAATATTTTAG
ACAACGCAAATTTCTTTTATTTAGTTCTTATACTTTATTTTTTACCAAACGTTAA
TTAAAAAAATCACACATACATAATTTCTAAAAAAAATGTATTCTTCAAGTAATAT
ATCTTTCTGAGTACTAGTTTATCTATTTATCTCCGTATTTAATAATCAAAAGTTA
CGTTTAAAATAGAAACAACTTTTATCAAACAAAATATATTAGAAAACGCATGGTA
CTGGCTACTGGAAAGAATCATGACCTGTAAATTTCTACAGTTTTCCCGTTTTATA
TAGTACTTAGAAACTTTGGATTTTCATAGCGCAACCAATAAACACATGGACTTAA
GACACAAAAAAAGTTGGGTGCAATGTCATTAATCAAACTAAAAAAATAATGATTA
AAAGCATGGAATTCCGAAAACGCAACAAAATGATTCTGTGTTTAGACAAATGCAG
AAAGGCCTCTTAACTAATCTTAAATAAAGTCTTAGTTCCAACCACATAAACACTC
CTTAGCTCCATTAATTTTGGTTTTCTTAATTACGTTTCTACACAAGTACACGTAC
TTACACATACAATTCCACAGTCTAAATGATAAAACTATGTGGTTTTTGACGTCAT
CGTTACCTTTCTGTCGTCTCACCTTTATATAGTGTCTCTAACAGAACGTAACAAC
CAAATGTTTAAAAAAATAAAAACAGCACCCCTTAATTAGGCTCATTCGTTTTGCA
CTAACCATACTACAAATCATCTCGAACGATCGAGCAAAGATTTGAAAAATAAATA
AACGTATAACTCTAGAGATTTTCATTAGCTAAGAAAAGTGAAATCGATTGTTAAT
CCTATTTCAGACGGGACAGGAACACTCATTACCCAACTCTATCATCTCTCGAACA
CCAAACTATATCTACCGTTTGGGGCATTATTTCCCACTTTCTTTCGAAGACAATT
TCCCATATATAACATATACACATTATTACTAATATATTTTTATAAATTTTCGTCA
CATCCCAAAAAAAAACACTCTTTGTCACATCAACTAGTTTTTTTGTAACGATCAA
ACCTTTTCGTTTAAAAAAAAAAAACTTTTGTAGTGTAAACGTTTATTTATCGATG
AAAAAAGCCACATCTTCCGGAGGGAAACTTTTTAAGACACCCTATTTCGACTTTA
TTTTGTAAATACAGTGTGCATGTGCATATAAAGAGAGATATCATTTGTATAAATA
TCAAGAATTAGAAGAGAAAAAGAGAGAAGAAGACAATCTATTACTATTACGATGT
GTGGGTTGTTAATTTGTTTAAAGGGAGCTTTTCTATAGAGATTTTTAAGGTCAAG
GGTCATCGTTCGATGTGGGCTTGCTTCCTACAATCTAGTTGCCTTACGGGGCCTA
CTCTTTTTCTTTTGATAACTACATCACCTTTTTTTTCTCCGACAACTATATATCA
CTTTTTTTATGTTTTCCTTTTTTTCTTCACAATAATTCTTTACTCGTTGCAAATG
TAAAGATACACAAAGTTACTTATTTTGTTTACGATGGTTCTTAGTAGTTTAAAGA
ATTAATGAATAAGATAAACCTAAACTTTGAAAAGACTAAAAAAAATGTATAACAA
CATACATTATACGTATTTGAAATAGTCCAAGTGATATTATGTCATTGATATTAGC
ACAAATAATTACGATGCCTGATATTGTCACATTTGATGATTTTAAGTTCTTGTAA
AAGATAAGTGTAACTAAATCACTATAGTGAGGCCCACGTTTTAATTTCTAAACTA
ATTACAATGACAATAAAATAGCAAAACTATTTAAAACTAGACGCCAAAAAAAATT
GAAACTAATAATTGTGAAAAAAGAACAAGAGAATAATAATCATTAATAATTGACA
AGTGAAATTAATATATTGCTCTTGGAGGGTTATATTTTAATTTTCAAACTAAATA
ATGAATACAAATGGAAAAGCTAATGATAAGAGTTGAATTTTAATAATTAAGAAAA
ACAAAAAAAGGTGTACAAGGAGACACATGCGTTTTCCTCATGCATCTTGTTTTTA
TACAACAATATATATATATATATTGAGTCATTCTCTGCTAGCTCTCTCATCTCCA
ACTTTCAGTATGATATATAGTTACAATTAAATAAACCTCACATGCTCTATTCTTG
CTTGATTTTTGAGTTAATCTTGAATCTCTTTG
SEQ ID NO: 39
Polynucleotide sequence PATCESA4_PATIRX5
ATGAAGCCATCCTCTACCTCGGAAAAACTTGTTGCGAGAAGAAGACATGCGATG
GCATGGATGCTTGGATCTTTGACATTGATGACACTCTTCTCTCAACCATTCCTT
ACCACAAGAGCAACGGTTGTTTCGGGTAAATAAACTAAACTTAACCATATACAT
TAGCCTTGATTCGGTTTTTGGTTTGATTTATGGATATTAAAGATCCGAATTATA
TTTGAACAAAAAAAAATGATTATGTCACATAAAAAAAAATTGGCTTGAATTTTG
GTTTAGATGGGTTTAAATGTCTACCTCTAATCATTTCATTTGTTTTCTGGTTAG
CTTTAATTCGGTTTAGAATGAAACCGGGATTGACATGTTACATTGATTTGAAAC
AGTGGTGAGCAACTGAACACGACCAAGTTCGAGGAATGGCAAAATTCGGGCAAG
GCACCAGCGGTTCCACACATGGTGAAGTTGTACCATGAGATCAGAGAGAGAGGT
TTCAAGATCTTTTTGATCTCTTCTCGTAAAGAGTATCTCAGATCTGCCACCGTC
GAAAATCTTATTGAAGCCGGTTACCACAGCTGGTCTAACCTCCTTCTGAGGTTC
GAATCATATTTAATAACCGCATTAAACCGAAATTTAAATTCTAATTTCACCAAA
TCAAAAAGTAAAACTAGAACACTTCAGATAAATTTTGTCGTTCTGTTGACTTCA
TTTATTCTCTAAACACAAAGAACTATAGACCATAATCGAAATAAAAACCCTAAA
AACCAAATTTATCTATTTAAAACAAACATTAGCTATTTGAGTTTCTTTTAGGTA
AGTTATTTAAGGTTTTGGAGACTTTAAGATGTTTTCAGCATTTATGGTTGTGTC
ATTAATTTGTTTAGTTTAGTAAAGAAAGAAAAGATAGTAATTAAAGAGTTGGTT
GTGAAATCATATTTAAAACATTAATAGGTATTTATGTCTAATTTGGGGACAAAA
TAGTGGAATTCTTTATCATATCTAGCTAGTTCTTATCGAGTTTGAACTCGGGTT
ATGATTATGTTACATGCATTGGTCCATATAAATCTATGAGCAATCAATATAATT
CGAGCATTTTGGTATAACATAATGAGCCAAGTATAACAAAAGTATCAAACCTAT
GCAGGGGAGAAGATGATGAAAAGAAGAGTGTGAGCCAATACAAAGCAGATTTGA
GGACATGGCTTACAAGTCTTGGGTACAGAGTTTGGGGAGTGATGGGTGCACAAT
GGAACAGCTTCTCTGGTTGTCCAGTTCCCAAGAGAACCTTCAAGCTCCCTAACT
CCATCTACTATGTCGCCTGATTAAATCTTATTTACTAACAAAACAATAAGATCA
GAGTTTCATTCTGATTCTTGAGTCTTTTTTTTTCTCTCTCCCTCTTTTCATTTC
TGGTTTATATAACCAATTCAAATGCTTATGATCCATGCATGAACCATGATCATC
TTTGTGTTTTTTTTTCCTTCTGTATTACCATTTTGGGCCTTTGTGAAATTGATT
TTGGGCTTTTGTTATATAATCTCCTCTTTCTCTTTCTCTACCTGATTGGATTCA
ATATTAAGTAAGACTAAAGTAGAAATACATAATAACTTGAAAGCTACTCTAAGT
TAGAACATAGCCAGATTTGGTAAAGTTTATAAGATACAAAATACAAATTCTAAA
GAACTCAAAAGAATAACAAACAGTAGAAGTTGGAAGCTCAAGCAATTAAATTAT
ATAAAAACACTAACTACACTGAGCTGTCTCCTTCTTCCACCAAATCTTGTTGCT
GTCTCTTGAAGCTTTCTTATGACACAAACCTTAGACCCAATTTCACTCACAGTT
TGGTACAACCTCAGTTTTCTTCACAACAAATTCAAACATCTTACCCTTATATTA
CCTCTTTATCTCTTCAATCATCAAAACACATAGTCACATACATTTCTCTACCCC
ACCTTCTGCTCTGCTTCCGAGAGCTCAGTGTACCTCGCCT
SEQ ID NO: 40
Polynucleotide sequence PATGAUT8_PATIRX8
ACGAGCTGACTTGTACCGATGAGCTGGCTCTTCTGGGCGAGCTGGCTGATCTTGA
CGAGCAGACTTCTCCCGACGAGCTGACTTGTGTCGATGAGCTGGCTCTTCTGGGC
GAGTTGGCTGATCTTGACGAGCAGACTTCTCCCGACGAGCTGACTTGTGTCGATG
AGCTGGCTCTTCTGGGCGAACTGGCTGATCTTGACGAGCAGACTTCTCCCGACGA
GCTGACTTGTGCTATCCTTTCTCCAGGTCTCGAAAAAGTCCCCTTTCCCGAGACT
TTCTATTCCTTATTTATACCCGTCCGTATAGTAGGGTACGCAAGGTGAATTCTCG
AGAGTGCCCCTTTTCTACGCAGCCGAACTCACATCCTGACCAGGCCGGGCTTCGG
CCTGGTGGGCCGGCTCGAGTTCTAAAGTGATGGTCGGGGCTGGGTCGTTATTCCT
TGAAATGGGCCGGTTGATCACTGAGGCCCAATTGATGTATCAACATGTGGTTTTT
ATAAAAAGAGTCGTGAGAAGAGTTTTCTCTAAAAATCCCTTGTGTTTGGTAATCA
AACTTCATTCAACCAACGAATTCCAAAAAAACAACTAAATTGTTCGGGTATATAA
AATGATTGGTAATGATATATCCCATAGAGGCCGTAGACATAGGCCCAAAAAGTTT
CCATAACTAGCAGAAATTGAAACTTGCAAGTTGCAAATATTATTACACTGGAAAG
GCAACAAGTCTTGAAGTACAAACTACAAAGACTTCTTGTTTGGATGGGGACGACT
GACGAGTTTGAATAACTTAAGAGAAAAGGGTCGCAATCGAAATTAGACAAGAAAT
TAGTCCTCAAAAAGTAAATTCTGAAGTTGAAGCTCCAATGTCTTTGTTCAAAGAC
TTTATTTAGATGTAAAGTTATGTCTTGTAACCACCAAACAGCTCCTTTTCATCTA
CACTCCCAATTTTTTTAACATCTATGTTTTGCATTGCCTTTGACTTGTCTTTCTC
TCTCCAACTTCTCTCCTTCAACATAAAGCCAAATCCTAAATCCAAATCCCTTAAA
CCGAACCGAATTAAACCGAAGCTGTTGAACTATCGCAAAATTTCAGATCTTACTA
ATCATAAACATGTGACGTTTAATTCATTTTAAGAGTTTCATGATTTGCACTGAAT
GGTATTCCGAGTCCACCGGAAAAAAACTTTTCCTACAAGTAGAAAAAGGATAACC
CCATAAATCCAAATAACCTAACCGATCAAACATATACCAATATAAACCAAAACAA
GATTCAGATTCATCGGTTTAGTAATCGAAGTAATGTACTAATGTGTAATATTGAT
TCCACCACCAGCTTAGAGATTCGAACCAAAAACCGAATAGCGCATAACCGAGAAA
ACCCAAAGCTTCCTAACAAATACATAAAACCGTGGTGTTTCTAATTCTAACCAAC
ACACGTTTCCTTTTTATTCACAAGAAACATCAGAGTTATGATCTGCCATTAATAA
CCTAAACACAAAGCAAGGTTAGGTAAATGATATGGACCCCTAATGAATAATCATA
CAATACATAACAACGTAAGATCCAGTTTCCCTCTTCG
SEQ ID NO: 41
Polynucleotide sequence PATNST2
AACGGTGGCGTGATGGAGCTTCATCCTCCCATCTTCGCCGAATTCATCACCAACG
AATTTCCCGGCCATGTCATCCACGACTCTTTAAGCCTCCGCCACTCATCTCCACC
GCTTCTCCACGGCGAAGAACTCTTTCCCGGTAACATCTACTACCTCCTTCCTCTT
TCTTCTTCCGCAGCCGCGACCGCTCAACTGGATTCCTCCGACCAACTATCAACGC
CGTACAGAATGTCTTTCGGGAAGACGCCGATAATGGCGGCTTTGAGTGGCGGTGG
TTGTGGAGTGTGGAAGGTGAGGCTTGTGATAAGTCCGGAGCAGTTGGCGGAAATT
CTTGCGGAGGATGTGGAAACGGAAGCGTTGGTGGAAAGTGTGAGGACGGTGGCGA
AGTGTGGCGGTTACGGCTGCGGCGGAGGAGTTCATTCGAGAGCGAATTCAGACCA
GCTAAGCGTTACGAGTAGCTTTAAAGGGAAATTGTGGTAAAATTTCGAATTATGA
ATAAACTACGTTTATGTTTTAATCTGTTTCACGATTTAAGCATTTAAATTAGTAT
GTTGATTTCCGTATTCATTGAAGACTTGGAACGATTATATAAGTTTATCAACGTA
GATATATTTGAAATATCATTGTTATCTCTCATGAAACAATTAATTTATGAAGTCG
TAGACTCGTAGTTAGAGATTATTTAATCTTCCCTATTCAATGCCAAAAGTCTAGA
AGAGCAAAACAAAAGGGAGAAACTCTTTTATTTCAGGCCCAATGACACAAAGCTG
GCCAGAAACAGTTTAAGATTAGGCTAAAGTTATAAGTCCGACAAGCACGAGTGCT
AATATATATAGTTATATGACGTCTCACCATTAAGGGTTTAATAAATTTTGAAACA
CCTCAAATTAAGATTGCTTCCCATGCAAACTTCCTTCATCTTCTAGAAAAATTAC
GATTTGTAATACTTCAATTATATCATTTTAGTTTTTTGTCACTAATTATCATCAA
TTTATCATAGCTCCGTGCCGCAACAACGTTCGTTTTAATCAGATTATATATTACT
CTGCTATAAACTCAGAACCATGTTAGAAAAATGAAAAAGACATTTCAGAATATTC
ATTAACTCAAAATTTTAATCTCATGATTTAATTTTTTATTAACAATGTTATCCTA
TAGCACATGGCAAATTTGAACGGCCCTTGCGTATTAATCTATTATAATCTCAAAA
CCATGTGTAAGAAAAAGGAAATTCAGAAAATAACCTTTTGTAAATAGGCCCCCAC
AAAATCTACAACATACGTAGATACCTCCTCGCTTACAGTTGTAAACAACTGTTCA
TCTAGATTCATGCCGTCATTCAAGTTTAAATTAATACAATAATTTAAAATTTTAA
TTTGGATGAATCGAATCCACCGTCGTTTCCTGAATACCAGATAGGTTAACTTTAT
GATTAGTTCGAGTGAACCACATGCACAATATTCGAATCTTAGACATTCGTTGCAA
TGTTAACTTCACATATATTTGATAAACGCTTCTTGAATCAGATCTTAATCTCTTT
CTTTCTCTCCATCTTCTAAGGAGGTTGTGGATTATCATGTAGTATATCATTATCT
TCGCATCACCTTCAACAAGAACAAGCTACGAGCTTTAAAGTCGTATTTAACACAA
TAATGTATAAAGTCTTTCTTCATCACATCACATACATTTTTTGTTGCCATCACCC
TTCATTCACTTTTTTTGTTAACACTATTCGTTTCTATATAAAATAAAAATAAAAT
GAGGAATGTCTTGTCCATAGAGATTTTTAAGGTCGAGGGTCATCGGAGCGATGTG
GGCTTGCTTCCTACATTATAGTTGATATGTGGATCCCGCGTGGACCATATTTTTA
CCCAATAGCTACGTGCATGGTCCCACCGCTCTCTCTCACGCACTATTCCGAAATT
GCCATAAACAATTTCACCGGACAAAAAGAGCAAATAATTTCGATGTTTAATAAAG
AGACCATTAGTATATTTGACCCAAAAAAAAATAAAAAAAAAAGAGAGACATTACT
ATAACTTTTATTAGATGAAATATTGCAACATTGTATTTATAACGGATCTAATTTA
CTGAATCATATTTTTTTTCTTTGTTAAAGAGATACTGAATCATGCAGAAAAATAG
ATAGATTTTTAAATACTAGGTGAACTCATGACGAATCAACCATTACGAGAGATTT
CTGGATAAAAGCAAAAACAAAACAAAACTAACATGCTAATCTAGGCAATTAGTAG
AGCGAAAAGTCGGCAAAACCAAAGGCCGAAGAAGCTTGATCGATATACTTTTTTT
TTTTTGTTTTGGCTGGATATACTTGGTATGAACTAAGAATTAAGTAAAAACTCAT
AGGGAGTAATTTTTCGAGAAGTGCATTCACTATGAGTATAAAACAGACATTTTCA
AATTATTAAAACAAGCTCTTAGAGGCTCATATGTTTAATTGTAAGTGGCGGCTCA
TGCGAACTTATAATGAAAACATCAAATATTCGGAAAAATAATACTCCACTGTTAA
AAAGAAAACTTAACAAAGGAATTAAAAATATGAGAGCAAAAGAACACATGCATTT
TCTCATGCATGTACTATTATTTATTTTTTTGCAGAGTTGATGTAAAAAATATACA
CATATATATAGACATACTTTGGTTAGTTATAAACTCGTTCTATTTTCTTCTCCTT
TTTCTATCTTTAGCA
SEQ ID NO: 42
Polynucleotide sequence PATNST3
ATTCTACACATTCACAAAGTTTACTACACTATATATAATTTACCCAACAAACACT
TATTTTACTGCATTATTCAGTATATTATCTTACCTATAAATGTGTATCATCATCA
TCAATAACGCGATTATTTGTGCTGAAGGATTATATATTCAAAATGATCTAGTTAT
ATATGTCACATGATTGCCGTTAACAAGACACATTTGAAGAAGCTAAGCAAGAAAA
ACGGACACTITTGCGACTTGTTACATAATTTAACTTATAGGTCAAAAGAATTTGA
TTAGTCATTGCAACTACGTGTGGATGTCACTTTCTATTCAACCAAAACTCACAAT
ATTATATGATCTAGTTTTGTCGTATTACTGATTTGTATTATAAAATGTTATTTAA
TTTGAATTCTACGTAGATATTGCTCATGCATGATAGTATGTATCTAAACTATTCA
AATAACTAACTACGTGGATATTTTATAATCCAAGTAAAAAGCAGAAAGTGGGTAA
CTACGTCAGTATGACTATACTTTTATCGGAATTGCTTGACATCCAAACTTTTGCT
ATGCTTCACCAACCAATGCAGTTTCACTTAATTATTAACTATTGACTATGTCTTA
TTAAGTTAGCACTAATTCGTTAATCATTCAAAACGTTATTTGATTGAATTACATA
TTACACTCTCTTTCTGCATCACCACTCACACCATATGCAACTATAACCAACTCAT
ATTCAAATGTATTAATTGGATTTTGGTGCGAGATTAAAAATTGAAAGGAAACAAC
ACAATATGATAATGGGATAAAATCTTGAACGGAAACTCAAACTAATCCTCATAAG
GTATAACAAAATAACAATTTAAGCTAAGCACAACAACATACAAGTTCGACCTTTT
CCTTTGATGATCCAGCCCAACAGTTCTCTTATATCTCAAACCATTCGACCATTTG
AGCCAAACTAGCTAAACCTGCAGGAATCAAAACCAACAAAGATTCAGATTAGCTA
AACCGGTTTCATCCCTTTGTCACATGACTCACATCCGTCTTCTACATAACGATTT
CTAATGATGTGAGCTCTTAACTTGCTCCAGCAAGATCATCAACTTTGGAGCACCT
TCAATGATTTAGTTAACATGTTAGATAAATTAAATATTCTTGTTTCAATATATAT
CAACTTTAGTGTAAAAGCCTTAACATTCTCTTGAATATTTAATTTATTTCTCCTT
ATTTCGATTTAATGACAAATGTGAATTAATTTTTGTGATATTTTTGTTCGAAATT
AGTTTTCAGTTAATAACATACATGTGAGCATGGGACACACATGATTTAACAAAAG
GGAATGACGAAATGATATATCAAAATATTAGTATGGGAACAAATTACGAGGTGAA
ACTTCACACTCAACTCAATTAAAACTAGAATAAAGAAATGGAAAAAGTGAAAGAA
TGAGAGGTCAAATGTGGTTAATCATTATGTGGTATTAGTTAATCCATCAATTGTG
TACCCAAAAGCATGATTAAGCATAGAATTTAGAGAAACAAAACATCATTATTAAT
GTTGAAACACAAAGATCCCATCAACAGACAAATGATAAGTACAGTGCATGTAGGG
TAACAACTTTTATGTACATGTTATATACTTATATTATATAATAAGAAAACGATTA
AAGTGTCATTGCTCCAGCCTCTATTTGTAAATCATATTATATCAGTATGCTTAAT
TCCAATAATTAAGTCCATAACTAAAATATATACACATATATGTATGTTAAATGGT
TGAATATATACATATATTTTCATAAACAAATATTGCTAATTAATTCAGTTATTTG
TGTACATAATCCAACTATCACCTTTTTAGCTGGAAGTGGATATTCCAACATGTCA
GTCTGTCACTCCCACATTCATACTCTCTATTCTTTTTAGCTATTTCAATATCTAC
GGTTAAATATTAATGGCTATATAGCCTTACCCTTCATTTTAGTTTTTTTTTGGTA
TTCGCATAACCATCGAATACTCAAACTTACTATGTAAGATGGTCTGAATAACTAT
TTCCGATTTAAGATGAATAGCTAGATTGAAATATACATGCACTAATTGGACATGC
ACTAAAGGCAGAGGTGAATTAAATGATGAAATGAAGATGAAGTGTCACACTTGTG
CAAAAAGCATGTCCCCTGCTCTTCTCCGCTTGTTTCAATTTCTTTGACTTTCATC
ACGTTTTTGTCACTTAAATACACCAAAAAATATAGTACAATTAAACATCGAAAAT
CGTCCAAAAAGAAGAAAAAAAATCATGGAAAGTTCTTTCGTTAATGTTACACACA
TTATCTTGATTAGGTGACACCAGATATTAGAATAAAAATGATAGATTATGAAAAG
AAAAAAAAAATTGATGTATTTTTAGGATACATCGAAAGGAATGAACATACCAAAA
ACATGGGAAAAAATAGATAACTAATTAACATGGTAGAATGTAGATGACGTAGATC
ATGAAACGAGTGTGTGATATATTAATGAAAATTATTTTAATATACGTAGCTATAT
TAGAAAATAATTTACATTTATTTTCTTCTAAACAAATCTATACTTTATATTTACA
TACATTAGTAAAGACCAAAACACATGGAATTCAAATTCTGCAATAAGTAATTGCA
AGAAAACACAAAGATTAATCCCCCACTAAACCCGTTTATTTACGTTAGTATTTTT
CCGTTTTATACATTACACATGACATGACATTACACGTCAAAAGAAATATGTCTTA
CGTCAGAACTTACGTATGATCAAACTCGATTTAAACATAGAAACATCTGTTTACT
AAATTATACTAATTTCATAAAGACACTTTAATGCATGAACTTCTTTGTTTAAATA
ACAATTTCCCCCTTTTGGGGGCTATGTCTCGTCGAGTCCTACCACCATTATAAAT
TATCTCATCGTTTGCTTTCTTTTTTTTAAGTTGTAACCATTTCCACTCGTAATCA
TACAACTTCTCTACTCTTCTAGAGCAAAAACCCAAAAATATATTGCTATCTTCGT
TA
SEQ ID NO: 43
Polynucleotide sequence PATFRA8_PATIRX7
CTTCAAATCTCTTGTATCATTAAATAGTAACGTTTTAAATATTTTCTGGATAAGCA
TAAGTTTCTTTGAAAACTATTTTGTATATATTCCTACTTCTCCATTTTTCTAAATT
ATTTTATATTATACATAGTTTTCCAAATTATCAAACATTTTTACATGTTTTGACTA
ATAAATAAACATATTACTGCGAATTAATTAAAAATAAATATTCCACACAATAATTA
CCTTACAAGCGAATAAACTTTTACTATGTTTTCGATGTAAATTTTTCTTACATATT
TGTAACTGAAATTTCTAACTTGTTGTTTCATAAGTTTTAAAATTTATTATCTAATT
ATCTACTTTTATGTGTTCTAGAGCAAAGTGCTAAATGTATATATACTTAGATGTTG
TGTTGTAATCCAATGTCAATATAATCAATGATTTAGCTATTTGTAAACATACTAAA
TAGTATTCCACCAAAAAAAAAACATACTAAACAGTAAACAAACAGCAAAAACAAAA
TCCACATGTCCTAAAAGATAGTCTGATTTTCGTTCATAATGCTCTGGTTTTTGAAA
GATAATAATTGTGTTGTATGAGTGTATGACAAATATTCATTGGTTTGAGAAGTTAA
CAAAATTTGGTGGCTACAAATGGTTTCCTATTCGAGTTGGGTCCATTATCCCTTGG
CGTGTACGGAAATAATACCTACCCATCATAATCTGATCAAAGATGAGGTAGTCTTT
AAATAAATTTTGCGGCTTATATCAATCTTTATGTACTATAAACTGTGAACTTTTTG
TTCTTCAGGACTTCCACATCATTGCCCAATCCGGTTATACCTTCGCTAGTTAATAT
GTTAATTAACATTAAATTAAAGAGCTAACATTTCTTAGGTAGTAAAATAGAAGTTT
TGAACTACTATACTACTAACATGTGAAAATACTTTAGTCACAAATATGACAATATA
CAAATTTATTGGAATGCAAATTCTTGAATTTCAATTGTTTGAAAATTATATATTTC
TACATAACAATTCTTTATAAACTAAAAATATTAATTTTCCATGGCTATGCGTTATA
CGTATATGTCAAATATTTTTATTATTTATATAATTTTACGATAAATTAGTACTCCT
ACTTTACTATATTACTCAACACTAAAAGACCTCTTTAACTCCGCCTAACAAGATAT
GTTTTCTTTTGAATGTTTCGGTTAAACATGACAGAGATTTGTITTCTTGCTTTCGC
TCAATACATATTTGTGCTCCTTTAGAAAAGTAGTATTTCCTAACAATCCAACATTT
TCATATTTATTATATCTTTTAAATATTATCATGGTTCTTTTTCTTTCGTCATGTTT
GGCCTCTTTAAAATAATTCTTGAATTGTATGAGCATTAATCCAATAACGTCCTGAT
CCCAAAAACCTCATATTAGGTTTGAGAGTCCGAAAATATACTTTTCACATAAAGCA
CCTAAGGTGTCATACTTTAACAACTTCACAAAATATGCAAAATTTGTCATTGTCAC
TTTGAGATGTAAGTTTTTTTTTACATGCAAATAGATTGAGTCTCTTTACGTGTAAA
TTCATTTAATAAAATTGTATGGAATATCTATTTATATCATATATTTCTAACATATA
TATAAATATCTATACAAAAATACGACTTTTTGGCACATGTAATTAGAAAAATCCAC
AAGAAACAGAAAAAAGAAACACCAAATACAACGAAATGAAGAAATTATTATAAATT
TGAATGGCTTAACATCTCTTAAGAGTCAACAAGGTAAAGGATTAATTAGTAGTCTT
CATCAATCTTTCTCCACCTTCTTCTATTCCTTAATCTCCACTTTATCTCCCAAACC
CGAAAACTCCTCTICACCAACTTAAACCCTATTAACTAATCCCAACAATCAGATGT
TTCGAATTCAACAACCAGCTCAGGCCATAAGATTCATCCCGGAGAAACAAGAACG
SEQ ID NO: 44
Polynucleotide sequence PATIRX9
CGGGTTTTCGGTTCGACCCGGACTCGAAACGGGTCTAGATGAAGAAAACCTCATCT
CTTTTTGTGTCTAAGGATTTTTTGGTACTGAAACTCTCACTCTTTTTTTTGGTTCC
TCTGGTCCCTCTCTATATGATTCAGATCGAACACTGTGGTTTTATATTTTTTAATG
TTTTGTTATGTTCACACGTTGGGTTCAGAAAAATTGACGGCCGAGATCTTTTCTAT
AAGAGGAAATCGGTGGTTCTACTTAGCTAATCCTTTTTACTAGAAAAGTTTAACAT
TTTGTACTTTTTGTCTGTATGCTCTCTAGTTGTTTGTTGAGATCTCTTGCTGCTAG
ATTCACTTTTTGGGACACATTGCTTTGTATTTGAAGCTAGAAAGTTTATATCAACA
TGATCTAAAAAAGTATTTTAAGAGAACTACATTGAGGTAGTTATTTCTTTTCCTAA
ATTAGTCATTGGTAAATTACATCGTGACATTTATAGAACATTGCAGAGCATAAAAG
ATTGAAAAAAAAATGAGCTGAGATTTGTATGTATATAAAGAAAACGTATTAGCATA
GCTTTCTTTCAGATTTAACGGTGGAAATCATACAAAACTTTCTTGCAGAACAATGA
GTATATATATGAAGGACTCGTTAACGAAAATATTAGTTTAAATCTAGATATCTTCC
AGTAAAATATGAGTTTCGCCTTCGTATATGATACGGCAATAACTTTGGGACCAACT
AATTTGCATATCACATGTTGATATCTCTTTCAGTTCTACTCATTCTTTTTTTTTGA
AAACAACAAATTATTGGCTGCAAATGTTTTTTGGTTTAACTAGTGCTTCTCTAATT
GTCAAGTATCTTAGTCTAGAGTTAATTACTTAAATACTAAAAGGCTGTCGACAAAA
TCAAGCTTGAATCTCCTTGTGGTATCTTCAACTCTTCGTTGTCTGCTTACGAGTGG
TTTACTCAGTAATTATCTATAATATGTTATTTTTTTTCCCTCATCTTTTAGTTGTT
GTTTCATTACATTGAAAAGCTTGTAATGTCTTTATATGGTATATATGGATCTTATG
AGTGAGGCAAGATCCATGATGTTTTTGATCTTAGAATGTATATGATGATCTTAGAA
TGTATTTGACCGCCCACAAATTATTGTTCATTGGGATTATATCTCTAGTCCAACTC
CAAGCAATCGAAATGGGTCCTGCTTTTAAGAACAACAGTATATGTTTAAGAATAAT
AACTTTATATATTCTCGATTTTAAGATCTTTTGACAAAACCTCCTTTTCGTTAGGA
GCGTACTAATTTCCAAGTGTTTGATTAGTGGGGTCTCCGTAAATTTATTTAGAGTT
TCTATCTATTTATTAATAGCTCAATTAATTAATCTATACTGTATCTAAACATCAAT
TTATATATTTACTCTTGAGACCAAAACTGTCAATTTATAACATTGGATAGTTTCTT
AATTCTTATTATATATTTTTCAAACACTTTTCAAGACTAATCTCCACATTAGGTAC
TCTCTCTAGAGATAAAAATATTTATCAAAAACATTTTTATTTATTTATTAAGTAGT
AGATAAACTACTGTGGCAAAATCGTAAATGTCTAAATGCTGATGAATTTTTTTTGC
TGCTCCAATCTGGTTTAGTGCTCCATATACATCCACGGCCAAAATGAATCTATGGC
GGCATTAAGATTCATTAGTAAGCAACGATTATATTAATATAATTGTTTTTAGCAAT
GATTTTCCGTAATTTCCCAAATATGTTTCAGTTAATGTGTTCCAATCCCAACAACT
GGTTGTTGCAAAAGACCACCAACGCAAGCAATCATCAAACATCAAAATAATCTTAC
CTTAGCGAACAAACAATAACTACACAATTCTCATAAAGCTCTTATATATCACTAAC
TTCACACATTTTGTTTTCCACAAAAATAAAAACGGAACTCACTCAAGAAACCTTCT
TCCTTGAAGAGAGGGTT
SEQ ID NO: 45
Polynucleotide sequence PATGUT1_PATIRX10
AATAACAACCACTTAAGTTACTGCAAGTTACCACAAAGAAAAATGATCTAGCAA
ATGAGTAGCATCATATTGATCAAAGACACTGCAAGATAAAAGTCACCTTGCTAA
TGTTCGAGATAATGATAAAGTGTAGACTTGGAGCAAGAAGCCATTTAAACTAAC
AACTTCCTAATTGAGACCTTTCATGTAACTTAATGTCAAAATCACAAGCAACTA
GAGGAAGAAATAAAAATGTACCAGGTAGCTTCTTGGGCTTCCTCATGGGAACAA
ATTTGGCACCAATAGCCAACGCAATAGGAGGGCCAAAAATGAAACCTCTAGCTT
CAACACCTGCATTTACCACAACATCAATTTAGGCAGAACCAAAAATCATCCACC
AATTCATTTCAACTTTTCAGTTTAAGCTAAAGCACTCAGTATCTAAAAAGGCCA
AAAGAAACTAAATCCACAAGCTGTTAATCGATTGGAGTACCAAACAGAACCATA
CGAGTTGTTACCTGCAACAACAGATATGCCTTTATCTTTGTATCTATCAACAAA
CAAAGCAATAGTATCCTTAAAGGCCTCAGTGTCGAGAAGAAGCGTCGTTATGTC
CTGAAACATGATTCCTGCCAAGTATCCAAATTAAAACCTTAAGATCCCAACGCA
GATCAAGACTAGAGACGATATTAATCGGTATAAATGGAAAAAATGGAGACCTGG
TTTAGGGAAGTCGGGGATGACTCTAATGGAAGAGGCAATCTTAGCGATTCTGGG
ATCTTGCACATCTTCAGTCGCCATTTCACTGTCCCGACTGGCTGCTGCTTTAGC
AAAATACTCGGCGTCAGATTTGCAAACACAGAGAGACCCTAAAGACTCAATAGA
GAGACACAGTGATGAAAAAATGACCAATTTATCCCGAATGGTAACGCTTTGACG
GAATTGCCCCACGCAAGCAAAATATCTTTTTCAAAAGGAAACAAAAAGTTTAAA
AGGGAAATAGAAGGTGGTGGGGTCTACCGGCGGAGGAGAAGAGGCGGAGTGAGG
TGGTTGAACGGTGGTTTGAGAGGCGGATCGAAGGAGGAGCACGGTGGTGGTTGT
TGAGAAGACGGTTGCAAGGAACAGCACGAGCAAGACAGAGACGATGAGAAACAA
GTGGAGAAATTATTATTGTTTGCATTGTCTTTGGACTGAGAGATCTTAAAAGAG
AATGTAAATTACTTTAAACACGGAATAATGGACAAAAGCCGTGATCAATGACTT
TTCAAGTCTTAACCAAACCTATAACTCATCCATTGTTTGTTTTTTCTACATATT
TCTTCACATAAAATTGGATGATTTAGAATCTTTCAGAGTGTTCACACTCCAACA
GATTATTATCCACAATGTTATGGTTACATTTAGAGATATATAACAATGTTCATT
TCATCGTTGCTAATGACATAAAACGATCAAAAACTGAATCATAGTACTTCTTTT
ACAGTGATCTCAAATATATTAATCGCTAATCAATGAATTATGTCACCTATAATT
GTCGTATTACCAACAACTATAAAACATATATATAAAAAATTGTTGTCGTTAACT
AGTTGTTGATAGTGGCCACTCTAAAACGATCATGACCTACTACGGAAGTTATAA
CTAGTCAACGTTGGACGTTAGCAAGGCCCAATGGACATTAACTCAGCCCATAAT
AGCACGCGCCTTGTGATGTGCACCAGTTTCCGTCTTTGGTCGTTGAATTCAAGG
AAAAAAAAAGTACATCACAAGCAATTTCTTACTTATCTGTGACTTGAAGCTATT
TCTCCAATTTCGTTTTCCATCGACACTCTATTTCATTTTCACCATTCACGTCTT
CCTTCTGAATAAAATAAACCCTAAAACCTAATACCGAAGTAAACTCGTCAACCA
CTGCGCCCATGACCTCCCAACGATACTCTTCCCTTATATTCTTCCTCTTCCTTC
TTCCTTTCTGCGATCCAAACCTTCAAACACATCTCCGGTAGAT
SEQ ID NO: 46
Polynucleotide sequence PATIRX14
ACCTGCATCGAATTTATATAAATTTAAAACACATTATCATCATCTCTAACTTGAA
CTTTTAAACAAGTTTATCTTTTTGTTTCACAAAAAAAAACAAGTTTATCTTTATG
TCCCTCCTGAGACATATAAAACAAGATTATCTTTCTTCTTAGTAGGGATATAGCA
AGTCCGGACGAGATCAAAAGTAGATTGACTCTTAAGATCTTACTAAGTTTGAGCT
TGCTTTGGTTCCCACCTCTAAAAACCAGTTTTGCATAGTCTGAGACTCGTGTTAA
ATTCGATCAAATCTCTCTTTCAACGACGGTTAACTATGGACGTATTCGCAAAACA
TCACATAAAAACATCTCTAAAGTATTTGGCTATTTGCATAAATATTTCACTCTTA
CAGTCGTCAAAAGTATGAATGAACTCTACATATCGGCCCAATATGAACCAATTTG
TAAGACCATAATGGAAAGCCCATGTTTCTCTTGTGCTTGTTTTAGTTGCAGAATC
ATTAGTTCACATATTGACCGGATTATATTAGTTTTTAAAAACGCATGTATGATGT
AGTCACTGTATCATACCCAAGTTACTGTATTCATTACCCAAGTTCAAACTCGATA
AAATGCATAAACTAAACATACGTTCTTTAGCCTTTTGTTTTCACTTCAATTAACT
CATTTTGTGCGTTGTATATTTTTTTTCTTTCCAACAGCTACTTTTCTCACGTCTA
TATTTTTTACCGTTTGTGATTTTTGAGTCTCAAATATATGGAATTGTTTTTTTTA
AATGGCTACTTTCCAAAGTCTTATATTTTTTACCGTTGTAAATGTTCAGTTTCAG
ATATATATGGATTTCTTTTTCTAATGGCTACTTCTCTAACGTCTATATCTTTTAC
CGTTGTAAATTTTAAATTCTGAAATATATTACCGTTTGTGATTGAGTTCACTTGA
CACACCTTCGTTAAAAATTACACAACAAAAAGCGTTCACAATAAGCCCAATGGGC
CTAAAAGACCCTAACAATCGAACATACCCTTCTGACCAACACATTTTCTTAAGGA
GACACTGTTGGTCCATTTACTCATTTAAGTAGGATTCATAACACTTGTCATGGTC
GTCATTTCTTGTTCAAATGCCTTTTTAAGTAATAACGCAATGGAAGCATATATAT
ACTTTAAACCCACAAATTAATAATGCATATGTATCTATTTTTCTTGCATATACTA
AACATGTCTAAGTATGATATAAACTTTGACACTTTGGTGGTGCTGAGTAATCATC
ATATTTATGCTTTGTGTGCAAGTGAAAACGAACCGATAACAATCTTTAAGACTTC
CCTACCAAACCGGTTTAACCTTCACAACAAACAAACCTAGATCAATTATCTCTAA
ACCAAAACCCTTCAAACCATGTCTTTTGTCGGACCAAACTGTACTCTTATATATG
ACATGCAGATACGTCGTTTTCATGGGCCTTACTAATGGCCCATTAAAAACATTCG
TAATCAATTATTTTGGTTAGTCTTTCCCAAATTCGTCTACATTCCTCCTCGATAA
TCACTTTTAATTAAAACCATATGAATTTACGAAAAAAACAAAAACACAATTATCA
TTATGCAAAACATTTAATTCAATAAATTGAGGGATGTTTAATGTTAACACCAAAA
ATTATTACCAAAAATTGACTTCAATTAGAGACATATTAAAACGACCCTGATTTTA
CTCAAAACTTAATTGAAAGATTTAATTATCCAATAATAAAACGACACGTGTACCT
CCTTGTCGCTTTCCTCTGCTTTCTTCGATGGCGTTGCATCGAAGCATCAGAGAGA
TTGGTATGGTGGTGGTGGTGAGAGAGCAGCAACAACAGCAAGAAGAGAAAGCGAT
AATCGAACTGATTAAGATCGTGAAATCCAAGTAATCTCTGTTGCTTAATCTCAGA
TCTTTTTGATAAGGAGAAGGAAGCAGAAGAAAGAGGTCAACGAAGAAG
SEQ ID NO: 47
Polynucleotide sequence PATMYB46
GTTACACTAACGGTTTCTTGTTAGATTTAGCTGACGTGTCTTTATGAATATATAT
AGAGTTAAATTTTAATATTTTAAGAGTAGTATTACTTCATTAAAAGCTTAGTTGT
AAAATTACTAAAGATTTTCATATATTATAAACTATTTTTTCCTGGCAAACTTATA
TTATAAAATTTGTTGAGCGATTGTGTGATTCTTTCATCCACAATTAGATTAAAAA
AAATCGCAAAAAGTAATACAAGAAAAAATAATAATTTTACAAATTAATAATGATT
GTTTCTTTGGCTAAGAGTTCAGATTTGCAGAGTGTTTTTTGGTCCTTGGGCGATA
TTACGAAAAGTGAATTGTAAAGATATGTATAGATTGTGAGGAAAATGCGAGAATA
ACTGAGAGCTAGGGCTATGCATGAGATGATTGAAATATCATGAACCAAATGGTTA
GATGAGAGCTTGGAGTGAGAGGTGACACTTGTTTGAGATGGGGAATAGCGGATTA
ATGTGCTTGCATGACCTTGGTTCTGAATTTTCGATTGATGAAATCTTGCATTTCG
TTATTTTCAAACTTTGTCCACGAGTTTTACATAACTAGGTTCATTCAAGTTACAA
CTTAAATTGGTTAGCTGACGTCTTTTTTCATGCATATACAAGAGGTTGCATTTGC
AAGCTTCAAAAGAGATTACACCAAAAACAATTTCCCCTAAAGGTTAAGATATATC
TTTGGCCITCAATTCGACATTAGGAATTATGITCAAGATTCAAGATTCAGTACTA
TTCTAACTTCTTTTGTACTTTATCTATGGATGTCTTGTTTATGATTGTATAAAAA
GTTTTGTTTTTTCGGATGGGTGGGCTATTAATATTATAAATCATATAATATGAGT
GTTCTGTAAAAAAATAAAAATGATATGAGTGTAAATCGAGAACTTAAAAAATCAT
GACACACGTTTATATATTAAAGAAAAAACGAATATAAAATATATGGATAAAAGGA
GTATAACATTTTCTTCATTACAATAATTAGATTTCTTCAAGTATACGTGTTGGTG
CGCGAGAGGTGGTTGTGTGAAGCCGAAGCAAAACTTCTTGCTCGCTAAGCCTCAT
ATAACACAAAAAAAGGGTTCTGTGACACACGTCGATTTATTTTATACAATTGAAA
TATGCTTACATACGTATACAATTAATTAAATAACACAACATTTGCTTACCTTGAA
AATGAAGACATCTTTGAATAGAAATAGACATGCTCATGAATATATATATTAATGT
TATATACTATCATATATCAATGTTATATATCATATATATACACACGTAAGGTTAA
CGAATTAGATATGTCTGTAATGTATACCTTGTGAATGAAGAAACTAATAGAAATG
AGTTATATATTCAAAAAGAACAAGAAAAGAAGAAAATAAAATTAAGAACAAGTGA
AGAGCACTTCTCCTTTTTTTCTTTGATGTTTTGCATATCGGGTCTTTTTCAAAAC
CGTTTTCGTCCATGACCGATCAACTAACGTTTCTTCATTTCGTCAAATTAGTTAT
ATACAAAACATACATTTGTTGTTGGTGTATTTTATTTTATTTACCTTACACAATA
TATGCCGACAAAAAAAATGTGTTTAATTTGAAAAAGAGCCAGGGTTCGGATGTTT
TTCTTTTATGTTTTAAAACAAAGCAACACTATATTATAAATATAATATATACAAT
AAAAATATAATTAAGGAATAGAGATTAAAAAGGAAGAAGTGCAAATGGTTTTTCT
TCCCAGAATTGTAAGCAAACCATACAACCATCCCTTTCTCATCATCATCATTCTC
CCTTCATCAAGTCTTCTCTCTTTTCTCTCTCTATTATAAAACAAACTTCACTCGT
TCACATCAATGGATCCTTGAGAAAGACAAACAAATTGAAGAGAAATAATAACAAT
TAACTCAACCAAAAAT
SEQ ID NO: 48
Polynucleotide sequence PATMYB58
CAAAGACTAGAGACAGAGGCGTGCCAATAGCAACACGTTTGCTTTCGTCATGCA
AATTGGGATATTTCAACTTTCTTCCATTTTTTCAACCTAGTTTACTAAACTTTT
CTTTTTCCAGTGCGAACCTAATTGGTTCTAGTTAAAATAACATTTTCGTAAGTT
GTTCACCAAACAAAGGAACATATGATTATAACTTTACTAGAGATGCATGCACAA
TAATGCTATTGTCGAATAAATACTTATATCTTCTCCAAAAAAGTTTCTTTATTA
TGTTAGAAGATCCATCAATATACTAATTGATTTTTGGTTATATGTTTTGATTTA
AAGACAAAACTATACAGGACATGCATGTGAGAACAAAAATTGTTGTTGTTGTAG
TTGCTAGTTGAGTTTTATTTATGTTGCCAAAATAACACCATGTCAACTTTAATT
TTCGTCATATAATTTAACGTAAGCATGATGTGTTTCGTCATATCTTGTTTGGCA
TATGGAATATAAATCATACTATTGATTTGGAATCTTTAACTTAACTTCCTATTA
AGTAAGCGATTGATGCTGATATGTATGTTTCTTTAGATTGATGAACGTAATATT
AATCAGTAGTGGATATACATTGTATCTTTAGAATTTAGGTTAGTATATTATGGC
CAAAATGACTAAATTGAGTACCATAAACTAAAGTTAAAGTAGTGGTAAAAGCTT
ACGATATTGTTTTATAACAATTTTCAAAAAGTAAAAGATATATAAATGTTAGAG
GTTTTGGATAACCATATTGTTCTATAACATTTTAAACATATGTCATATATGTTT
CGTTTATAATATTTATGACTTGACCAAATAATTTGTGTATGTTATTTAAATCCA
AATATATATGAGAAATATATAGACGACATGATTAAAATTATTTAAAAGAGTCAT
GATGAGAGGGATGGAGACTAAAAAAAAGAGGAGAAAAAGATAGAACGTCGAGAA
ATGTTGTGTGTGTATAAAGTAAAGGAAAGCTAATTTGATCATTGTATTCGAAGA
AAACAAAAAAGTATACACATGTTACAGGGTTATAGGACCCATTTTCTTTAAAAT
AAATCCACTATGGACTGATGTACATATTTTTTCTTACTGTTCTTAAGCATGATT
TTATATGTATAATATGGTTATAGATTAGAATTTTATTCAGCCTTCCACGATTCT
TAACCCTAACCAGTCAATTTTTTCTTCCTTATAAATATGAGTGCCAATCGGAAG
GTGATAGCATCCTTACGTCTTGTTTGGTAGATTACTAAGTCAAGTTTTATTCAT
GAAATTTCCACTTATCAAACTTTCTCATTTTGTTAAAATTTAAAACCGTTTTTC
AAAAGTTGGTATAGCCATAGACAGAAAAAAATTATTACAATCCTATCTGATTTG
ACTCAGACACCCTAATTAGTCAAATCTCAAAATTAGCTAATATTAACTAACGAG
TTGCGCATTTTGCAGCAGTACAACAAAATTAGTCAAAATAATTTAGGATAACAG
CACTAATCACAGGAACAGGTATTTTTTTTTTTCCTTTCTTTTGACATCATAAAG
ATGGATTCAACTTATAGATTGGTCAGAGGCAATCTTTATAGGTTTCATGATTGA
ATAAAAAATATGAGACTCAGTATCTAAGTTTCAAACATGTTTCATCTGTGTTTA
GTTGATTACATTTTCATAATAGTTTATTAATGACATATAGAAATGCGAACTATA
CAATTATAAAAAAGATGTGAATTTTGCCAGATACTCATCCACAATATAGACAAG
TTTTTAACCTCAACAAATCTGATGTGACATTTGTCAATGTCTGTGGTTTATAAC
ATGTTTCTCAATGTCAGGATCACACACACCACTTCTCATGTATAAATACACATA
AAAGCAATTGGATTTGGTAAGAGGGAATCTCAAAAGTGTGTGTCTGTGAGAGAG
GAGAGAGAGAAT
SEQ ID NO: 49
Polynucleotide sequence PATMYB63
GTTGATATATATTAATATGTGTCCCTATTATGATCACACAAAACATACACATGCA
GAGCTTTATTCCAATAGCTAAAATCTGAACTTTAAAGTCAGTACACTCGAAATTG
ATATTGACGTATGTATTACTAATAGCAACATGTGTTCTTTCATCATAAGTTTACA
TAATTTTTTAATTTTATTCTACTTAATTAATGTCACAGTTTCCATCGTTTTGATA
AGGTCCATACTCCATAGGGACGTTGAAAATTTAATTTAATTTTTTCCACTCATAG
TTGTCCTTTTTTTCTTAGTAAAGTTTGGGAAAGTTTTCCCACTCATACTTGTTTG
TTCACCAACCTTCTGATTACCAAGAGTCGTATAAAAATGCAAAACTAATAGATCG
TCATTTATATATGTTGCTCCTATAGACTTTTATCGACAAAATTTTCCGAATTAAT
CATTTTGTAACTTCAATACATATACGTCCAGATATTTACCCTAGTGAAAAATATT
TCTTCTTTTTCAAACCTCTTTTCCTCTCTATTCCTCCTAAGAGCTTGTTAACGTA
ACAAAATTGTTGGGTTTATTAACTTCAATTATTGTCGATACTTAGTACTTTAAAA
TATTTGGAGTAATAGATGTAGTGATGGCTGTGTCGTAATTGCTTGAATAATTTTG
GATGGGTACAGAGGAATTAATTAAGTAATGAAGGTTTGGTGGAATTAAGTAATTA
ACGTAGCCAAGAGCCAACAACAACACCAAACCCACCAAACATTAAAAAAGTCAAA
AAGACGTAAGTCTTTGACCTCTTCCACTCTCTTTGGTCTTTAGTTTGGTGAGTTC
GTGCACTATGCTCACACACACTCCTTACGCCTTTTGGTGTTTTCGGATGTGATTA
GAAATGACTTTTTAACAGTTTTTTTTTTTTTCTGTCTCTCATTTTAATGTTATAT
TTAAGGATTATATATATTTCTGCTTTTTTGTATACAAAATATGAAAATATTCCAT
GGAGTGACGTATGGAGTGACTGCGTACTTAGTAAAACAGCATTATTAGTGAGAGT
TCATTTTTCTCGTGTTACACTGTATCTACATGATGATCACGGGACTATCTATTAT
TCAAAAGTTGGTAATTATACACTGAGCCTGATTACAGAAGACTCGCAGACAAAAA
CTAATATAATCAATTCCTCCTATGTATACCTTAAGCTAATTCTTAATTAACAAGT
TGCAGATTTACAATCTTATTTTAGTCAAAACACTACCTAATATTTTGCCACTTTA
TAACTATATATTCTTACTCCTCCAAAGTATTTTTATTAAGAAATACATAAAACTC
TTATCATTACCGCTGTAAATTCCTAAGACCATTTCAATTAACACTCGTCGACATG
TAGTAGTTTCTTACATTAGCGAAATTTATTTCAGACAATTTTATAAGATATGTCA
AATCTGATAATATTTTTAACACGAGATGCTAGTTTCCATTATTACTTGATGTCAA
AAAAGAAGAAAATATTATTTAAGGATTTTGGTTTCTAAAAACGAATGTGAAATAT
TCATGCATCGGTGTTAGAAGGAAAGATAAGTTGCATGCATCATAAGGATGCCAAA
TGAAGTAAAAATGAGAAAATGGAATCATACCAAATAATCAACCATACCACAGACA
GACAACCTTTTCCCACTCAACAAATCTGATTTGACATTTATCAATTCCTCTGTTT
ACATATTCATCTTTTCTCATGTCAAGATCACACACTCTTACCTCTCATATATATA
AAACAGAACCAAATTATCTTTGGTAAAAGTGAATCTCATCAGGAACTGAGTGATA
TAAAGTTATATATATAGAGGAGAGAGGGAGTGAGAGGGAGTGAGAGAGAGAGA
SEQ ID NO: 50
Polynucleotide sequence PATMYB83
TTTGATACAGCAACAGAAAAAAAATAAAAATACAGAAGAACATTAAGAATGATC
TTCTACCATCTGAGAATGGCAAATCCAGAAAGGATGAGAGAAGAGATGATCATG
ATAATAGACATTCCTGGGAAACAAGAGGCTCCTGTCTGTGACTCTGAATCGTAC
TGTGCGGAGGCGGTAAAGACAGAGGAGAGCGTCATTGTGGCGAAAACAGCCATC
GCTGTGTATTGATTGTAGCCAGAAGCCATGTTTACTAAATTTGACCCTCTCAAA
ACCAATTATGTCACCTTTGGCTTTGGCTTTACCAATGTTGTTGTTTTATAGGGA
AAGAAGAAGTTCGTGGGGACGTGAAGAGCATAAGGTTAATGCTCATTTCATAAA
ACCCCACTTTCTGTTTGTTGGTCAACGATTGTTATTGTAATGACTAATGACCTA
TAGAACAAAACCCATCTAACATGAATCTTCTTTTAAATGGATTTGGTGAAAAGA
CCAAGTTTTAAAATCATCATACGTGCGATGAAAGAATACCCAATTTGAAGCATG
AGCCCAATGATAGTTTATAGGCCCAAATAATTTTGATTTATAGTCACAGACAGG
ACAGGAGCCTCTTGTTTTATGAGTTGAATTGGGCCGAAGATGATACAATATAAA
GCATGAGACCAATAGAGGACTGACCAGTTTCTTACCTTCGTTCGTCGAAGAATC
GAACAGTCCCTTAATTTTTCCAGATTCAGATTAATAGCCTATGTATCATCTGTT
TGGATGTGTTAGGCTCTTTTGAATTTCTTAAAATTAGTCTAGATTTTGATTTGT
GATATCCTTGTTATACAAAATTTGAATTTTTCAGAAAATTCATACTTAATTTCA
TGGTAGACTTGTCGAACACTGTGATTTGTTTGGGAAAAAAAAGGTTTAGTTTAT
ATTCATTACGTACGTGATGCATGATGCTTAGTATGCATTAAGATAGAGTATATG
ATCCGTGCTCCATCATTACTTGCTATTATCGATCGATACTTACTATTATTGATC
CTTAAAAGCTGATTTTTGCATGCGCATTATTTTCAATATGCTATTTTGAAAATA
TTTTTTGATGATGATGATTGTTTTATTTCGGTTATAAGTTATAAACGGACTCGT
TTTTGTGATTGAATTATGGGCTTTTGATATCACATCAAATGTTATTTATGTGGA
AATGAATTGAGAAAAAATGATGATTTTATCTTGCACCTATTCTTAAGTTTGGCT
TTGATGTGTTTGGCTTTTGATGCTATATTTCTGTCAAAGAATCCTGAATTTATT
TATTTATTTAGATTCGGTTGATTGTGTCGTAAAATGGAAGTTACTTCAAAATAA
GCCTCCTTGCAAGAGTATATATACTATATTACTTTTAGATAGTGAAAATTGGTT
ATTAGTTGTCGTTTAGAAAGAAGGAAATTTTAAGAAAAAATACTGATCGTAAAC
TATAACCAATGTATGTATTAGTATACTTTGATACTTCAAACACACGTGTGTGGT
GCGGGGATGAGACAGAGAAAGAGGTTGGTCTTGTTCTTGTCTTTGACTCTAAAC
CAGTCTTTTTCGATACATTTTTCTTCACTCACAAGTCTATCATCATGTTTCTAA
CGAAGACATTTATTTTATTTATATTTTGTAACAAAAAAATGAAGACCCACCTCT
TGCTTCTTCTTCACATCCCCATTTCATCTTCTCTCTGTCTCTCTCTATTAGAGA
CTCTCTCTACTCTACCCATCAATCTCAACAAACACTACTTTCTATCTCTTTCTC
TCTTTGTCATATCCATTACGCATATTCGTATCATTCCAAAGCAATCCCCACAAA
TCATATCATCCTCTCCATCTTTCCTTGCTTCTTACAATCTCTCCAATTTCAAAT
CTGTATACTCTTCTTCAAAAAGGCTCCACCAGTCCAAA
SEQ ID NO: 51
Polynucleotide sequence PATMYB85
CTTAGCATACAATCTTTAATTTTTCATGGAAGATTTTTAAAACATTTCCGATCC
GATTAAACAAAGAAGCGAGCGAGCCACATTCTGACAATAATTAAGTAGACACTA
TGATACGACGAAGAATATTAATTTAATATTGAAAGATAGATCAATTTGTAGCAA
AACCATGAAGCCAAAATTGCAAGTCACCCACAAGTCGCAAAGATTAGAAACATA
TATTGATACAGTGATCTATACGTGTACACCATGTGTCAAATGGATATTCGTCTA
TTATTTTTCGTATCGGCGACAAAGTATTTTGTGCGGCAATTCATTATTGAAGCT
TTTACTAAGTTTCTTCTATGTTATGTAAAAAACAAATCTTACCAAAATTAGAGA
CTCGTATATAATATACTTAATAGGTTTGTTAGGGTTGCCAAAAAAAATGGTTTA
TCGCAATGGACTAAAGATCTCAATTCTCAAAACTTATCGGATTTTGCCATAGTT
GAACCGGACCAAGCCAATTATTTGAGATTCTGAAAAGAGTATTATTATGGGCAA
ATTCTGAATATTTTATGTAAAATCGGTTTTGTAAAGACTGGATCATATTTTTAT
TCGTGTTTATTTCACAGCTGATAGCGACAACAATGAAAAATTCATTTTTTTTGT
GTGTGTCATCAACTATTAGAGTCGGTGATTTATATACAGTTTTGGTGACAGAAT
AAGTGCCTACAACTTAAAACTACACTAGTTTTAGTTATCAAGATCCTTAGTACT
TAATGTTGAAATTAATACATTTTTTAATAAATAAATACAAAGTATATATTTATT
TGAAACTTGAGCAAGTATTTGAGTAAAAAAGGTATGAATCGCACGTGTGATTGC
GTACATTCGCACGCATCCTATCCTTTCACATTAGTTCCAAAGTCATTTTCACCA
ACCAAATGCGACATCTCCAATACTCCTTTCTATGATCCTACTAGCAACAGATTT
GACAAAGTAAGACAAATTATATTTCTTAACCTTAATCATTTCTGACCAAAAAAA
ACCTGAATCATTATTTATTAGAATAATCTTATTTTATCAGAATTCGTAATTCTT
TAGCTGACTAACTCCTAATTAAAATGAACCATTCAATATAAAAATATAAACGAA
CGTATTATGTATAAAGTCAGATACAGAAGATCTTCTTTGAAACTGTTGTAATTT
CCCCATCATGACACCTGTATATACATACGTACCTTAAAAAAATTCTGATCTATA
TGTACTTTTGTATGAACGAGTAATGCATAATTCTTATTTAGATTAGACATTCTT
TAATGATAAAATAGTGAAGACGGGTATTATACATATATTAAGTCACTATTAGGG
TGATTAATTGTATTTATATACCAAGAAATCTCTAAGTGACAACATTATGAGGGT
GATTAGTAGTCCGTACTGTTTTTCATTCTAACCAATCACATAAAAGAATACTAA
AAGCGACAAAAAAAACTATTATCAGCTTTTTATACCATTTTATATGTTCGTTAT
TTATACCGTTTTTAATTATTTATATGTTATCAATTACTTTTTTCATATCGACAA
AAGATTTTATAATTTTTTGTGTTACCAATCGAACCATGTATATATATATAACCG
TTACTAGTTAAAATGCTTTGCCATAATGCCACTAGAATTTTTAATAAAAGTTAC
TAAAACAATTTCGAAAATATTAAGATGTAAAGTTATTTTTTCCTGAAACCAATT
GTGGGGGAAAGGTGTGAGAAGGTTATATATAGGTGGGTGAGCTTTGGTAAGCTT
TTGACATAACTTGCAAGCTGTTGAGATTTTCCATCCTCGATAACTTTATTCTTC
CATATCTCTTCCATTTCGCTCTCTATTTCACATCCCCATATAACATAATATACA
ATCACACATATCATTTCTATATAGTATTTA
SEQ ID NO: 52
Polynucleotide sequence PATMYB103
TGGTGCCCTGGTCTACAGTTCCCTAGTTAAGATTCTATTTTGACAACAAAATTGA
GTATTCCAATCATCCATATTTGTTATAGGGAGAAATTGAGCATGCTATATACGGT
GATATATATGATATTTATTTAATATATTGAATAACAAACACAGAACTAGTGTTAT
AGGTGCAGGTATGTAAATATAATGTGATAAACATTTTTTATATAGATTGGAAAGA
ATACGAGATTGTTGTTGCTCTGTTAGAACGAACAAACAGAACTAGTGTTATAGGT
GCAGGTAAGGTAAATATAATGTGATAAACATTTTTTATATAGATTGGAACAAATA
AACATTTTTCTGTTAGAACGAACAAAGGCCTGTCAAAAAGAACAAACCTGATGTG
ACATATTACATATATGATTATAATTGATTATTGTATATATAGTATTGCATGACTA
TCTTTACAAGATTTCAATACGAAAATAAATTAAAAGGAGAAAATTTATAAACGAA
GCGATTTCATTCTCGGTAAGGTTTTCCGATATGTCTCCTAACTAAATCAAAGCCT
TGTAATTGAAACTTGTAATGATTGTTATTCTATATATCTTTGAAGAAAGCTTCGG
TATTGGACGTACTTAATATAATTGGATTTTATTTAAATTACAAAAATCACTGTAT
AATTCGGCTACATGACTTAATCAATTATTTCACGTTGAAAACAATACTATATCAA
CTTCAAATACACTCCTTGTGTATGGATTCCACAAGTTCTTTTCTATCTATAGAAA
TATAGAATCCACAAGTTCTATCTACTTTTATTAGAATTTTTTATTGTTCGTTGTT
GTTAACATAATTATAAGCAATAAATTCAAAAAAAAAAAAATCTAAAAGACACAAA
ATTTCCATCTTTGATAGGGCTTCGGAATCATTAATTACTTTTTACAAACAAAAAA
GAAGAAGATAGGGCTTCGGAAATTATTAGAAAGATGGAAGGATATTGTATTAAAT
TTGGCTTCATATTTTCCTTTGGTTTGCGGCCATCAAGTACTAGTACTACTCAGTA
CCCACAGGCCACAGGAAAAAAAGTAGTACTGCTTTATTAAGTGTGTTACGATAAA
TGGAAAGCGTTTTAGTATGTGATTACAAATTGTTGTATGTGATCATTAATTAGTT
ATTGGTCCGACTTCTAAGTTTAAATATTTTCAGAATTCAGTTAGTTTAATTATAC
ATGTTAGACGAAATGACTCTTTTTGAGCCAATATATAATGTATCTGAATTTTTCA
TTTTGAAAAATCTTTTTATAAAATAATAGGTCAACCTCGAATTATTATAATAAAA
TAAATAATTTGCGTTACTATGAAAATTAATTTACTGAATACAGTATATAGAGAGA
GATAGAAATAGAGGAAAACAGTGGATAATACATGATTAGTTGATACTCATGTGCA
GCGAGTCTATATATATTATATACTCATGATTAGTTGATACATATGTGACGATTAG
TTCTACGAATCAATCTCTAGTTTTCGTCTTAAAATCATTTGGTTTTATAGAATAT
AAGAAACAAAGAAAACAGGAACTTTCGCGGGAGACAGAAGGGTACGTGAAGAGAA
AAACACATAAAAGTGATAAGGGCTTAACGTAATAATACTACAACAAAACCTCTCT
ACGTACAACGAGTAATAACACATGAAAATAGAAAGTCGATGAGACATCGTTTTAA
GGTTAGATCGATGAAGAAATATCTCAGGCCCCACCCCTGGGACCCGACCCGACCC
GACCCGACCCGACCTTTGTCTCCTCTCCTTTTAAAAACTCTCCATTGCTTCTTTG
TCTTCTCTCTTCTATAACATAACTCAAGAAATTAAAGAAGATAGATAGAGAGAGA
GAGAGAGAGTAAAAACCTAAAGGGTGATATACTTATATAAAAATTAATTTAAGAT
TGTGATTAAGTGGTTCACTATATTTAAGTTACTTTGAGGAGCTACTAATC
SEQ ID NO: 53
Polynucleotide sequence PATCADC
AAAGCAAATCGATCTGCCAAACATATCACAGCTCTTGGAGAAAATGCAGGTCTC
TTCAGACTCTGATATTTCGGATCTCGATAGCCTTAAATTCGATGCTCCATTGCC
TAGTCATATGCAACTAAGCTTTAATTTGTTGAAATCTAGAGTCGAAACTTGTGA
CAAAAATTAGATTTTTTTTCTTACCGAGCTTTCTTCTTTGTGTTCATTGAGGCC
CAAGTATTTGTGTATTTGGACCTGAATATTCTCATACAAAGATAAATAATTATA
ATTAAATGATTTTTCGCATATAATCATTATTGTGGTATGATTAACACAGTTGGT
GTGATGACTGATTGACACAATAATCACCGTTTGGATTCGATTCCTTTAATACTT
GTCACTAGAGTTGTTTGACTAAACAGCTAACTTGTCACTAGAGTTATTGTGTTT
GTATTTTGATCTGTTATTAATCTGATTGGGTATAATTACAGATAGAGAGACATC
TATATTGTAATTAAGACAATCTTAAAGTGTAAACTAAAAAGATCTCTCTGACCT
CTGGAAAACGAAAGGTGGGTGACACATCACTCTAGCTATGAATATGATGAATAT
TCAGTACCTAACCGAACAAAGACTGGTTTGGTATTTTTATTGGAAAAAAGAGAT
AAATAATTGTGAATGTGAATTATCCTGTCTGAAAGGTAAGCTGATGACATGGCG
TTATATGATTGGACGAGCTTCAGAACAAAAGAGTAGCGTCGAATCGAATCTTTA
CCTACTACACTTTGAACTTTGAAGTACATTACCTACTTCCTCCTTGATCGAACG
TCTTTTCTCAAAACTATTTTATTTCCCCAATTAAAGTAGTGGTGATAAATTCAC
AAAAATACAAACACTTTTATTTTTGACGTCAAAAACAAATACTTCTTTGAACAG
GCTATTACAATATTTTTAAGAAAAAAGTAAGCAAAATAGTCCACAAACCAAAAT
CTGTAACATATTAAACGATTTATGTTTTTTTTTTTTTTTCTTAACTAGAGAACA
ATTCGGGCTTTTACTAAGGATGATGAGTGTAGTTACCGAATAGTGTATTCATAT
AATCTTTTAATGAGCTTAAGATATGATATTATTTCGACTAATCAGATAAGAGTA
GTTAGATAATTTCGTAATAGAGCAACTCTTTCGCAAATAAAACCATTGTAAACA
TTACCAATTAGTTTTTCTTTTTTTTTGGTCACAACCAATTAGTTTGTTTGTTCT
ATTTTATGAAGTGCGTATTAAAGCTAACGTGTTTACAGTAACGCCACACAAATA
AAAATAAAAATAATTATGTACTTTATGGATTTATAGAAAAAACAAGAATAGTCA
CCAAAAATTGATTGTGTCATATATCTTTTGTCAACTATTTTATCTTATTTTTCT
ATGGATATGTATGTCCAAAATGTTAGACAAAAAACCAAAAAATCATGTCCAAAA
TTTCGTTAGGCTGCCGATATCTCTGTTTCCCTTTCAACGACTATCTATTTAATT
ACCGTCGTCCACATTGTTTTTAATATCTTTATTCGAGGTTGGTTTAGTTTTTTT
TACCAAACTCACTTTGCTACGTTTTTGCCTTTTTGGTATGGTTGTATTTGTACC
ACCGGGAAAAAAAAGATAAGAGGTTTGGTTGGTCGAGCTTACTGATTAAAAAAT
ATACACGTCCACCAAATATTAAAACAATATATCCCATTTTTCCTCCTCTCTTTT
GGTATTACATTAATATTTTATTATTTCCCCATTTGCTCTGTATATATAAACATA
TGTCAATAGAGTGCCTCTACAGTCATGTTTCCATAGACATAATCTCTCACCATT
GTTTTTCTCTGCAAAACTAAAGAAACAAAAAAAGAAAAATCGGAGAAACCAAGA
AAAAAGAA
SEQ ID NO: 54
Polynucleotide sequence PATCADD
GCTTCGGTGATGCATTTCTCCTTCTCATCAATCATCCTAGCAATGTTTTGAAGC
TGAGAAATTCTCCACTCGTAGCTCTTCGTTCTGCCAGAGTTGAAGTTGCTTCTG
AGCTCATCTACAAGCAAAGCTGCTTCTTTTCCACTAAAGTCTGATGCTTGCTCC
TTTACCACAGCAGATAGTGTTGCATAACAAGTACTGATTCAAGACACCAAAACC
GCAATGTGAGAGACTTTAAGACTAAAAATCATGGATAAGACTAAAAAAACATGG
ATAAGTATCAACTGTTCTCACGATTATTTATTCATACCACTGTACTTAAACTTA
AAACCCACTATACTAAATAGAAAGGTAATCATCAAAAAATCAGTATGTAAAAAC
CACTTTTGTGAATAAAATATGTAAAATGGGTGAATAAAGAAATGTGCTTACAAT
TTCAACCGATAAGGGATACAAGCATTGCTGCAATATCCACCACCACCACGACGA
GATATCCGAAAAGGTGAAGTTGCAACATTTAATCTGCAACAAAAGAGGCCATTC
ATTAAAATGGTACTAATTAGATCTAATCATATCATATTGAATGACCAAATCATT
CACAGAAGCATCCATTGCTCCAATTAACATTCTAGACCAAATTCAACTTAAAGG
TAACTCTTTTATACAGGAAACCGAGAAACCGAAAACGCAATTCACATAAAAAGG
AAGGCTTGTTTGGAGAAGCAGAATCGAACAAGTCAATCTCAAACCCTGATGAGC
AGGTTTTTCAAGTTACCTGGCAGGAGAAAAACCCTTGGCAAAACAAAGGGTTTG
AATATGATTAATCTCTAGAAGCTTCGTCATGACTTGGGTTCAGTTAAAAATCTC
AAATTGGAGACATTATTGGTGTTTATATATTTGAGAGAGAGAGCCAGAGAGGAG
ACGTTGAATTGAATGAAGGGTGTGGTCGGAAGAGAAGACGTGTAGAAGAGACGA
GACAAGTAAATTTAAGCATTGGCCCCATTTACAGCCACAAGTCCGCTACAACAA
ATTATTTCCAAGAAACTCTGAGATAACGTCGTGATGAAACGGCTCATGCTGCTG
TTGTGATTCGTGAATTAGAGGTTTATCTTTTGGGTTTTTGAATGTTACTTAATT
GGACGGTCGATTTTTCAAACTGGGTGTGAAATGTGAATGGGTCATTCATAATGG
GCTTTTGTTTTAATGTGAAGCCATTCACACACTCTTTGTCCTTCTTTTCTATTA
TTCATAACTGTCACTCTTTGTTCTTCGAAATAGTAAAGAGCAAATCGATTCTTT
GTTGATCTGGGCCGTAAAATTTCCATGGTTGTGGGAAGTATTCTCGCAGCTGAT
CTGGGCCGTCAATGCTACAGTTTCATGTCAGAGAGAGGTCAAGAATCAACACGT
GGCCAACCATGATTTTAAACCAAAGCAAACACACGATTAGACCCCACATTGTTT
GTTCACCAACCCCCGTGGACCCTCCTTTAGCCGACGTGTCCACGTCAATAGTGG
TTTTTCTTCCTTTCAAAGTACACAAATTCCATTCTTTCTCATTTTACTTTTTGG
ATTACGTTGTTGTTATAAACTGGTAAAATGAATTATGAATGCAAATAAATTTCA
TTTAAGTTTTGTIGGCTICTAATATTTTTTTCACCTAAAATTCTAATAAACTAC
ACAGCCATGAGCCATCGTATGAAAAGAAGAAGAAAAAAAATGTCTTTTTCTAGA
AGGATCTTTCAACGACTAAAAAAGATTTTAAGCTTTTGACTAATTTTGTCAATA
ATATACACAAATTTACACTCAATTATAGCCATCAAATGTGTGCTATGCAGAAAC
ACCAATTATTTCATCACACATACGCATACGTTACGTTTCCAACTTTCTCTATAT
ATATATATAGTAATACACACACATAAACAGCAAAAGCGTGAAAGCAGCAGATCA
AGATAAGAAAGAAGAAAGAATCATCAAAAA
SEQ ID NO: 55
Polynucleotide sequence PATPAL1
TTTTCCCAATGATACAACTATAAATCAAAAAGAAAAAATGTACTGATAAACGAA
ACTAAACGTATAAATTAATATATTTCTTGACATAAATAGGAGGCTTTTGCCTGC
TAGTCTGCTACGATGGAAGGAAAAATGCATGCACACATGACACATGCAAAATGT
TTCAATGAAGACGCATTGCCCAATTAACCAACACACCACTTCTTCCATTCCACC
CATATTATTTATTTCTACCATTTTCTTTAATTTATTGTTTTTTCTTTGATTCAT
ACACTGTTTATGACTATTACATTTTCCCTTTCGACTAATATTAACGCGTTTAAA
CCAAAGAATGGATTTGATAATGAAATTTTATTTTATTAGCATATAGATAATGGA
TGGCTTCATGCTTGGTTTCCATGACAAGGAATGACACAAGATAATTATTTTGAA
TAAAATCATAAATATGATAATACTAGTTGTAAAAAAACTTGAGTGTTTCGTGTG
TTATTTTTCGGTTTCTTGACTTTTTATATTTCTCGTTTTTGTAATTTTAGGATG
GATTATTTAGCTTGCTTTTCTCTTTTATTACTTTCTAAAATTTTATTTATAAAC
TCATTTTTAATATATTGACAATCAATAAATGAGTTATCTTTTAATTAATAAAAA
ATTTGTAAACTCTTGTAAACAGATCATAGTCACTAAAAGCTATTATAAGTTATT
TGTAGCTATATTTTTTTATTTCATGAACTTAGGATAAGATACGAAAATGGAGGT
TATATTTACATAAATGTCACCACATTGCCTTTGTCATGCAAACGGCGTGTTGCG
TCACTCGCCTCCTATTGGGAATCTTATAATCGCGTGAATATTATTAGAGTTTGC
GATATTTCCACGTAATAGTTATCTTTCACAAATTTTATACTCAATTACAAAATC
AACGAAAATGTACATTTGTATCTTTAACTATTTACGTTTTTTTTACGTATCAAC
TTTCAGTTATATGTTTTGGATAATATATTTTTTTACTTTTGACTTTTCAGTTTT
CACCTAATGATTGGGATATACATATGCATGCATAGTTCCCATTATTTAAATGTA
AGCTAAGTGCATATGAACTGTTAGTCAAAATTACGAAGTTTATTTGTACATATA
TATAGTTATAACAAAATGGTACAGTAAATTAAACAGAACATCAAGAAAGTACAA
AAGACTGAACACAATAATTTACATGAAAACAAAACACTTAAAAAATCATCCGAT
AAAATCGAAATGATATCCCAAATGACAAAAATAACAATATAGAAAATACAAAAA
CAAAAACAAAATATGAAAGAGTGTTATGGTGGGGACGTTAATTGACTCAATTAC
GTTCATACATTATACACACCTACTCCCATCACAATGAAACGCTTTACTCCAAAA
AAAAAAAAAAAACCACTCTTCAAAAAATCTCGTAGTCTCACCAACCGCGAAATG
CAACTATCGTCAGCCACCAGCCACGACCACTTTTACCACCGTGACGTTGACGAA
AACCAAAGAAATTCACCACCGTGTTAAAATCAAATTAAAAATAACTCTCTTTTT
GCGACTTAAACCAAATCCACGAATTATAATCTCCACCACTAAAATCCATCACTC
ACTCTCCATCTAACGGTCATCATTAATTCTCAACCAACTCCTTCTTTCTCACTA
ATTTTCATTTTTTCTATAATCTTTATATGGAAGAAAAAAAGAAACTAGCTATCT
CTATACGCTTACCTACCAACAAACACTACCACCTTATTTAAACCACCCTTCATT
CATCTAATTTTCCTCAGGAACAAATACAATTCCTTAACCAACAATATTACAAAT
AAGCTCCTATCTTCTTTCTTTCTTTTAGAGATCTTGTAATCTCCTCTTAGTTAA
TCTTCTATTGTAAAACTAAGATCAAAAGTCTAA
SEQ ID NO: 56
Polynucleotide sequence PATPAL2
TTTCCCTGTTTTTTTTCCCCTCTTTCTGTTTCCCATTTGAAAGTAAAAGATCATTT
AAGCACCTAACTCAATTTTATTTTATTTTAAACACCTAATGTCATGCTCCTTGGCT
CCTTGTAATTAGTTGATCGTTTCAATTTAGACCAGCAAAACATTTTAGTATGTTCG
TAAATATTGCGTACATGCCATTTCGTTTGTCATGCAAACGGTGTGTGTTTCTTTAC
TTAGCTTCTAGTTGGTGTATATTGCGTCGCATTAATATCGGTTTACCTTCCTCCTG
TCTACGTAATGATATATTCTCCACCACAAATTTAAATTCTTATTGAAATTTCCTAA
TTTTTTAGGTAGCTCAAGGTCTCAAGTATACTACGTACCCTATTTTTTTGAATATC
TATCTATATTATAACAAGAGTTTTTCTGAGCTAGTTAATGAGATGACAATATTCTA
CATAAATAAATGACCCTCGAAAGTTTCAAGTACTTTAGGATCTGACCAAATCGGGG
TAAAACATTTTGAAACTAATTACGTTCACATCTACCATCGATGATTGACAAGCTTA
TTGTCACCTTTTATGTTAAAGTGACATGGTCTTGACGTTAATTTGCATGTTATTCT
ACATCTATAGTCCAAAGATAGCAAACCAAAGAAAAAAATTGTCACAGAGGGTTCAA
TGTTACTTAGATAGAAATGGTTCTTTACAATAATAAATTTATGTTCCATTCTTCAT
GGACCGATGGTATATATATGACTATATATATGTTACAAGAAAAACAAAAACTTATA
TTTTCTAAATATGTCTTCATCCATGTCACTAGCTCATTGTGTATACATTTACTTGC
TTCTTTTTGTTCTATTTCATTTCCTCTAACAAATTATTCCTTATATTTTGTGATGT
ACTGAATTATTATGAAAAAAAACCTTTACACTTGATAGAGAAGCATATTTGGAAAC
GTATATAATTTGTTTAATTGGAGTCACCAAAATTATACAAATCTTGTAATATCATT
AACATAATAGCAAACTAATTAAATATATGTTTTGAGGTCAAATGTTCGGTTTAGTG
TTGAAACTGAAAAAAATTATTGGTTAATAAAATTTCAAATAAAAGGACAGGTCTTT
CTCACCAAAACAAATTTCAAGTATAGATAAGAAAAATATAATAAGATAAACAATTC
ATGCTGGTTTGGTTCGACTTCAACTAGTTAGTTGTATAAGAATATATTTTTTTAAT
ACATTTTTTTAGCAACTTTTGTTTTTGATACATATAAACAAATATTCACAATAAAA
CCAAACTACAAATAGCAACTAAAATAATTTTTTGAAAACGAAATTAGTGGGGACGA
CCTTGAATTGACTGAACTACATTCCTACGTTCCACAACTACTCCCATTTCATTCCC
AAACCATAATCAATCACTCGTATAAACATTTTTGTCTCCAAAAAGTCTCACCAACC
GCAAAACGCTTATTAGTTATTACCTTCTCAATTCCTCAGCCACCAGCCACGACTAC
CTTTTCGATGCTTGAGGTTGATATTTGACGGAACACACAAATTTAACCAAACCAAA
CCAAAACCAAACGCGTTTTAAATCTAAAAACTAATTGACAAACTCTTTTTGCGACT
CAAACCAAATTCACGTTTTCCATTATCCACCATTAGATCACCAATCTTCATCCAAC
TGGTCATCATTAAACTCTCACCCACCCCTCATACTTCACTTTTTTCTCCAAAAAAT
CAAAACTTGTGTTCTCTCTTCTCTCTTCTCTTGTCCTTACCTAACAACAACACTAA
CATTGTCCTTCTTATTTAAACGTCTCTTCTCTCTTCTTCCTCCTCAGAAAACCAAA
AACCACCAACAATTCAAACTCTCTCTTTCTCCTTTCACCAAACAATACAAGAGATC
TGATCTCATTCACCTAAACACAACTTCTTGAAAACCA
SEQ ID NO: 57
Polynucleotide sequence PATC3H
ATCGTAAGTTTTTTTGTGTGTGTGTTAACAATGTACTCACTACTCACTGTTCCAT
ATTTTTGATGTACGTATATCGAAAACATTCTGCCAACAAATGCAAACATAACAAA
AGTCAAAAACAATAACATAACCGGGAATTAAACCAAAATGTAATTGCTTTTTATT
AGTGTCAGGCCTTCTGCTTAAAAATATTCTCGGCCCAGAGCCCATTAACACCTAT
CTCAATTCATATTGAAGAAAATGACTATATTACTTGACAAAAACTTTAGTCAGAA
AAATATGGAATCTCTTTCGGTACTGCTAAGTGCTAACCTTAAATAGTATAGAATT
CTTAGTTCATTCTCAAAAACATAGCTATATGTAGATTATAAAAGTTCGATATTAT
TTCCTGCAAAAGATGTTATAATGTTACAACTTACAAGAAAATGATGTATATGTAG
ATTTTATAAACTGGTACCGTAATTCATAAAAGATGGTGGTGGGTATGTATCAGTA
ACGGAACTTACATATGCGTGTGTATTACTATGTCTATATGGTGTATTCCTTTGTG
TGGAACAATGCACGTCAGAGTTGTTTATTTTCTTATAGAATTTAAGGAATCAATT
ATTGGATTTCTCAAGGTGAAAGTGGACTTCTTTGCACGCAAGGTCTAGTTGCCGA
CTTGCCGTTGCATGTAACATGATTGTTGAAATAAAGTGAATTGAGAGAAGTTTGG
CCAGACATTTTAAATTTAACCCAAAAAAAGTAGGGCCTAACACAAAATATAACCT
CTCTTTGTTCAAAGGAAATAACACCTACGTCTTATAATTGAACCAAACATTGAAT
CATTGAACTCACCTATAATAATTATAATAACACGAATTCACAAGACACCTAAAAG
AAAAAGTTCACAAAAACAAATAAAAATTTACCTCTCACCAAACACACTCACCTAC
CCGTCTGGTCCCACTGACCCCAACATACAACACCGACTCTCTCCCACACCAATTT
TTTTTTTTGGCGTTTTAAAACAAATAAACTATCTATTTTTTTTTCTTACCAACTG
ATTAATTCGTGAATAATCTATTATCTTCTTCTTTTTTTTGTGACGGATGATTAGT
GCGTGGGGAAATCAAAATTTACAAAATTTGGGATGATTCCGATTTTTGCCATTCG
ATTAATTTTGGTTAAAAGATATACTATTCATTCACCAAGTTTTCAGATGAGTCTA
AAAGATAATATCATTTCACTAGTCACTTAAAAAAAGGGTTAAAAGAACATCAATA
ATATCACTGGTTTCCTTAGGTGACCCAAAAAAAGAAGAAAAAGTCACTAGTTTCT
TTTTGGAAATTTTACTGGGCATATAGACGAAGTTGTAATGAGTGAGTTTAAATTT
ATCTATGGCACGCAGCTACGTCTGGTCGGACTATACCAAGTTACCAACTCTCTCT
ACTTCATGTGATTGCCAATAAAAGGTGACGTCTCTCTCTCTCTCACCAACCCCAA
ACCACTTTCCCCACTCGCTCTCAAAACGCTTGCCACCCAAATCTATGGCTTACGG
GGACATGTATTAACATATATCACTGAGTGAAAAGAAGGGTTTATTACCGTTGGAC
CAGTGATCAAACGTGTTTTATAAAAATTTGGAATTGAAAACATGATTTGACATTT
TTAATGATGGCAGCAGACGAAACCAACAACACTAAGTTTAACGTTCGTGGAGTAT
ACTTTTCTATTTTCGAAGAAGACATATAACTAAGCTGATTGTTATTCTTCATAGA
TTTCTTTTCACTGCGAATAAAAGTTTGTGAACATGTCACCGTTTGAACACTCAAC
AATCATAAGCGTTTTACCTTTGTGGGGTGGAGAAGATGACAATGAGAAAGTCGTC
GTACATATAATTTAAGAAAATACTATTCTGACTCTGGAACGTGTAAATAATTATC
TAAACAGATTGCGAATGTTCTCTACTTTTTTTTTGTTTACATTAAAAATGCAAAT
TTTATAACATTTTACATCGCGTAAATATTCCTGTTTTATCTATAATTAATGAAAG
CTACTGAAAAAAAACATCCAGGTCAGGTACATGTATTTCACCTCAACTTAGTAAA
TAACCAGTAAAATCCAAAGTAATTACCTTTTCTCTGGAAATTTTCCTCAGTAGTT
TATACCAGTCAAATTAAAACCTCAAATCTGAATGTTGAAAATTTGATATCCAAGA
AATTTTCTCATTGGAATAAAAGTTCAATCTGAAAATAGATATTTCTCTACCTCTG
TTTTTTTTTTTCTCCACCAACTTTCCCCTACTTATCACTATCAATAATCGACATT
ATCCATCTTTTTTATTGTCTTGAACTTTGCAATTTAATTGCATACTAGTTTCTTG
TTTTACATAAAAGAAGTTTGGTGGTAGCAAATATATATGTCTGAAATTGATTATT
TAAAAACAAAAAAAGATAAATCGGTTCACCAACCCCCTCCCTAATATAAATCAAA
GTCTCCACCACATATATCTAGAAGAATTCTACAAGTGAATTCGATTTACACTTTT
TTTTGTCCTTTTTTATTAATAAATCACTGACCCGAAAATAAAAATAGAAGCAAAA
CTTC
SEQ ID NO: 58
Polynucleotide sequence PATCCR1_PATIRX4
AAAATTGTGTCTAAGAATGTGGAACCGAGTAGTTCTCCAGAAGTCAGGTATGAA
AGTATATAAGAATTCTAGTTTTAGTTGTTTGAAAGTTTGATCCGTGAGTGAATT
AGTTCACAATTATGGATGTAGATCCTCTATGCAAACAATGAAGAAGAAAGACTC
TGTAACAGACTCCATTAAGCAAACAAAAAGAACCAAAGGTGCACTGAAGGCTGT
AAGCAATGAACCAGAAAGCACTACAGGGAAAAATCTTAAATCCTTGAAAAAGCT
GAATGGTGAACCTGATAAAACAAGAGGCAGAACTGGCAAAAAGCAGAAGGTGAC
TCAAGCTATGCACCGGAAAATCGAAAAAGATTGTGATGAGCAGGAAGACCTCGA
AACCAAAGATGAAGAAGACAGTCTGAAATTGGGGAAAGAATCAGATGCAGAGCC
TGATCGTATGGAAGATCACCAAGAATTGCCTGAAAATCACAATGTAGAAACCAA
AACTGATGGAGAAGAGCAGGAGGCAGCGAAAGAGCCAACGGCAGAGTCTAAAAC
TAATGGAGAGGAGCCAAATGCAGAACCCGAAACTGATGGAAAAGAGCATAAATC
ATTGAAGGAGCCAAATGCAGAGCCCAAATCTGATGGAGAAGAGCAGGAGGCAGC
AAAAGAGCCAAATGCTGAGCTCAAAACTGATGGAGAAAATCAGGAGGCAGCAAA
AGAGCTAACTGCAGAACGCAAAACTGATGAGGAAGAGCACAAGGTAGCTGATGA
GGTAGAGCAAAAGTCACAGAAAGAGACAAATGTAGAACCGGAAGCTGAGGGAGA
AGAGCAAAAGTCAGTGGAAGAGCCAAATGCAGAACCCAAGACCAAGGTAGAAGA
GAAAGAGTCAGCAAAAGAGCAAACTGCAGACACAAAATTGATTGAGAAGGAGGA
TATGTCTAAGACAAAGGGAGAAGAGATTGATAAAGAAACATATTCAAGCATCCC
TGAGACTGGTAAAGTAGGAAACGAAGCTGAAGAAGATGATCAGAGAGTGATTAA
GGAACTGGAAGAAGAGTCTGACAAGGCAGAAGTCAGTACTACGGTGCTTGAGGT
TGATCCATGAATGAAGGATTGTTAGGTAAATGTTAATCCAGGAAAAAAAGATTG
GTTCTTGTGGTTTAGGTAACTTATGTATTAAGTGAAGCTGCTTGTTTAGAGACT
AATGGTGTGTTTTATGAGTAGATTCTTCTGACCTATGTCTCGTTATGGAACTAG
TTTGATCTTATGTCACCTTGCTAGCAGCAGATATTGATATTTATATATTTAAGA
GACATGCGCATGAGAATGAGGGTATGGAAAAGTCCATATCAGATGACACAAACA
ATGATCGTATGTGTAGTCACTTGTGCATTTCCAGTTTTGGACATAAAATTCTGA
TATTGCATAGAAATGTTTTTAAATAACACTAATCCAAACCTAAATAAAATATCT
CTATACATCATCTAGAAATGTATGGCTTGATCAAGAATTGTAGATAATAATACC
CTGAGTTAAATGATTGTAGGTATTATTTCAGTTTTCAAAATTGTCCAAATTTAT
GAGCTATATTAAAGATAATATTTTCAATAAGGTGTGTAGTTCTAAATGTTTCTT
CTTCTTCCACCAACCCCTCTTTCTATATGTATGTTCTTTTTTCTAAAATAATTG
TTTGTTCTTTTTTAGATATATCAAATTAAATATAAAAAATATTGACAAAACTTA
TTTACCATTGTTAGGTGAACTTGGCAAGTGTGTAAATATAAAGATAACATTCCT
TTTCGTTCTTTATATATACGAAACGTACCACAAATTTCTAACTAAAGCATTCAT
AGTCTCTCGAAAGCCTCTTTTCAGAACCGAAGCTCTTTACTTTCGTCCACCGGG
AAAT
SEQ ID NO: 59
Polynucleotide sequence PATF5H
AAATTTTTGTATGAAATATTTCTTTAACGAAAATAAATTAAATAAAATTTAAAA
TTTATATTTGGAGTTCTATTTTTAATTTAGAGTTTTTATTGTTACCACATTTTT
TGAATTATTCTAATATTAATTTGTGATATTATTACAAAAAGTAAAAATATGATA
TTTTAGAATACTATTATCGATATTTGATATTATTGACCTTAGCTTTGTTTGGGT
GGAGACATGTGATTATCTTATTACCTTTTTATTCCATGAAACTACAGAGTTCGC
CAGGTACCATACATGCACACACCCTCGTGAAACGAGCGTGACTTAATATGATCT
AGAACTTAAATAGTACTACTAATTGTGTCATTTGAACTTTCTCCTATGTCGGTT
TCACTTCATGTATCGCAGAACAGGTGGAATACAGTGTCCTTGAGTTTCACCCAA
ATCGGTCCAATTTTGTGATATATATTGCGATACAGACATACAGCCTACAGAGTT
TTGTCTTAGCCCACTGGTTGGCAAACGAAATTGTCTTTATTTTTTTATGTTTTG
TTGTCAATGTGTCTTTGTTTTTAACTAGATTGAGGTTTAATTTTAATACATTTG
TTAGTTTACAGATTATGCAGTGTAATCTGATAATGTAAGTTGAACTGCGTTGGT
CAAAGTCTTGTGTAACGCACTGTATCTAAATTGTGAGTAACGACAAAATAATTA
AAATTAAAGGGACCTTCAAGTATTATTAGTATCTCTGTCTAAGATGCACAGGTA
TTCAGTAATAGTAATAAATAATTACTTGTATAATTAATATCTAATTAGTAAACC
TTGTGTCTAAACCTAAATGAGCATAAATCCAAAAGCAAAAATCTAAACCTAACT
GAAAAAGTCATTACGAAAAAAAGAAAAAAAAAAGAGAAAAAACTACCTGAAAAG
TCATGCACAACGTTCATCTTGGCTAAATTTATTTAGTTTATTAAATACAAAAAT
GGCGAGTTTCTGGAGTTTGTTGAAAATATATTTGTTTAGCCACTTTAGAATTTC
TTGTTTTAATTTGTTATTAAGATATATCGAGATAATGCGTTTATATCACCAATA
TTTTTGCCAAACTAGTCCTATACAGTCATTTTTCAACAGCTATGTTCACTAATT
TAAAACCCACTGAAAGTCAATCATGATTCGTCATATTTATATGCTCGAATTCAG
TAAAATCCGTTTGGTATACTATTTATTTCGTATAAGTATGTAATTCCACTAGAT
TTCCTTAAACTAAATTATATATTTACATAATTGTTTTCTTTAAAAGTCTACAAC
AGTTATTAAGTTATAGGAAATTATTTCTTTTATTTTTTTTTTTTTTTAGGAAAT
TATTTCTTTTGCAACACATTTGTCGTTTGCAAACTTTTAAAAGAAAATAAATGA
TTGTTATAATTGATTACATTTCAGTTTATGACAGATTTTTTTTATCTAACCTTT
AATGTTTGTTTCCTGTTTTTAGGAAAATCATACCAAAATATATTTGTGATCACA
GTAAATCACGGAATAGTTATGACCAAGATITTCAAAGTAATACTTAGAATCCTA
TTAAATAAACGAAATTTTAGGAAGAAATAATCAAGATTTTAGGAAACGATTTGA
GCAAGGATTTAGAAGATTTGAATCTTTAATTAAATATTTTCATTCCTAAATAAT
TAATGCTAGTGGCATAATATTGTAAATAAGTTCAAGTACATGATTAATTTGTTA
AAATGGTTGAAAAATATATATATGTAGATTTTTTCAAAAGGTATACTAATTATT
TTCATATTTTCAAGAAAATATAAGAAATGGTGTGTACATATATGGATGAAGAAA
TTTAAGTAGATAATACAAAAATGTCAAAAAAAGGGACCACACAATTTGATTATA
AAACCTACCTCTCTAATCACATCCCAAAATGGAGAACTTTGCCTCCTGACAACA
TTTCAGAAAATAATCGAATCCAAAAAAAACACTCAAT
SEQ ID NO: 60
Polynucleotide sequence PATLAC4
CAATTATATTTGGTTTCGATTGAAATTCAATCTAATGTGGTTAGATGAGTCCTA
TATTACCATGTCATTGTTAATACCCATTGCCAAAAATAAAAGTGAAGCAGAAGG
AGAAATTGTTTTTGTATACCCGAAGGAATTAAGATGTACGATCTTAAAATAGAC
ATTTCGGCCATCTATCAAAATAAATGTCTAAAAGTTTTGTGGTCGTCTTAAATA
CTACTTCGAGTTCAGACGTATACGTCTCACCAAAGTAATGCACATACTTGATGT
TAAGTTTATCTCTTTTTACTATTTCAAATTTCGCGTTTGACAACACTTTAAGTC
TACATTATCCATAGAGAATATAACATAAAGATCATGAACTTCTCATGAATGTAT
AAGACAAATCAAGCTTATATATGAGATCTATTTAGTAATTTGATATGTATGTAA
TATATGATAAATCTTTGATGCAATATTTTATTATGATTATTAGATATACACTAG
TCAACTTTAACTTTAGAAGATTAATCATTCCGTCGCAAACCATACCATAAATTA
GCAAGGGATCGACTTAATATCTCCGATCCGCTATATATTTAAGAAGCATTTAGA
TTGTTTATAATACATGTCATGATTTTATAATTATGTATATATAAATACTAATTG
ATGTATGAAGTACGTAGATAATGTTACGATCTATTAATCTATTTACATTAACTT
TTAATTAGTGTTGAGTAGGGAAAATTAACATATAAACCTTTAGCAGTTGGTTGT
ATTATTAAAAATAATTTGAACTTAAAATCCACCTTCGAAAAGATAAATCAAACA
AGTATAAAAAATGCTATAAATCCAGAATATTTACCTAAGGTTTTTATTCTTCTA
CTTAATAATGTAAGATAAAACCGGCACAATACTTGTTACGTATGCATGGTAGGT
ACCGCAATTGTGTAAGCAAATCGGCACAATACTAAGGTTACATATACTAACTAA
ATAAAACAATCTGATTTCAGTGACACCGTATATCTAACCTTTATTCAAATCCAA
GGGAACATGACTTGACTTCTTCTGTTGGAACTAACTCGATCCCTCAACCATCTC
CAGGGATAGAAGAGTTAGTAAAATCAAACTTGAAGTGAGGAAGTAAGCAGTTTA
ACGACTCCATATGACTACAGTTATATACAAAGTTGGGCACAAAGTACAAGTACT
AAATACTCAAAGTCAGATAATAATTTTAATAAGTACAAACTATATATATGCAGT
ACAATTATTGAGTATATATAAACGAGACTGGTGATTTGGGGCATTGTCCACCAG
GGTGTTATATCCCAATTGAAATTTGAAAATTTAAGTGTGTGAGTGTTACGACAA
AAAAAAGTGTGTGAATTGTAGGCGCGGTGAAAAGGTAAATTAAGATTGGAACTA
GAAAAATAGTTGAATATCCTTTACTAAAAGTTGTCAATTCCGGTTTTAGTAAAA
AAAAATTTTAAAATAGAAATTTTATCCAAAAGACTTCAAACACACATATTCGCA
TATATAACATAAGATATCATTTTTTGTAAACAGTTAAAAAGAAAAACACATGTT
TTTTTITTTAATTTAGAAAAAAACATGTTATTATACAAAACAGAGTTTTGCCCA
CTTTTAATATGTTATGAAAAGAAAAATGATTTTCTTGGGTTTGGTCAGAGAGAT
TGGTTGTGGTAAGAATGGGAATCTTAATTACAAAGAATTGGATTTTGGGTCGAC
CTACCACCTAAAACGACGTCGCCTCCATCTCTGGTTTCCAAATCTCTTTCTCCT
CTCCCTTTATAAGCTTGCGTTGGCCAGTCGCTCATCTCGAAAACAGAGAGAAAA
AGACTAAAAACACAGTTTAAGAAGAAGGAGAGATAGAGAGAGAAGAGAAAGATA
GAGAGGGAG
SEQ ID NO: 61
Polynucleotide sequence PATLAC17
TAAGTTTAAGTCCAATAATTTCATTTTACTAGTAAAGATCACAATGTCATTTACC
GCATTCACTTAATAATTGCTGAATTCACATAGTGCCTGTAAATTAAGACTAATTT
TAGGTTTCAAATAATTTTTCTTTTTTACATAACTTACGATCGATATTTTAAATGG
TATTGGTAAGTTTAAGGTATATAGATAGTGTGTCTAAACTAGAGTTCGTTGAAAT
TGGTCTGAGGTATAAATACCTAAAAGGTTATATATGTTTTTAGTTTAATGTAATT
CGATAAATTTTAGTCGAAACCGTTAAGAGATATCAGAATTTCGTTTTCAAATAAT
ATGGGATATAATTACCCGGGATTAACCGTACCTGATAAAATATAGCTCTCGTACG
TGTCACATGCCTAATGCCTAGTTAAACTTAAAACGAATATCTATATTTACTGTTA
TTGATTGTGAGTTACCAACTAAAATATTGTTAAAAGACATTGTAAAACTACAAAT
GGTTCGAACTGTATACTAATGATGTAAACTCGTGTTTCATCGTTATGTCCGATAT
TTTTTTCATTCAACCATTATTCAATTTCAAGATTTCTTTATTGTCTTTTTTTCTT
TCTAGAAAGCCTATATATTTAATTACCCACTTTGCATATTCAGAGGATAAGTTGA
TACGTACTTGTTAGCAACCTGTCTAGATCATCTTTTGATTGTAGATTTGACTTTA
AATTTCTCACAATTATAAATATGAAAAATAACAAGCAAAGAATTTACAAATGTAT
ATAATTATATACACGCATTGATGAATAAACATATTTAGAAAATAATGTGTTCTAA
GGAAATTTTGTGGCATTTTTTAAAAAATAATTAAACAAATAAGAATAGTGTAAAG
TTGTTTAAATATGTATGTATAAGTGGCATGCCTTTGAGGATACGAACTTAAAAGG
GAGTTAGGTAACTTGCTTGGGAAATAAAATAGCCAACCTTAATTTGAGGTTTCCT
CAATGTTCTTATCAAAAAGAATAAAAATTTCGGAAATTCCCTTCATGGATTTTGA
TATCTAACCCTAATCGTGACCTTCTTTGATAGCTACAATCTCCCTCTCTTTGCTT
ATTCCCCAAGCAATTTTAGCTTACGAATGTTTTGACTAACTCCACATCGGTTTAT
CTCTTAAGTTCCCCACCTACAAATATACAAAAAAAGAAGTAAAATAAAAATAATT
ATTAACAAACCGATGAAGTACTTATCATTTATAAACATGCTTATGAAATGTATTT
TCTAAAACATAACCGCTAACCAGAGAAGTTTCCTAGAGTTCTGCTTCAGACTCTT
TTGGTCGATCAAGAAGTCTCCAAGAGTTGTTTTTGTTGGGTCTAAACAAAACTTG
GCCAGGGAACAAATCAAACTATATTATTAATCTTCTACATCTGGTCCTAAGTTCC
TTACTATCTCATGTTAAAATTTGAAGTCTAATATACTCAAAGCTGTCAAAGAAGC
AGAACATGGAAGAGGAACTGTCATATCTGAGAAACCAAAATTGGCAATCTTGCAT
TTCATATTTAGAATCTACGCCATAGTATTGAGATGGAAACAAAGAGTTTTCGAAG
AGGGTCAAAGAGTTTGACTTATCTTTGACACCACTCATACATTAGCTGTTCATAT
AATCTAACAACTAGTCAATATCAAGTGTCTCCAAATTACGGAGAGTACTTCTCTA
CCAATTATCTTTTTGTTTTTCATAAACATTTTACTAATTGTTTTTTCTATATCTC
CTGCTCAAGCAAACACCTAACTCTCCTTTCCTATATATACACTAAAGGTTGAAAA
CAATGAATCCACAATCTACAGCAAAACATAAGCGAGGCAGAGTCTTCAGAAAACT
TACCTGCTCTAAACAACGCCTCCGTGTCCAAGCTCACTTCA
TABLE I
In-vitro HCHL enzyme activities in
stems of five-week-old wild type (WT) and
IRX5:HCHL plants. Values are means of three
biological replicates.
Enzyme activity ± SE
Plant line
(pkat vanillin μg −1 protein)
WT
nd a
IRX5:HCHL (1)
0.112 ± 0.026
IRX5:HCHL (2)
0.075 ± 0.022
IRX5:HCHL (3)
0.042 ± 0.006
IRX5:HCHL (4)
0.160 ± 0.038
IRX5:HCHL (5)
0.025 ± 0.002
a nd, not detected.
TABLE II
Height of the main inflorescence stem and total stem
dry weight of senesced wild type (WT) and IRX5:HCHL
plants. n, number of plants analyzed. Asterisks indicate
significant differences from the wild-type (*, P < 0.05, **,
P < 0.01, ***, P < 0.001).
Height (cm)
Dry weight (mg)
Plant line
Mean ± SE
Mean ± SE
n
WT
62.4 ± 4.6
477.7 ± 51.3
16
IRX5:HCHL (1)
60.3 ± 5.0
501.6 ± 62.8
14
IRX5:HCHL (2)
56.0 ± 4.6
435.3 ± 62.5
12
IRX5:HCHL (4)
48.3 ± 4.4***
335.7 ± 63.4***
15
IRX5:HCHL (5)
54.1 ± 7.6**
399.1 ± 61.1*
16
TABLE III
Quantitative analysis of soluble phenolics in stems from five-week-old wild type (WT) and
IRX5:HCHL plants. Values are means of four biological replicates.
Mean ± SE (μg g −1 fresh weight)
Plant line
HBAld
3,4-DHBAld
HBA
HBAGlc
HBAGE
WT
nd a
nd a
nd a
2.32 ± 0.20
1.34 ± 0.41
IRX5:HCHL (1)
1.02 ± 0.07
0.33 ± 0.02
5.53 ± 0.36
544.87 ± 157.79
1653.74 ± 504.38
IRX5:HCHL (2)
0.62 ± 0.08
0.23 ± 0.02
4.77 ± 0.41
569.23 ± 138.73
1046.97 ± 439.35
IRX5:HCHL (4)
0.83 ± 0.18
0.29 ± 0.03
4.64 ± 0.57
484.06 ± 74.23
959.79 ± 189.25
IRX5:HCHL (5)
1.04 ± 0.09
0.34 ± 0.02
5.59 ± 0.27
531.29 ± 51.13
1360.03 ± 178.03
a nd, not detected
TABLE IV
Quantitative analysis of acid-hydrolyzed soluble phenolics in stems from five-week-old
wild type (WT) and IRX5:HCHL plants. Values are means of four biological replicates.
Mean ± SE (μg g −1 fresh weight)
3,4-
3,4-
Plant line
HBAld
DHBAld
Van
5OH-Van
SyrAld
HBA
DHBA
VA
5OH-VA
SyrA
WT
0.6 ± 0.1
0.1 ± 0.0
nd a
nd a
nd a
14.0 ± 2.8
10.2 ± 2.7
5.0 ± 0.9
nd a
nd a
IRX5:HCHL
11.8 ± 2.1
14.3 ± 2.0
11.9 ± 3.8
24.3 ± 2.0
1.7 ± 0.0
2492.4 ± 534.9
17.3 ± 2.4
226.9 ± 32.6
8.1 ± 0.7
44.7 ± 7.6
(1)
IRX5:HCHL
5.7 ± 1.5
10.4 ± 2.6
3.9 ± 1.28
12.4 ± 6.1
1.6 ± 0.1
1726.1 ± 706.7
13.7 ± 3.4
175.9 ± 37.1
6.2 ± 1.5
45.9 ± 10.9
(2)
IRX5:HCHL
7.2 ± 0.8
9.9 ± 0.6
6.4 ± 1.26
10.7 ± 1.7
1.7 ± 0.1
1588.3 ± 181.1
15.4 ± 1.7
183.6 ± 19.0
5.8 ± 0.3
31.3 ± 2.4
(4)
IRX5:HCHL
9.9 ± 1.2
12.8 ± 0.7
8.0 ± 1.73
16.9 ± 2.5
1.9 ± 0.1
2061.3 ± 336.2
16.4 ± 1.2
202.3 ± 9.2
7.0 ± 0.5
39.5 ± 3.2
(5)
a nd, not detected.
TABLE V
Quantitative analysis of cell wall-bound phenolics in stems from extract-free senesced mature
dried wild type (WT) and IRX5:HCHL plants. Values are means of four biological replicates.
Mean ± SE (μg g −1 dry weight)
3,4-
3,4-
Plant line
HBAld
DHBAld
Van
5OH-Van
SyrAld
HBA
DHBA
VA
5OH-VA
SyrA
WT
5.8 ± 0.6
1.1 ± 0.0
59.4 ± 6.5
nd a
17.8 ± 1.0
6.2 ± 0.9
nd a
24.2 ± 2.0
nd a
10.6 ± 0.3
IRX5:HCHL
11.1 ± 0.4
0.6 ± 0.0
36.9 ± 2.7
0.8 ± 0.1
107.8 ± 6.4
486.4 ± 28.2
nd a
42.2 ± 3.2
nd a
47.5 ± 2.3
(1)
IRX5:HCHL
8.9 ± 0.4
0.6 ± 0.0
25.7 ± 5.9
0.6 ± 0.1
99.9 ± 4.6
427.9 ± 49.3
nd a
39.6 ± 1.9
nd a
43.3 ± 0.9
(2)
IRX5:HCHL
9.1 ± 0.9
0.7 ± 0.0
29.9 ± 2.7
0.8 ± 0.1
122.2 ± 14.8
421.8 ± 28.2
nd a
36.8 ± 1.4
nd a
54.1 ± 6.1
(4)
IRX5:HCHL
9.1 ± 0.7
0.7 ± 0.0
45.6 ± 6.2
0.7 ± 0.0
122.4 ± 5.9
349.6 ± 27.6
nd a
47.7 ± 3.0
nd a
59.3 ± 3.1
(5)
a nd, not detected.
TABLE VI
Chemical composition of total and hemicellulosic cell wall sugars in senesced
mature dried stems from wild type (WT) and line IRX5:HCHL (2). Values are
means ± SE of three biological replicates. Asterisks indicate significant
differences from the wild type (P < 0.001).
Mean ± SE (mg g −1 CWR)
Total Sugars
Hemicellulosic Sugars
Sugar
WT
IRX5:HCHL
WT
IRX5:HCHL
Fucose
2.23 ± 0.08
2.21 ± 0.05
1.44 ± 0.03
1.49 ± 0.05
Rhamnose
10.83 ± 0.35
11.71 ± 0.19
9.12 ± 0.23
9.76 ± 0.26
Arabinose
16.01 ± 0.56
18.58 ± 0.54*
10.15 ± 0.30
12.40 ± 0.38*
Galactose
23.06 ± 0.66
22.69 ± 0.82
15.34 ± 0.33
16.49 ± 0.50
Glucose
442.76 ± 7.09
388.66 ± 7.58*
10.09 ± 0.34
11.25 ± 0.33
Xylose
201.63 ± 1.71
245.20 ± 3.31*
114.39 ± 0.97
141.16 ± 4.20*
Galacturonic acid
93.74 ± 2.56
99.96 ± 1.52
37.13 ± 1.86
40.58 ± 1.12
Glucuronic acid
4.10 ± 0.16
4.60 ± 0.39
2.66 ± 0.17
3.12 ± 0.09
Total
794.36 ± 13.17
793.61 ± 14.85
191.32 ± 4.23
236.25 ± 6.93*
TABLE VII
Lignin content and main H, G and S lignin-derived monomers obtained by thioacidolysis
of extract-free senesced mature dried stems from wild-type (WT) and line
IRX5:HCHL (2). Values are means ± SE from duplicate analyses.
Total yield
Klason lignin
(H + G + S)
Plant line
KL % of CWR
μmol g −1 KL
% H
% G
% S
S/G
Culture 1
WT
20.42 ± 0.14
1356 ± 40
0.98 ± 0.00
73.2 ± 0.3
25.9 ± 0.3
0.35 ± 0.01
IRX5:HCHL
20.12 ± 0.15
1014 ± 5
1.48 ± 0.04
73.7 ± 0.5
25.2 ± 0.3
0.34 ± 0.01
Culture 2
WT
20.32 ± 0.25
1238 ± 13
1.09 ± 0.00
73.8 ± 0.3
25.2 ± 0.3
0.34 ± 0.01
IRX5:HCHL
21.29 ± 0.14
1041 ± 7
1.47 ± 0.00
72.7 ± 0.1
25.9 ± 0.1
0.36 ± 0.00
TABLE VIII
Minor monomers obtained by thioacidolysis of extract-free mature senesced dried stems from wild-type
(WT) and line IRX5:HCHL (2). Values are means ± SE of duplicate analyses. Values are expressed in μmol
g −1 KL and as a relative percentage of the total main H, G and S monomers released by thioacidolysis.
Vanalc
Syralc
Van
Syrald
Cald
VA
SyrA
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
Plant line
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
Culture 1
WT
nd*
nd*
4.3 ± 1
0.9 ± 0.3
7.2 ± 0.6
6.7 ± 0.2
1.4 ± 0.0
IRX5:HCHL
5.0 ± 0.1
2.6 ± 0.2
(0.31)
(0.06)
(0.53)
(0.49)
(0.10)
(0.49)
(0.25)
6.5 ± 1.4
18.7 ± 3.5
7.9 ± 0.3
6.8 ± 0.2
2.2 ± 0.0
(0.64)
(1.84)
(0.77)
(0.67)
(0.21)
Culture 2
WT
nd*
nd*
4.6 ± 0.7
0.8 ± 0.3
6.9 ± 0.1
6.2 ± 0.2
1.2 ± 0.0
IRX5:HCHL
5.3 ± 0.1
2.9 ± 0.1
(0.37)
(0.06)
(0.55)
(0.50)
(0.09)
(0.50)
(0.28)
6.3 ± 0.7
16.7 ± 1.9
6.8 ± 0.1
7.0 ± 0.0
2.1 ± 0.0
(0.60)
(1.60)
(0.66)
(0.65)
(0.20)
*nd, not detected.
TABLE IX
Comparative transcriptomics of IRX5:HCHL stems and WT. Positive and negative ratios are indicative of
upregulation and downregulation of the gene in plants expressing HCHL.
AGI Gene ID
Annotated Function
log2 ratio
P value
MONOOXYGENASES
AT1G62570
flavin-containing monooxygenase family protein
0.00E+0
AT3G28740
cytochrome P450 family protein
0.00E+0
AT4G15760
monooxygenase, putative (MO1)
0.86
AT4G37370
CYP81D8
0.72
1.20E−7
AT3G28740
cytochrome P450 family protein
0.70
5.58E−7
AT2G12190
cytochrome P450, putative
0.65
8.60E−6
AT1G69500
CYP704B1
0.58
7.38E−4
AT3G14610
CYP72A7
0.51
2.96E−2
DEHYDROGENASES/REDUCTASES
AT4G13180
short-chain dehydrogenase/reductase (SDR) family protein
0.00E+0
AT2G37770
aldo/keto reductase family protein, Transcript variant 1
0.00E+0
AT2G37770
aldo/keto reductase family protein, Transcript variant 2
0.96
0.00E+0
AT2G29350
SAG13 (Senescence-associated gene 13); short-chain dehydrogenase/reductase (SDR) family protein
0.83
AT1G14130
2-oxoglutarate and Fe(II)-dependent oxygenese superfamily protein
0.72
9.59E−8
AT1G72680
cinnamyl-alcohol dehydrogenase, putative
0.90
0.00E+0
AT1G60730
aldo/keto reductase family protein
0.65
8.30E−6
AT1G18020
FMN-linked oxidoreductases superfamily protein, Transcript variant 1
0.62
7.14E−5
AT1G18020
FMN-linked oxidoreductases superfamily protein; Transcript variant 2
0.59
4.38E−4
AT2G47130
short-chain dehydrogenase/reductase (SDR) family protein, Transcript variant 1
0.58
7.60E−4
AT2G47130
short-chain dehydrogenase/reductase (SDR) family protein, Transcript variant 2
0.58
8.36E−4
AT1G18020
FMN-linked oxidoreductases superfamily protein, Transcript variant 3
0.54
6.80E−3
AT5G14780
FDH (FORMATE DEHYDROGENASE); NAD binding/oxidoreductase, acting the CH—OH group of donors
0.53
1.24E−2
AT1G54100
ALDH7B4 (ALDEHYDE DEHYDROGENASE 7B4); 3-chloroallyl aldehyde dehydrogenase
0.51
3.00E−2
UDP-GLUCOSYLTRANSFERASES
AT1G05560
UGT75B1
0.00E+0
AT2G15490
UGT73B4
0.00E+0
AT4G34138
UGT73B1
0.00E+0
AT2G30140
UGTB7A2
0.79
AT4G34131
UGT73B3
0.58
8.09E−4
AT3G11340
UGT76B1
0.58
8.97E−4
AT4G01070
UGT72B1
0.52
2.00E−2
TRANSPORTERS
AT3G23560
ALF5 (ABERRANT LATERAL ROOT FORMATION 5), antiporter/transporter
0.00E+0
AT2G36380
PDR6 (PLEIOTROPIC DRUG RESISTANCE 6) ATPase, coupled to transmembrane movement of substances
0.00E+0
AT3G51860
CAX3 (cation exchanger 3); cation; cation antiporter
0.00E+0
AT5G65380
Multidrug and toxic compound extrusion (MATE) efflux family protein
0.92
0.00E+0
AT1G79410
ATOCT5 (organic cation/carnitine transporter 5)
0.89
0.00E+0
AT5G13750
ZIFL1 (ZINC INDUCED FACILITOR-LIKE 1); tetracycline:hydrogen antiporter/transporter
0.78
AT1G76520
auxin efflux carrier family protein
0.70
4.27E−7
AT1G76530
auxin efflux carrier family protein
0.69
8.91E−7
AT4G18197
AT4G18200/PUP7 (purine permease 7); purine transporter
0.64
1.62E−5
AT4G28390
AAC3 (ADP/ATP CARRIER 3); ATP:ADP antiporter/binding
0.62
6.57E−5
AT5G45380
DUR3 (DEGRADATION OF UREA 3); sodium:solute:symporter family protein
0.61
1.05E−4
AT3G18830
PLT5 (POLYOL TRANSPORTER 5)
0.57
1.56E−3
AT2G17500
auxin efflux carrier family protein
0.55
3.26E−3
DETOXIFICATION
AT1G17170
ATGSTU24 (Glutathione S-transferase (class tau) 24)
0.00E+0
AT2G29420
ATGSTU7 (GLUTATHIONE S-TRANSFERASE 25)
0.00E+0
AT2G47730
ATGSTF8 (GLUTATHIONE S-TRANSFERASE 8)
0.00E+0
AT4G02520
ATGSTF2 (Glutathione S-transferase (class phi) 2)
0.78
AT3G09270
ATGSTU8 (Glutathione S-transferase (class tau) 8)
0.65
1.43E−5
AT2G29490
ATGSTU1 (GLUTATHIONE S-TRANSFERASE 19)
0.54
7.21E−3
AT4G19880
unknown protein, Glutathione S-transferase family protein
0.76
AT5G39050
ATPMaT1 (phenolic glucoside malonyltransferase 1); transferase family protein
0.77
AT5G39090
ATPMaT1-like; transferase family protein
0.52
2.13E−2
JASMONIC ACID METABOLISM
AT1G76680
OPR1 (12-oxophytodienoate reductase 1)
0.00E+0
AT5G54206
12-oxophytodienoate reductase-related
0.99
0.00E+0
STRESS INDUCIBLE/DEFENSE/SENESCENCE
AT5G49480
ATCP1 (CA2+-BINDING PROTEIN 1); calcium ion binding, NaCl stress inducible
0.00E+0
AT1G35260
Bet v I allergen family protein, defense response
0.88
0.00E+0
AT3G62550
universal stress protein (USP) family protein, Adenine nucleotide alpha-like protein
0.87
0.00E+0
AT1G73500
ATMKK9 (Arabidopsis thaliana MAP kinase kinase 9)
0.80
AT4G02380
SAG21 (SENESCENCE-ASSOCIATED GENE 21)
0.77
AT3G04720
PR4 (PATHOGENESIS-RELATED 4), similar to the antifungal chitin-binding protein hevein
0.64
2.04E−5
AT1G75270
DHAR2; glutathione dehydrogenase (ascorbate)
0.61
1.17E−4
AT1G70530
CRK3 (CYSTEINE-RICH RLK (RECEPTOR-LIKE PROTEIN KINASE) 3), protein kinase family protein
0.60
2.36E−4
AT3G50970
LTI3O/XERO2 (LOW TEMPERATURE-INDUCED 30); dehydrin stress-related
0.58
8.28E−4
AT5G27760
hypoxia-responsive family protein
0.54
6.87E−3
AT3G56710
SIB1 (SIGMA FACTOR BINDING PROTEIN 1); binding
0.51
2.30E−2
MISCELLANEOUS
Transcription factor
AT5G63790
ANAC102 (Arabidopsis NAC domain containing protein 102); transcription factor. Transcript variant 1
0.00E+0
AT1G77450
ANAC032 (Arabidopsis NAC domain containing protein 32); transcription factor
0.00E−0
AT5G63790
ANAC102 (Arabidopsis NAC domain containing protein 102); transcription factor, Transcript variant 2
0.65
1.26E−5
AT1G01720
ATAF1 (Arabidopsis NAC domain containing protein 2); transcription factor
0.54
7.23E−3
Glycine-rich protein
AT2G05380
GRP3S (GLYCINE-RICH PROTEIN 3 SHORT ISOFORM) Transcript variant 1
0.00E+0
AT2G05380
GRP3S (GLYCINE-RICH PROTEIN 3 SHORT ISOFORM) Transcript variant 2
0.00E+0
AT2G05530
glycine-rich protein
0.96
0.00E+0
AT2G05540
glycine-rich protein
0.90
0.00E+0
Auxin metabolism
AT3G44300
NIT2 (NITRILASE 2)
0.00E+0
AT3G44310
NIT1 (NITRILASE 1)
0.51
3.32E−2
Other
AT5G30870
transposable element gene; pseudogene, hypothetical protein
0.00E+0
AT3G14990
4-methyl-5(b-hydroxyethyl)-thiazole monophosphate biosynthesis protein, putative
0.00E+0
AT1G65280
heat shock protein binding/unfolded protein binding
0.00E+0
AT4G16190
cysteine proteinase, putative
0.89
0.00E+0
AT1G02850
glycosyl hydrolase family 1 protein BGLU11
0.86
AT1G17860
trypsin and protease inhibitor family protein/Kunitz family protein
0.86
AT3G49780
ATPSK4 (PHYTOSULFOKINE 4 PRECURSOR); growth factor
0.82
AT2G41380
embryo-abundant protein-related, methyltransferase activity
0.82
AT3G24420
hydrolase, alpha/beta fold family protein
0.79
AT5G52810
ornithine cyclodeaminase/mu-crystallin family protein
0.67
2.65E−6
AT5G17380
pyruvate decarboxylase family protein
0.64
1.84E−5
AT1G23890
NHL repeat-containing protein
0.59
3.35E−4
AT4G28380
leucine-rich repeat family protein, zinc ion binding
0.59
3.52E−4
AT4G01870
tolB protein-related
0.59
4.41E−4
AT1G37130
NIA2 (NITRATE REDUCTASE 2)
0.62
6.75E−5
AT1G24610
SET domain-containing protein, unknown protein
0.58
9.14E−4
AT4G11600
ATGPX6 (GLUTATHIONE PEROXIDASE 6); glutathione peroxidase
0.52
1.83E−2
UNKNOWN
AT5G61820
unknown protein
0.00E+0
AT1G76600
unknown protein
0.00E+0
AT1G76960
unknown protein
0.71
2.01E−7
AT4G17840
unknown protein
0.67
2.77E−6
AT1G21680
unknown protein
0.61
1.38E−4
AT5G40960
unknown protein, DUF3339
0.59
5.08E−4
AT4G08555
unknown protein
0.58
8.16E−4
AT2G30690
unknown protein, DUF593
0.53
8.86E−3
AT5G66052
unknown protein
0.50
4.05E−2
CARBOHYDRATE METABOLISM
AT2G06850
EXGT-A1 (ENDO-XYLOGLUCAN TRANSFERASE); hydrolase, acting on glycosyl bonds
−0.51
2.51E−2
AT3G52840
BGAL2 (beta-galactosidase 2), Glycoside hydrolase family 35, putative lactase
−0.52
1.83E−2
AT3G01345
Glycoside hydrolase family 35, beta-galactosidase putative
−0.53
1.13E−2
AT3G53190
pectate lyase family protein
−0.56
1.69E−3
AT5G03350
legume lectin family protein, carbohydrate binding
−0.57
1.28E−3
AT1G26810
GALT1 (galactosyltransferase 1), Glycoside transferase family 31
−0.61
1.02E−4
AT1G19600
pfkB-type carbohydrate kinase family protein
−0.63
3.41E−5
AT4G28250
ATEXPB3 (ARABIDOPSIS THALIANA EXPANSIN B3)
−0.79
AT3G30720
unknown protein, QUA-QUINE STARCH (QQS)
−1.08
0.00E+0
MISCELLANEOUS
AT4G27440
PORB (PROTOCHLOROPHYLLIDE OXIDOREDUCTASE B); protochlorophyllide reductase
−0.50
4.45E−2
AT5G02890
HXXXD-type acyl-transferase family protein
−0.50
3.86E−2
AT1G18950
aminoacyl-tRNA synthetase family
−0.51
3.29E−2
AT5G47330
palmitoyl protein thioesterase family protein
−0.53
1.07E−2
AT1G03870
FLA9 (FLA9)
−0.54
4.82E−3
AT1G20530
unknown protein, DUF630 and DUF632
−0.55
4.67E−3
ATCG00470
ATP SYNTHASE EPSILON CHAIN, rotational mechanism
−0.55
3.12E−3
AT5G51720
unknown protein, 2 iron, 2 sulfur cluster binding
−0.56
2.02E−3
ATCG00330
RPS14, CHLOROPLAST RIBOSOMAL PROTEIN S14
−0.58
8.70E−4
ATCG00340
D1 subunit of photosystem I and II reaction centers, Transcript variant 1
−0.62
5.42E−5
AT2G38870
serine-type endopeptidase inhibitor activity, pathogenesis-related peptide of the PR-6 proteinase inhibitor family
−0.64
1.54E−5
ATCG00340
D1 subunit of photosystem I and II reaction centers, Transcript variant 2
−0.71
2.75E−7
1.PublishNumber: US-2015013033-A1
2.Date Publish: 20150108
3.Inventor: LOQUÉ DOMINIQUE
EUDES AMYERICK GUILLAUME
4.Inventor Harmonized: LOQUÉ DOMINIQUE(US)
EUDES AMYERICK GUILLAUME(US)
5.Country: US
6.Claims:
(en)The present invention provides an expression cassette containing a polynucleotide coding sequence for a hydroxycinnamoyl-CoA hydratase-lyase (HCHL), which is operably linked to a heterologous promoter. Also provided are methods of engineering plants that have reduced lignification, as well as cells, plant parts, and plant tissues from such engineered plants.
7.Description:
(en)CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims benefit of U.S. provisional application No. 61/507,484, filed Jul. 13, 2011, which application is herein incorporated by reference.
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
This invention was made with government support under Contract No. DE-AC02-05CH11231 awarded by the U.S. Department of Energy. The government has certain rights in this invention.
BACKGROUND OF THE INVENTION
Lignocellulosic plant biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic and hydrophobic branched polymer incrusted within biomass that negatively affects extraction and hydrolysis of polysaccharides during industrial processes. Engineering the monomer composition of lignin offers attractive potential for reducing its recalcitrance. The present invention offers a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers, which incorporate as end-groups in the polymer and reduce lignin chain extension. Biosynthesis of these lignification stoppers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes. Stems from plants that express HCHL accumulate higher amount of hydroxybenzaldehyde and hydroxybenzoate derivates compared to wild type plants. Part of these C 6 C 1 phenolics are alcohol-extractable from plant tissues and are released from extract-free cell walls upon mild alkaline hydrolysis. Engineered plants with intermediate HCHL activity level show no reduction of total lignin, sugar content and biomass yield compared to wild type plants. However, cell wall characterization by 2D-NMR reveals the presence of new molecules in the aromatic region and the analysis of lignin isolated from these plants revealed an increased amount of C 6 C 1 phenolic end-groups and a reduced molecular mass distribution. In addition, these engineered lines show saccharification improvement of pretreated cell wall biomass. Enhancing the incorporation of C 6 C 1 phenolic end-groups in lignin represents a promising strategy to alter lignin structure and reduce cell wall recalcitrance to enzymatic hydrolysis.
BRIEF SUMMARY OF THE INVENTION
In the first aspect, the present invention provides an isolated expression cassette comprising a polynucleotide sequence encoding a hydroxycinnamoyl-CoA hydratase-lyase (HCHL) and a heterologous promoter, and the promoter is operably linked to the polynucleotide sequence. In some embodiments, the HCHL is Pseudomonas fluorescens HCHL, which has the amino acid sequence set forth in SEQ ID NO:1. In some embodiments, the promoter used in this expression cassette is a secondary cell wall specific promoter, such as pIRX5, which is within the polynucleotide sequence set forth in SEQ ID NO:3.
In a second aspect, the present invention provides a method for engineering a plant having reduced lignification. The method includes these steps: (1) introducing the expression cassette described herein into the plant; and (2) culturing the plant under conditions under which the HCHL is expressed, thereby reducing lignification in the plant. In some embodiments, the plant is selected from the group consisting of Arabidopsis , poplar, eucalyptus, rice, corn, switchgrass, sorghum, millet, miscanthus, sugarcane, pine, alfalfa, wheat, soy, barley, turfgrass, tobacco, hemp, bamboo, rape, sunflower, willow, and Brachypodium.
In a third aspect, the present invention provides a plant that is engineered by the methods described herein, and a plant cell from such a plant, a seed, flower, leaf, or fruit from such a plant, a plant cell that contains the expression cassette described herein, and biomass comprising plant tissue from the plant or part of the plant described herein. Thus, the invention provides an engineered plant comprising a heterologous hydroxycinnamoyl-CoA hydratase-lyase (HCHL) operably linked to a promoter. In some embodiments, the polynucleotide encoding the heterologous HCHL is integrated into a plant genome. In some embodiments, the promoter is heterologous to the plant. In some embodiments, the promoter is an endogenous promoter. In some embodiment, the promoter is a secondary cell wall-specific promoter, such as an IRX5 promoter. In some embodiments, the HCHL is Pseudomonas fluorescens HCHL. The plant may be a monocot or a dicot. In some embodiments, the plant is selected from the group consisting of Arabidopsis , poplar, eucalyptus, rice, corn, switchgrass, sorghum, millet, miscanthus, sugarcane, pine, alfalfa, wheat, soy, barley, turfgrass, tobacco, hemp, bamboo, rape, sunflower, willow, and Brachypodium.
In further aspects, the invention provide methods of using an engineered plant of the invention, or parts of the plant, or plant biomass comprising material from the plant. In some embodiments, plant material is used in a saccharificatoni reaction, e.g., enzymatic saccharification, to generate soluble sugars at an increased level of efficiency as compared to wild-type plants that have not been modified to express HCHL. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase biomass yield or simplify downstream processing for wood industries (such as paper, pulping, and construction) as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase the quality of wood for construction purposes. In some embodiments the plants, parts of plants, or plant biomass material can be used in a combustion reaction, gasification, pyrolysis, or polysaccharide hydrolysis (enzymatic or chemical). In some embodiments, the plants, plant parts, or plant biomass material are used as forage that is more readily digested compared to wild-type plants.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 . HCHL-mediated conversion of hydroxycinnamoyl-CoAs into hydroxybenzaldehydes. HCHL performs the hydration and cleavage of hydroxycinnamoyl-CoAs (R=H, coumaroyl-CoA; R=OH, caffeoyl-CoA; R=OCH 3 , feruloyl-CoA) to produce hydroxybenzaldehydes (R=H, 4-hydroxybenzaldehyde; R=OH, 3,4-dihydroxybenzaldehyde; R=OCH 3 , 4-hydroxy-3-methoxybenzaldehyde) and acetyl-CoA via the formation of the corresponding reaction intermediates 4-hydroxyphenyl-β-hydroxypropionyl-CoAs.
FIG. 2 . Analysis of HCHL expression in IRX5:HCHL lines. (A) Detection by RT-PCR of HCHL transcripts using mRNA isolated from secondary stems of five independent five-week-old transformants in the T1 generation. cDNA synthesized from mRNA purified from wild type (WT) stems were used as a negative control. Tub8-specific primers were used to assess cDNA quality for each sample. (B) Detection by western blot of HCHL tagged with the AttB2 peptide (approximate size 32 kDa) using the universal antibody and 5 μg of total protein extracted from the primary stem of five independent five-week-old IRX5:HCHL transformants in the T2 generation. A protein extract from wild type stems (WT) was used as a negative control.
FIG. 3 . Histochemical staining of stem sections from five-week-old Arabidopsis plants. (A) Mäule staining. (B) Phloroglucinol-HCl staining. (C) Toluidine blue O staining. i, interfascicular fibers; x, xylem. Bars represent 50 μm for (A) and (B), and 20 μm for (C). Note the collapsed xylem vessels (yellow arrows) observed for line IRX5:HCHL (4).
FIG. 4 . Spectral analysis of IRX5:HCHL and wild type plants. (A) Lignin and polysaccharide content in CWR of mature senesced stems from wild type (WT) and line IRX5:HCHL (2) using FT-Raman spectroscopy. Values represent integrated intensities over the range of 1555-1690 cm −1 and 1010-1178 cm −1 for lignin and polysaccharides (cellulose/hemicellulose) quantification, respectively. Values are means of three biological replicates±SE. (B) Comparison of FT-IR spectra obtained from xylem (black line) and interfascicular fibers (grey line) in basal stem sections of wild type and line IRX5:HCHL (2). A Student's t-test was performed on absorbance values of wild type versus transgenic and plotted against wave numbers. At each wavelength, the zone between −2 and +2 corresponds to non-significant differences (p-value<0.05) between the two genotypes tested. Significant positive t-values indicated a higher absorbance value in wild type than in IRX5:HCHL plants.
FIG. 5 . 2D-HSQC NMR spectra analysis of line IRX5:HCHL plants. 2D-HSQC NMR spectra of lignin from wild type (WT) stems (A) and from IRX5:HCHL (FCA1) stems (B); Difference spectrum (IRX5:HCHL (2)—wild type) showing the presence of new components in the aromatic region (C).
FIG. 6 . Polydispersity profiles of CEL lignin purified from stems of wild type and line IRX:HCHL (2) plants. SEC chromatograms were obtained using (A) UV-A 300 absorbance and (B) UV-F ex250/em450 fluorescence.
FIG. 7 . Saccharification of biomass from mature senesced stems of IRX5:HCHL and wild type plants. Amount of reducing sugars released from 10 mg of biomass after hot water, dilute alkaline, or dilute acid pretreatment followed by 72-h enzymatic hydrolysis were measured using the DNS assay. Values are means of four biological replicates±SE.
FIG. 8 . Alignment of amino acid sequences of Pseudomonas fluorescens HCHL (SEQ ID NO:1) and other homologous proteins.
FIG. 9 . Organ and tissue-specific activity of the IRX5 promoter in Arabidopsis . Line CS70758, which contains a pIRX5:GUS expression cassette, was used to localize the activity of the IRX5 promoter. Young seedlings (A and B), rosettes leaves (C and D), siliques (E and F), cauline leaves (G and H), flowers (I and J), and inflorescence stems (K and L) were incubated in the GUS assay buffer for 1 h and 8 h at 37° C. Gus activity was essentially detected in the stem xylem vessels after a 1-h incubation (K). For longer incubations (8 h), GUS staining was also observed in interfascicular fibers of the stem (L), the vascular system of young seedlings (A), siliques (F) rosette (D) and cauline leaves (H), as well as in the style and anthers (J). x: xylem vessels, if: interfascicular fibers. Scale bars: 2 mm (A-B, E-F), 4 mm (C-D, G-H), 500 μm (I-J), 100 μm (K-L).
FIG. 10 . Growth and development of IRX5:HCHL and wild type (WT) plants at different stages. (A) Three-week-old rosette (B) Five-week-old flowering stage. (C) Eight-week-old senescing stage.
FIG. 11 . Synthesis of C 6 C 1 phenolics production upon HCHL activity and probable associated enzymes. The phenylpropanoid pathway (center box) and monolignol pathway (left box) are represented. HCHL converts hydroxycinnamoyl-CoAs into their corresponding hydroxybenzaldehydes. Metabolomic data showed occurrence of hydroxycinnamic acids and alcohols, suggesting involvement of aldehyde dehydrogenases (DH) and reductases (left box). UDP-glucosyltransferases (UGT) are responsible for the formation of C6-C1 phenolic glucose conjugates. Syringaldehyde is possibly derived from vanillin and 5OH-vanillin after successive monooxyenase (Monox) and O-methyltransferase activities (OMT). Asterisks indicate compounds found in higher amount in lignin of Arabidopsis expressing HCHL. Abbreviations for enzymes are: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; CCR, hydroxycinnamoyl-CoA reductase; CAD, coniferyl alcohol dehydrogenase; HCT, p-hydroxycinnamoyl-CoA:quinate shikimate p-hydroxycinnamoyl-CoA transferase; C3H, p-coumarate 3-hydroxylase; CCoAOMT, caffeoyl-CoA O-methyltransferase; FSH, ferulate 5-hydroxylase (coniferaldehyde 5-hydroxylase); COMT, caffeic acid/5-hydroxyferulic acid O-methyltransferase.
FIG. 12 . Transgenic rice lines that express pAtIRX5::HCHL.
FIG. 13 . Expression analysis of HCHL in the engineered rice lines. Results of an RT-PCR using RNA extracted from rice plants and HCHL-specific primers.
FIG. 14 . Detection of pHBA in stems from the engineered rice lines.
DETAILED DESCRIPTION OF THE INVENTION
I. Definitions
As used herein, the term “hydroxycinnamoyl-CoA hydratase-lyase” or “HCHL” refers to an enzyme that catalyzes the hydration of the double bond of lignin precursor p-coumaroy-CoA, caffeoyl-CoA, or feruloyl-CoA thioester, which is followed by a retro aldol cleavage reaction to produce a corresponding C 6 C 1 hydroxylbenzaldehyde and acetyl-CoA. A typical HCHL within the meaning of this invention is an HCHL from bacterium Pseudomonas fluorescens (EC 4.2.1.101-trans-feruloyl-CoA hydratase), which has the amino acid sequence set forth in FIG. 11 as SEQ ID NO:1 (GenBank Accession No. CAA73502), encoded by cDNA sequence set forth in GenBank Accession No. Y13067.1 or by a codon-optimized polynucleotide sequence set forth in SEQ ID NO:2 (synthesized by GenScript, Piscatway, N.J.). In this application, the term HCHL includes polymorphic variants, alleles, mutants, and interspecies homologs to the Pseudomonas fluorescens HCHL, some examples of which are provided in FIG. 8 . A nucleic acid that encodes an HCHL refers to a gene, pre-mRNA, mRNA, and the like, including nucleic acids encoding polymorphic variants, alleles, mutants, and interspecies homologs of the particular sequences described herein. Thus, an HCHL nucleic acid (1) has a polynucleotide sequence that has greater than about 50% nucleotide sequence identity, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or higher nucleotide sequence identity, preferably over a region of at least about 10, 15, 20, 25, 50, 100, 200, 500 or more nucleotides or over the length of the entire polynucleotide, to a polynucleotide sequence encoding SEQ ID NO:1 (e.g., SEQ ID NO:2 or the polynucleotide sequence set forth in Y13067.1); or (2) encodes a polypeptide having an amino acid sequence that has greater than about 50% amino acid sequence identity, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of at least about 25, 50, 100, 200 or more amino acids or over the length of the entire polypeptide, to a polypeptide having the amino acid sequence set forth in SEQ ID NO:1 or to any one of the amino acid sequences shown in FIG. 8 (SEQ ID NOs:4-34). The enzymatic activity of an HCHL within the meaning of this application can be verified by functional assays known in the art or described in the example section of this application, for its ability to convert any one of lignin precursors p-coumaroy-CoA, caffeoyl-CoA, and feruloyl-CoA thioester to a corresponding C 6 C 1 hydroxylbenzaldehyde and acetyl-CoA.
The term “substantially localized,” when used in the context of describing a plant expressing an exogenous HCHL that is substantially localized to a particular tissue, refers to the enzymatic activity and modified monolignols produced therefore in substantially higher amounts in the particular cell or tissue type of interest as compared to other cell or tissue types. In some embodiments, the presence of HCHL and modified monolignols is substantially localized to the secondary cell wall of a plant cell and in the stem of a plant.
The terms “polynucleotide” and “nucleic acid” are used interchangeably and refer to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5′ to the 3′ end. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs may be used that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); positive backbones; non-ionic backbones, and non-ribose backbones. Thus, nucleic acids or polynucleotides may also include modified nucleotides that permit correct read-through by a polymerase. “Polynucleotide sequence” or “nucleic acid sequence” includes both the sense and antisense strands of a nucleic acid as either individual single strands or in a duplex. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc.
The term “substantially identical,” used in the context of two nucleic acids or polypeptides, refers to a sequence that has at least 50% sequence identity with a reference sequence. Percent identity can be any integer from 50% to 100%. Some embodiments include at least: 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below. For example, an HCHL may have an amino acid sequence that is at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO:1, the amino acid sequence of Pseudomonas fluorescens HCHL.
Two nucleic acid sequences or polypeptide sequences are said to be “identical” if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated according to, e.g., the algorithm of Meyers & Miller, Computer Applic. Biol. Sci. 4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).
For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
A “comparison window,” as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection.
Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and Altschul et al. (1977) Nucleic Acids Res. 25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits acts as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=1, N=−2, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).
The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10 5 , and most preferably less than about 10.
Nucleic acid or protein sequences that are substantially identical to a reference sequence include “conservatively modified variants.” With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.
As to amino acid sequences, one of skill will recognize that individual substitutions, in a nucleic acid, peptide, polypeptide, or protein sequence which alters a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art.
The following six groups each contain amino acids that are conservative substitutions for one another:
1) Alanine (A), Serine (S), Threonine (T);
2) Aspartic acid (D), Glutamic acid (E);
3) Asparagine (N), Glutamine (Q);
4) Arginine (R), Lysine (K);
5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and
6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
(see, e.g., Creighton, Proteins (1984)).
Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other, or a third nucleic acid, under stringent conditions. Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 60° C. For example, stringent conditions for hybridization, such as RNA-DNA hybridizations in a blotting technique are those which include at least one wash in 0.2×SSC at 55° C. for 20 minutes, or equivalent conditions.
The term “promoter,” refers to a polynucleotide sequence capable of driving transcription of a DNA sequence in a cell. Thus, promoters used in the polynucleotide constructs of the invention include cis- and trans-acting transcriptional control elements, translational control elements (5′UTR: untranslated region) and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene. For example, a promoter can be a cis-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5′ and 3′ untranslated regions, or an intronic or exonic sequence, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) gene transcription. Promoters are located 5′ to the transcribed gene, and as used herein, include the sequence 5′ from the translation start codon (i.e., including the 5′ untranslated region of the mRNA, typically comprising 50-200 bp). Most often the core promoter sequences lie within 1-3 kb of the translation start site, more often within 1 kbp and often within 500 bp of the translation start site. By convention, the promoter sequence is usually provided as the sequence on the coding strand of the gene it controls.
A “constitutive promoter” is one that is capable of initiating transcription in nearly all cell types, whereas a “cell type-specific promoter” initiates transcription only in one or a few particular cell types or groups of cells forming a tissue. In some embodiments, the promoter is secondary cell wall specific. Secondary cell wall is mainly composed of cellulose, hemicellulose, and lignin and is deposited in some, but not all, tissues of a plant, such as woody tissue. As used herein, a “secondary cell wall specific” promoter refers to a promoter that initiates higher levels of transcription in cell types that have secondary cell walls, e.g., lignified tissues such as vessels and fibers, which may be found in wood and bark cells of a tree, as well as other parts of plants such as the leaf stalk. In some embodiments, a promoter is secondary cell wall specific if the transcription levels initiated by the promoter in secondary cell walls are at least 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 50-fold, 100-fold, 500-fold, 1000-fold higher or more as compared to the transcription levels initiated by the promoter in other tissues, resulting in the encoded protein substantially localized in plant cells that possess secondary cell wall, e.g., the stem of a plant. Non-limiting examples of secondary cell wall specific promoters include the promoters directing expression of genes IRX1, IRX3, IRX5, IRX7, IRX8, IRX9, IRX10, IRX14, NST1, NST2, NST3, MYB46, MYB58, MYB63, MYB83, MYB85, MYB103, PAL1, PAL2, C3H, CcOAMT, CCR1, F5H, LAC4, LAC17, CADc, and CADd. See, e.g., Turner et al 1997; Meyer et al 1998; Jones et al 2001; Franke et al 2002; Ha et al 2002; Rohde et al 2004; Chen et al 2005; Stobout et al 2005; Brown et al 2005; Mitsuda et al 2005; Zhong et al 2006; Mitsuda et al 2007; Zhong et al 2007a, 2007b; Zhou et al 2009; Brown et al 2009; McCarthy et al 2009; Ko et al 2009; Wu et al 2010; Berthet et al 2011. In some embodiments, the promoter is substantially identical to the native promoter sequence directing expression of the IRX5 gene (see, e.g., the promoter and transcriptional regulatory elements for IRX5 are contained in SEQ ID NO:3). Some of the above mentioned secondary cell wall promoter sequences can be found within the polynucleotide sequences provided herein as SEQ ID NOs:36-61. A promoter originated from one plant species may be used to direct gene expression in another plant species.
A polynucleotide is “heterologous” to an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, when a polynucleotide encoding a polypeptide sequence is said to be operably linked to a heterologous promoter, it means that the polynucleotide sequence encoding the polypeptide is derived from one species whereas the promoter sequence is derived from another, different species; or, if both are derived from the same species, the coding sequence is not naturally associated with the promoter (e.g., is a genetically engineered coding sequence, e.g., from a different gene in the same species, or an allele from a different ecotype or variety).
The term “operably linked” refers to a functional relationship between two or more polynucleotide (e.g., DNA) segments. Typically, it refers to the functional relationship of a transcriptional regulatory sequence to a transcribed sequence. For example, a promoter or enhancer sequence is operably linked to a DNA or RNA sequence if it stimulates or modulates the transcription of the DNA or RNA sequence in an appropriate host cell or other expression system. Generally, promoter transcriptional regulatory sequences that are operably linked to a transcribed sequence are physically contiguous to the transcribed sequence, i.e., they are cis-acting. However, some transcriptional regulatory sequences, such as enhancers, need not be physically contiguous or located in close proximity to the coding sequences whose transcription they enhance.
The term “expression cassette” refers to a nucleic acid construct that, when introduced into a host cell, results in transcription and/or translation of an RNA or polypeptide, respectively. Antisense or sense constructs that are not or cannot be translated are expressly included by this definition. In the case of both expression of transgenes and suppression of endogenous genes (e.g., by antisense, RNAi, or sense suppression) one of skill will recognize that the inserted polynucleotide sequence need not be identical, but may be only substantially identical to a sequence of the gene from which it was derived. As explained herein, these substantially identical variants are specifically covered by reference to a specific nucleic acid sequence. One example of an expression cassette is a polynucleotide construct that comprises a polynucleotide sequence encoding a HCHL protein operably linked to a promoter that is heterologous to the plant cell into which the expression cassette may be introduced. In some embodiments, an expression cassette comprises a polynucleotide sequence encoding a HCHL protein that is targeted to a position in the genome of a plant such that expression of the HCHL polynucleotide sequence is driven by a promoter that is present in the plant.
The term “plant,” as used herein, refers to whole plants and includes plants of a variety of a ploidy levels, including aneuploid, polyploid, diploid and haploid. The term “plant part,” as used herein, refers to shoot vegetative organs and/or structures (e.g., leaves, stems and tubers), branches, roots, flowers and floral organs (e.g., bracts, sepals, petals, stamens, carpels, anthers), ovules (including egg and central cells), seed (including zygote, embryo, endosperm, and seed coat), fruit (e.g., the mature ovary), seedlings, and plant tissue (e.g., vascular tissue, ground tissue, and the like), as well as individual plant cells, groups of plant cells (e.g., cultured plant cells), protoplasts, plant extracts, and seeds. The class of plants that can be used in the methods of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae.
The term “biomass,” as used herein, refers to plant material that is processed to provide a product, e.g., a biofuel such as ethanol, or livestock feed, or a cellulose for paper and pulp industry products. Such plant material can include whole plants, or parts of plants, e.g., stems, leaves, branches, shoots, roots, tubers, and the like.
The term “reduced lignification” encompasses both reduced size of a lignin polymer, e.g., a shorter lignin polymer chain due to a smaller number of monolignols being incorporated into the polymer, a reduced degree of branching of the lignin polymer or a reduced space filling (also called a reduced pervaded volume). Typically, a reduced lignin polymer can be shown by detecting a decrease in it molecular weight or a decrease in the number of monolignols by at least 2%, 5%, 10%, 20%, 25%, 30%, 40%, 50%, or more, when compared to the average lignin molecule in a control plant. Methods for detecting reduced lignification are described in detail in the example section of this application.
As used herein and in the appended claims, the singular “a”, “an” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “plant cell” includes a plurality of such plant cells.
II. Introduction
Plant cell walls are constituted by a polysaccharidic network of cellulose microfibrils and hemicellulose embedded in an aromatic polymer known as lignin. This ramified polymer is mainly composed of three phenylpropanoid-derived phenolics (i.e., monolignols) named p-coumaryl, coniferyl, and sinapyl alcohols which represent the p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) lignin units (Boerjan et al., 2003). Monolignols have a C 6 C 3 carbon skeleton which consists of a phenyl ring (C 6 ) and a propane (C3) side chain. Lignin is crucial for the development of terrestrial plants as it confers recalcitrance to plant cell walls. It also provides mechanical strength for upright growth, confers hydrophobicity to vessels that transport water, and acts as a physical barrier against pathogens that degrade cell walls (Boudet, 2007). Notably, lignin content and composition are finely regulated in response to environmental biotic and abiotic stresses (Moura et al., 2010).
Economically, lignocellulosic biomass from plant cell walls is widely used as raw material for the production of pulp in paper industry and as ruminant livestock feed. Plant feedstocks also represent a source of fermentable sugars for the production of synthetic molecules such as pharmaceuticals and transportation fuels using engineered microorganisms (Keasling, 2010). However, negative correlations exist between lignin content in plant biomass and pulp yield, forage digestibility, or polysaccharides enzymatic hydrolysis (de Vrije et al., 2002; Reddy et al., 2005; Dien et al., 2006; Chen and Dixon, 2007; Dien et al., 2009; Taboada et al., 2010; Elissetche et al., 2011; Studer et al., 2011). Consequently, reducing lignin recalcitrance in plant feedstocks is a major focus of interest, especially in the lignocellulosic biofuels field for which efficient enzymatic conversion of polysaccharides into monosaccharides is crucial to achieve economically and environmentally sustainable production (Carroll and Somerville, 2009).
Lignin biosynthesis is well characterized and well conserved across land plants (Weng and Chapple 2010). Genetic modifications such as silencing of genes involved in particular steps of this pathway or its regulation have been employed to reduce lignin content (Simmons et al., 2010; Umezawa, 2010) but this approach often results in undesired phenotypes such as dwarfism, sterility, reduction of plant biomass, and increased susceptibly to environmental stress and pathogens (Bonawitz and Chapple, 2010). These pleiotropic effects are generally the consequences of a loss of secondary cell wall integrity, accumulation of toxic intermediates, constitutive activation of defense responses, or depletion of other phenylpropanoid-derived metabolites which are essential for plant development and defense (Li et al., 2008; Naoumkina et al., 2010, Gallego-Giraldo et al., 2011). Alternatively, changing the recalcitrant structure and physico-chemical properties of lignin can be achieved by modifying its monomer composition. For example, incorporation of coniferyl ferulate into lignin improves enzymatic degradation of cell wall polysaccharides (Grabber et al., 2008). Recently, it has been demonstrated that enrichment in 5-hydroxy-G units and reduction in S units in lignin contribute to enhanced saccharification efficiencies without affecting drastically biomass yields and lignin content (Weng et al., 2010; Dien et al., 2011; Fu et al., 2011).
In this study, as an alternative strategy to reduce lignin recalcitrance, the inventors developed a dominant approach that uses precursors derived from the lignin biosynthetic pathways to enhance production of non-conventional monolignols, namely C 6 C 1 phenolics. These phenol units lack propane side chain and thus have different polymerization properties compared to classic C 6 C 3 monolignols. Such C 6 C 1 phenolics are usually found in trace amount in some lignins and form the so-called ‘benzyl end-groups’ (Kim et al., 2000; Ralph et al., 2001; Kim et al., 2003; Morreel et al., 2004; Ralph et al., 2008; Kim and Ralph, 2010). The inventors considered increasing C 6 C 1 end-group phenolics in lignin to reduce its polymerization degree and native branched structure. For this purpose, a hydroxycinnamoyl-CoA hydratase-lyase (HCHL, EC 4.2.2.101/EC 4.1.2.41) from Pseudomonas fluorescens was expressed in stems of Arabidopsis . HCHL is an enzyme that catalyzes the hydration of the double bond of the lignin precursor p-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA thioesters, followed by a retro aldol cleavage reaction that produces the corresponding C 6 C 1 hydroxybenzaldehydes and acetyl-CoA ( FIG. 1 ; Mitra et al., 1999). The promoter of a secondary cell wall cellulose synthase gene (Cesa4/IRX5) was used to restrict HCHL expression in lignified tissues of the stem (xylem and interfascicular fibers) and prevent depletion of hydroxycinnamoyl-CoAs in other tissues in which they are precursors of hydroxycinnamate conjugates and other derivates involved in plant defense and development (Gou et al., 2009; Luo et al., 2009; Buer et al., 2010; Milkowski and Strack, 2010). The data disclosed herein show that HCHL expression driven by the IRX5 promoter results for some lines in no significant changes in lignin content, plant development and biomass yields. It has also been demonstrated that C 6 C 1 phenolics accumulate as end-groups in the lignin of HCHL transgenics, which reduces lignin size and renders cell walls less recalcitrant to enzymatic hydrolysis.
III. Plants Having Reduced Lignification
A. Modification of Expression of an HCHL Enzyme
In one aspect, the present invention provides a method for engineering a plant having reduced lignification. This method includes these steps: first, introducing into the plant an expression cassette comprising a polynucleotide sequence encoding an HCHL enzyme and a promoter, with the coding sequence and the promoter being in an operably linked arrangement; and second, culturing the plant under conditions permissible for the expression of a functional HCHL to produce C 6 C 1 phenolics, which can be polymerized with other monolignols and thereby reducing lignification in the plant.
In particular, the present invention provides methods of engineering a plant having modified lignin polymers, which may have reduced size, molecular weight, and/or altered (especially reduced or less extensive) branching, that are substantially localized to the lignified tissue of the plant. This is achieved by first introducing into the plant an expression cassette as described above but in particular having a secondary cell wall specific promoter, and then culturing the plant under conditions in which the functional HCHL enzyme is expressed. This enzyme converts various hydroxycinnamoyl-coA into their respective hydroxybenzaldehydes that can be either directly incorporated or further modified (e.g., oxidation or reduction of the aldehyde group) by native enzymes prior to their incorporation into the lignin polymer by polymerization with native monolignols.
The expression cassette as described herein, when introduced into a plant, does not necessarily modify the lignin content. Vessel stays intact indicating that the lignin cell wall structure is still robust to prevent vessel collapse, but the lignin composition and properties are modified to a level that its recalcitrance is reduce.
One of skill in the art will understand that the HCHL that is introduced into the plant by an expression cassette described herein does not have to be identical to the Pseudomonas fluorescens HCHL, which was used in the experiments detailed in the example section of this disclosure. In some embodiments, the HCHL that is introduced into the plant by an expression cassette is substantially identical (e.g., at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to the Pseudomonas fluorescens HCHL. For example, a variant HCHL will have at least 80%, 85%, 90%, or 95% sequence identity in its amino acid residues as compared to SEQ ID NO:1, especially within one or more of the 8 highly conserved regions (shown in the 8 boxes in FIG. 8 ).
1. Hydroxycinnamoyl-CoA Hydratase-Lyase (HCHL)
In some embodiments, the expression cassette of this invention comprises a polynucleotide encoding an enzyme that produces modified monoligols that can cause reduced lignification. An example of such an enzyme is the Pseudomonas fluorescens HCHL, having the amino acid sequence set forth in SEQ ID NO:1. Additional examples of such HCHL suitable for use in the present invention include those shown in FIG. 8 . Also appropriate for use in the present invention are variants HCHL, which may be naturally occurring or recombinantly engineered, provided the variants possess (1) substantially amino acid sequence identity to an exemplary HCHL (e.g., SEQ ID NO:1) and (2) the enzymatic activity to convert at least one lignin precursor p-coumaroy-CoA, caffeoyl-CoA, or feruloyl-CoA thioester into a corresponding C 6 C 1 hydroxylbenzaldehyde, as determined by an HCHL enzymatic assay known in the art by way of various scientific publications or described herein.
Examples of naturally occurring HCHL that can be used to practice the present invention includes, p-hydroxycinnamoyl CoA hydratase/lyase (HCHL), Enoyl-CoA hydratase/isomarase (ECH), Feruloyl-CoA hydratase/lyase (FCA, FerA), as well as those named in FIG. 8 , the amino acid sequences for which are provided in SEQ ID NOs:4-34.
2. Secondary Cell Wall-Specific Promoters
In some embodiments, the polynucleotide encoding the HCHL is operably linked to a secondary cell wall-specific promoter. The secondary cell wall-specific promoter is heterologous to the polynucleotide encoding the HCHL, in other words, the promoter and the HCHL coding sequence are derived from two different species. A promoter is suitable for use as a secondary cell wall-specific promoter if the promoter is expressed strongly in the secondary cell wall, e.g., in vessel and fiber cells of the plant, but is expressed at a much lower level or not expressed in cells without the secondary cell wall.
In some embodiments, the promoter is substantially identical (e.g., at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to the native promoter of a gene encoding a secondary cell wall cellulose synthase Cesa4/IRX5, polynucleotide sequence set forth in Genebank Accession No. AF458083 — 1 and SEQ ID NO:35, and the promoter pIRX5 is contained in SEQ ID NO:3.
In some embodiments, the secondary cell wall-specific promoter comprises SEQ ID NO:3. In some embodiments, the secondary cell wall-specific promoter comprises a subsequence of SEQ ID NO:3 or a variant thereof. In some embodiments, the secondary cell wall-specific promoter comprises a subsequence of SEQ ID NO:3 comprising about 50 to about 1000 or more contiguous nucleotides of SEQ ID NO:3. In some embodiments, the secondary cell wall-specific promoter comprises a subsequence of SEQ ID NO:3 comprising 50 to 1000, 50 to 900, 50 to 800, 50 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, 50 to 100; 75 to 1000, 75 to 900, 75 to 800, 75 to 700, 75 to 600, 75 to 500, 75 to 400, 75 to 300, 75 to 200; 100 to 1000, 100 to 900, 100 to 800, 100 to 700, 100 to 600, 100 to 500, 100 to 400, 100 to 300, or 100 to 200 contiguous nucleotides of SEQ ID NO:3.
Secondary cell wall-specific promoters are also described in the art. See, for example, Mitsuda et al 2005 Plant Cell; Mitsuda et al 2007 Plant Cell; Zhou et al 2009 plant cell; Ohtani et al 2011 Plant Journal. They are contained the polynucleotide sequences provided in this application as SEQ ID NO:36-61.
It will be appreciated by one of skill in the art that a promoter region can tolerate considerable variation without diminution of activity. Thus, in some embodiments, the secondary cell wall-specific promoter is substantially identical (e.g., at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to SEQ ID NO:3. The effectiveness of a secondary cell wall-specific promoter may be confirmed by an reporter gene (e.g., β-glucuronidase or GUS) assay known in the art or as described in the example section of this application.
B. Preparation of Recombinant Expression Vectors
Once the promoter sequence and the coding sequence for the gene of interest (e.g., a Pseudomonas fluorescens HCHL or any other HCHL as shown in FIG. 8 ) are obtained, the sequences can be used to prepare an expression cassette for expressing the gene of interest in a transgenic plant. Typically, plant transformation vectors include one or more cloned plant coding sequences (genomic or cDNA) under the transcriptional control of 5′ and 3′ regulatory sequences and a selectable marker. Such plant transformation vectors may also contain a promoter (e.g., a secondary cell wall-specific promoter as described herein), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.
The plant expression vectors may include RNA processing signals that may be positioned within, upstream, or downstream of the coding sequence. In addition, the expression vectors may include regulatory sequences taken from the 3′-untranslated region of plant genes, e.g., a 3′ terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3′ terminator regions.
Plant expression vectors routinely also include selectable marker genes to allow for the ready selection of transformants. Such genes include those encoding antibiotic resistance genes (e.g., resistance to hygromycin, kanamycin, bleomycin, G418, streptomycin or spectinomycin), herbicide resistance genes (e.g., phosphinothricin acetyltransferase), and genes encoding positive selection enzymes (e.g. mannose isomerase).
Once an expression cassette comprising a polynucleotide encoding the HCHL and operably linked to a promoter (especially a secondary cell wall specific promoter) has been constructed, standard techniques may be used to introduce the polynucleotide into a plant in order to express the HCHL and effectuate reduced lignification. See, e.g., protocols described in Ammirato et al. (1984) Handbook of Plant Cell Culture—Crop Species. Macmillan Publ. Co. Shimamoto et al. (1989) Nature 338:274-276; Fromm et al. (1990) Bio/Technology 8:833-839; and Vasil et al. (1990) Bio/Technology 8:429-434.
Transformation and regeneration of plants is known in the art, and the selection of the most appropriate transformation technique will be determined by the practitioner. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumeficiens mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence. Examples of these methods in various plants include: U.S. Pat. Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.
Following transformation, plants can be selected using a selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants or the ability to grow on a specific substrate, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic, herbicide, or substrate.
The polynucleotide sequence coding for an HCHL, as well as the polynucleotide sequence comprising a promoter (e.g., a secondary cell wall-specific promoter), can be obtained according to any method known in the art. Such methods can involve amplification reactions such as polymerase chain reaction (PCR) and other hybridization-based reactions or can be directly synthesized.
C. Plants in which Lignification can be Reduced
An expression cassette comprising a polynucleotide encoding an HCHL operably linked to a promoter, especially a secondary cell wall specific promoter, as described herein, can be expressed in various kinds of plants. The plant may be a monocotyledonous plant or a dicotyledonous plant. In some embodiments of the invention, the plant is a green field plant. In some embodiments, the plant is a gymnosperm or conifer.
In some embodiments, the plant is a plant that is suitable for generating biomass. Examples of suitable plants include, but are not limited to, Arabidopsis , poplar, eucalyptus, rice, corn, switchgrass, sorghum, millet, miscanthus, sugarcane, pine, alfalfa, wheat, soy, barley, turfgrass, tobacco, hemp, bamboo, rape, sunflower, willow, Jatropha, and Brachypodium.
In some embodiments, the plant into which the expression cassette of this invention is introduced is the same species of plant as the one from which the promoter is derived. In some embodiments, the plant into which the expression cassette is introduced is a different species of plant from the plant species the promoter is derived from.
D. Screening for Plants Having Reduced Lignification
After transformed plants are selected, the plants or parts of the plants may be evaluated to determine whether expression of the exogenous HCHL can be detected, e.g., by evaluating the level of RNA or protein, by measuring enzymatic activity of the HCHL, as well as by evaluating the size, molecular weight, content, or degree of branching in the lignin molecules found in the plants. These analyses can be performed using any number of methods known in the art.
In some embodiments, plants are screened by evaluating the level of RNA or protein. Methods of measuring RNA expression are known in the art and include, for example, PCR, northern analysis, reverse-transcriptase polymerase chain reaction (RT-PCR), and microarrays. Methods of measuring protein levels are also known in the art and include, for example, mass spectroscopy or antibody-based techniques such as ELISA, Western blotting, flow cytometry, immunofluorescence, and immunohistochemistry.
In some embodiments, plants are screened by assessing HCHL activity, and also by evaluating lignin size and composition. The enzymatic assays for HCHL are well known in the art and are described in this application. Lignin molecules can be assessed, for example, by nuclear magnetic resonance (NMR), spectrophotometry, microscopy, klason lignin assays, acetyl-bromide reagent or by histochemical staining (e.g., with phloroglucinol).
IV. Methods of Using Plants Having Reduced Lignification
Plants, parts of plants, or plant biomass material from plants having reduced lignification due to the expression of an exogenous HCHL in the secondary cell wall can be used for a variety of methods. In some embodiments, the plants, parts of plants, or plant biomass material generate less recalcitrant biomass for use in a conversion reaction as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used in a saccharification reaction, e.g., enzymatic saccharification, to generate soluble sugars at an increased level of efficiency as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase biomass yield or simplify downstream processing for wood industries (such as paper, pulping, and construction) as compared to wild-type plants. In some embodiments, the plants, parts of plants, or plant biomass material are used to increase the quality of wood for construction purposes. In some embodiments the plants, parts of plants, or plant biomass material can be used in a combustion reaction, gasification, pyrolysis, or polysaccharide hydrolysis (enzymatic or chemical). In further embodiments, the plants, parts of plants, or plant biomass is used as a forage crop and exhibit improved digestibility compared to wild-type plants.
Methods of conversion, for example biomass gasification, are known in the art. Briefly, in gasification plants or plant biomass material (e.g., leaves and stems) are ground into small particles and enter the gasifier along with a controlled amount of air or oxygen and steam. The heat and pressure of the reaction break apart the chemical bonds of the biomass, forming syngas, which is subsequently cleaned to remove impurities such as sulfur, mercury, particulates, and trace materials. Syngas can then be converted to products such as ethanol or other biofuels.
Methods of enzymatic saccharification are also known in the art. Briefly, plants or plant biomass material (e.g., leaves and stems) are optionally pre-treated with hot water, dilute alkaline, AFEX (Ammonia Fiber Explosion), ionic liquid or dilute acid, followed by enzymatic saccharification using a mixture of cell wall hydrolytic enzymes (such as hemicellulases, cellulases and beta-glucosidases) in buffer and incubation of the plants or plant biomass material with the enzymatic mixture. Following incubation, the yield of the saccharification reaction can be readily determined by measuring the amount of reducing sugar released, using a standard method for sugar detection, e.g. the dinitrosalicylic acid method well known to those skilled in the art. Plants engineered in accordance with the invention provide a higher saccharification efficiency as compared to wild-type plants, while the plants growth, development, or disease resistance is not negatively impacted.
Sugars generated from a saccharification reaction using plant biomass of the invention can be used for producing any product for which the sugars can serve as a carbon source. Examples of products include, but are not limited to, alcohols (e.g., ethanol, methanol, butanol); organic acids (e.g., citric acid, acetic acid, itaconic acid, lactic acid, gluconic acid); ketones (e.g., acetone); amino acids (e.g., glutamic acid); gases (e.g., H 2 and CO 2 ); antibiotics (e.g., penicillin and tetracycline); vitamins (e.g., riboflavin, B12, beta-carotene), fatty acids and fatty acid derivatives (as described, e.g., in PCT/US2008/068833); isoprenyl alkanoates (as described, e.g., PCT/US2008/068756, methyl butenol (as described, e.g., PCT/US2008/068831; fatty acid esters (as described, e.g., in PCT/US2010/033299), isoprenoid-based alternative diesel fuels (as described, e.g., in PCT/US2011/059784; a polyketide synthesized by a polyketide synthase, such as a diacid (see, e.g., PCT/US2011/061900), biofuels (see, e.g., PCT/US2009/042132) and alpha-olefins (see, e.g., PCT/US2011/053787).
EXAMPLES
The following examples are provided to illustrate but not to limit the claimed invention.
Example 1
Expression of Bacterial HCHL in Arabidopsis
I. Materials and Methods
Plant Material and Growth Conditions
Arabidopsis thaliana (ecotype Columbia, Col-0) seeds were germinated directly on soil. Growing conditions were 14 h of light per day at 100 mmol m −2 s −1 , 22° C., 55% humidity. Selection of T1 and T2 homozygote transgenic plants was made on solid Murashige and Skoog vitamin medium (PhytoTechnology Laboratories) supplemented with 1% sucrose, 1.5% agar (Sigma-Aldrich) adjusted to pH 5.6-5.8, and containing 50 μg mL −1 kanamycin.
Chemicals
4-Hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, 5-hydroxyvanillin, 4-hydroxybenzyl alcohol, vanillyl alcohol, and 1-methyl-2-pyrrolidinone were purchased from Sigma-Aldrich. Vanillic acid, syringic acid, 3,4-dihydroxybenzaldehyde, syringaldehyde, and sinapyl alcohol were purchased from Alfa Aesar. 5-Hydroxyvanillic acid was obtained from Chromadex, and 3,4-dihydroxybenzyl alcohol from TCI America.
pIRX5:GUS Line and GUS Staining
Arabidopsis line CS70758 (ecotype Columbia, Col-2) was obtained from the Arabidopsis Biological Resource Center (ABRC). This line has a pMLBART plasmid containing an expression cassette consisting of the genomic fragment located upstream of the CESA4 start codon fused to the GUS gene. Histochemical GUS activity was performed as previously described (Eudes et al., 2006). Various organs of soil-grown line CS70758 were incubated for 1 h or 8 h at 37° C. in the GUS assay buffer using 5-bromo-4-chloro-3-indolyl-D-glucuronic acid (Indofine Chemical Company, Inc.) as a substrate. After staining, stem samples (1 cm) were cross-sectioned (80 μm) using a vibratome before observation under the microscope (Leica).
IRX5:HCHL Construct and Plant Transformation
For HCHL expression in Arabidopsis , the binary vector pTKan which is derived from pPZP212 was used (Hajdukiewicz et al., 2004). A Gateway cloning cassette (Invitrogen) was inserted between XhoI and PstI restriction sites to produce a pTKan-GW vector. The nucleotide sequence of the IRX5 promoter was amplified by PCR from Arabidopsis (ecotype Columbia, Col-0) genomic DNA using oligonucleotides 5′-CCCG GCGGCCGC ATGAAGCCATCCTCTACCTCGGAAA-3′ and 5′-CCCG GCTAGC GGCGAGGTACACTGAGCTCTCGGAA-3′ (NotI and NheI restriction sites underlined), and inserted between the ApaI and SpeI restriction sites of pTKan-GW to produce a pTKan-pIRX5-GW expression vector. A codon-optimized nucleotide sequence encoding the HCHL enzyme from Pseudomonas fluorescens AN103 (accession number CAA73502) for expression in Arabidopsis was synthesized without stop codon (Genescript) and amplified by PCR using oligonucleotides 5′- GGGGACAAGTTTGTACAAAAAAGCAGGCTTC ATGTCTACTTACGAGGGAAGATG G-3′ and 5′- GGGGACCACTTTGTACAAGAAAGCTGGGTC TCTCTTGTAAGCCTGGAGTCC-3′ (attb1 and attb2 sites underlined) for cloning into the Gateway pDONR221-f1 entry vector (Lalonde et al 2010). A sequence-verified HCHL entry clone was LR recombined with the pTKan-pIRX5-GW vector to generate the final IRX5:HCHL construct. The construct was introduced into wild type Arabidopsis plants (ecotype Col0) via Agrobacterium tumefaciens -mediated transformation (Bechtold and Pelletier, 1998).
RNA Extraction and RT-PCR
Total RNA (1 μg) extracted from inflorescence stems of IRX5:HCHL T1 transformants and wild type plants using the Plant RNeasy extraction kit (Qiagen) was reverse-transcribed using the Transcriptor First Strand cDNA Synthesis Kit (Roche applied Science). The obtained cDNA preparation was quality-controlled for PCR using tub8-specific oligonucleotides (5′-GGGCTAAAGGACACTACACTG-3′/5′-CCTCCTGCACTTCCACTTCGTCTTC-3′). Oligonucleotides 5′-ATGTCTACTTACGAGGGAAGATGG-3′ and 5′-TCTCTTGTAAGCCTGGAGTCC-3′ were used for the detection of HCHL expression by PCR.
Western Blot Analysis
For protein extraction, inflorescence stems of IRX5:HCHL T2 transformants and wild type plants were ground in liquid nitrogen, and 0.25 g of the resulting powder was homogenized with the extraction buffer [100 mM Tris-HCl pH 6.5, 2% (w/v) polyvinylpyrrolidone, 2% (v/v) β-mercaptoethanol, 1% (w/v) SDS] at 1400 rpm for 30 min. The mixture was centrifuged at 20,000 g for 5 min and the supernatant collected for protein quantification using the Bradford method (Bradford, 1976) and bovine serum albumin as a standard. For electrophoresis, soluble protein (5 μg) were mixed with 0.2 M Tris-HCl, pH 6.5, 8% (w/v) SDS, 8% (v/v) β-mercaptoethanol, 40% (v/v) glycerol, and 0.04% (w/v) bromophenol blue and incubated at 40° C. for 30 min. Proteins were separated by SDS-PAGE using 8-16% (w/v) polyacrylamide gradient gels (Invitrogen) and electrotransferred (100 volts, 45 min) onto PVDF membranes (Thermo Fisher Scientific). Blotted membranes were incubated 1 h in TBS-T (20 m M Tris-HCl, 150 m M NaCl, 0.1% (v/v) Tween 20, pH 7.6) containing 2% (w/v) non-fat milk powder, and incubated overnight with the universal antibody (1:20000) in TBS-T containing 2% (w/v) non-fat milk powder. Membranes were then washed in TBS-T for 30 min and incubated for 1 h with an anti-rabbit secondary antibody conjugated to horseradish peroxidase (1:20000; Sigma-Aldrich) in TBS-T containing 2% (w/v) non-fat milk powder. Membranes were then washed in TBS-T for 30 min, and detection was performed by chemiluminescence using the SuperSignal West Dura Extended Duration Substrate (Thermo Fisher Scientific).
HCHL Activity
For protein extraction, inflorescence stems of IRX5:HCHL T2 transformants and wild type plants were ground in liquid nitrogen, and 0.25 g of the resulting powder was homogenized with 25 mg of polyvinylpolypyrrolidone and 1.25 mL of extraction buffer (EB; 100 mM Tris-HCl, pH 8.5, 20 mM DTT, and 10 mM Na 2 EDTA). Extracts were shaken at 1400 rpm for 15 min at 4° C., and centrifuged for 30 min at 20,000 g at 4° C. Supernatants were collected, adjusted to 2.5 mL with EB, and applied to PD10 columns (GE healthcare) pre-equilibrated with 25 mL of EB. Proteins were eluted with 3.5 mL of EB and quantified using the Bradford method (Bradford, 1976) and bovine serum albumin as a standard.
For HCHL activity, 5 μL of protein extract was incubated for 15 min at 30° C. with 150 μM feruloyl-CoA in 100 m M Tris-HCl pH 8.5 in a total volume of 50 μL. Total amounts of protein per reaction varied from 4 to 6.5 μg. Reactions were stopped with 50 μL of cold acidified methanol (12% glacial acetic acid/88% methanol, v/v) and stored at −70° C. until LC-MS analysis.
Biomass
For biomass measurements, IRX5:HCHL and wild type plants were grown until senescence and dried stems were collected without roots, leaves and siliques before weighing. Statistical analysis was performed using ANOVA followed by Scheffe post hoc test.
Microscopy
Five-week-old plants were use for microscopy. Stem segments cut between the first and second internodes were embedded in 4% agarose. Stem semi-thin sections (100-μm thickness) were obtained using a vibratome (Leica). For toluidine blue O (TBO) staining, sections were incubated in a 0.05% (w/v) solution of TBO (Sigma-Aldrich) in water for 30 sec and rinsed with water. For Wiesner lignin staining, sections were incubated for 3 min in phloroglucinol-HCl reagent (VWR International) and rinsed with water. For Mäulne lignin staining, sections were incubated in 4% KMnO 4 for 5 min, rinsed with water, incubated in 37% HCl/H 2 O (1:1, v/v) for 2 min, and observed after addition of a drop of aqueous ammonia. Sections were immediately observed using bright field light microscopy (Leica DM4000 B).
Soluble Phenolics Extraction
For extraction of methanol soluble phenolics, approximately 200 mg of frozen stem powder was mixed with 1 mL of 80% (v/v) methanol-water and shaken for 1 h at 1400 rpm. Extracts were cleared by centrifugation (5 min, 20,000 g), mixed with 400 μL of analytical grade water and filtered using Amicon Ultra centrifugal filters (3,000 Da MW cutoff regenerated cellulose membrane; Millipore) prior to LC-MS analysis. Alternatively, an aliquot of the filtered extracts was dried under vacuum, resuspended with 1 N HCl and incubated at 95° C. for 3 h for acid hydrolysis. The mixture was subjected to three ethyl acetate partitioning steps. Ethyl acetate fractions were pooled, dried in vacuo, and resuspended in 50% (v/v) methanol-water prior to LC-MS analysis.
Cell-Wall Bound Phenolics Extraction
For extraction of cell-wall bound phenolics, mature senesced stems were collected without the leaves and siliques, and ball-milled to a fine powder using a Mixer Mill MM 400 (Retsch) and stainless steel balls for 2 min at 30 s −1 . Extract-free cell wall residues (CWR) were obtained by sequentially washing 60 mg of ball-milled stems with 1 ml of 96% ethanol at 95° C. twice for 30 min, and vortexing with 1 mL of 70% ethanol twice for 30 sec. The resulting CWR were dried in vacuo overnight at 30° C. Approximately 6 mg of CWR was mixed with 500 μL of 2 M NaOH and shaken at 1400 rpm for 24 h at 30° C. The mixture was acidified with 100 μL of concentrated HCl, and subjected to three ethyl acetate partitioning steps. Ethyl acetate fractions were pooled, dried in vacuo, and suspended in 50% (v/v) methanol-water prior to LC-MS analysis.
LC-MS
Separation of C 6 C 1 phenolic acids and aldehydes was conducted on a Poroshell-120 column (150 mm length, 3 mm internal diameter, 2.7 μm particle size) using a 1200 Series HPLC system (Agilent Technologies Inc.). Analytes were separated using a gradient elution with mobile phase composition of 0.1% formic acid in water as solvent A, and 0.1% formic acid in acetonitrile-water (98:2, v/v) as solvent B. The elution gradient was 0-5 min 13% B, 5-7 min 50% B, 7-8 min 50% B, and 8-11 min 13% B, using a flow rate of 0.55 mL min −1 . The HPLC system was coupled to an Agilent 6210 time-of-flight (TOF) mass spectrometer (MS) via a 1:7 post-column split. Analyses were conducted using Electrospray ionization (ESI) in the positive ion mode. Detection of [M+H] + ions was carried out in full scan mode at 0.85 spectra sec and a cycle time of 1.176 sec spectrum −1 using the following parameters: capillary voltage 3500 V, fragmentor 165 V, skimmer 50 V and OCT RF 170 V, drying gas flow rate 9 L min −1 , nebulizer pressure 15 psig, drying gas temperature 325° C. Separation of C 6 C 1 phenolic alcohols was conducted on the same HPLC and MS system using the same HPLC column. Analytes were separated using gradient elution with a mobile phase composition of 0.1% formic acid in water as solvent A, and 0.1% formic acid in methanol-water (98:2, v/v) as solvent B. Elution conditions were the same as described above. Analyses were conducted using atmospheric pressure chemical ionization (APCI) in the positive ion mode. Detection of [M−H 2 O+H] + ions was carried as described above except for the following parameters: capillary voltage 3200 V, corona current 4 μA, drying gas flow rate 12 L min −1 , nebulizer pressure 30 psig, vaporizer temperature 350° C. Quantification of compounds was made by comparison with standard curves of authentic compounds prepared in 50% (v/v) methanol-water.
Lignin Analysis
Extract-free samples (CWR) of ball-milled mature senesced stems were prepared using a Soxhlet apparatus by sequentially extracting the ground material with toluene:ethanol (2:1, v/v), ethanol, and water (Sluiter et al., 2008). The determination of lignin content using the standard Klason procedure (Dente, 1992) and the thioacidolysis procedure (Lapierre et al., 1995; 1999) were carried out on CWR. The lignin-derived monomers were identified by GC-MS as their trimethyl-silylated derivatives. All the lignin analyses were performed in duplicate.
Total and Hemicellulosic Sugar Analysis
For total sugar hydrolysis, CWR of ball-milled mature senesced stems (50 mg) were swelled in 500 μL H 2 SO 4 (72%, w/v) at 30° C. for 60 min, and autoclaved at 120° C. for 1 h in dilute H 2 SO 4 (4%, w/v) after addition of deionized water (14 mL). Samples were cooled down at room temperature and filtered using pre-weighted GF/C glass microfiber filters (Whatman). Filtrates were collected and diluted 100 times with deionized water prior to HPAEC-PAD analysis. For hemicellulose hydrolysis, CWR of ball-milled mature dried stems (5 mg) were hydrolyzed in 1 ml of 2 M trifluoroacetic acid (TFA) for 1 h at 120° C. TFA was removed by drying under vacuum and the residue suspended in deionized water (1 mL) prior to HPAEC-PAD analysis.
HPAEC-PAD Analysis
Monosaccharide composition was determined by HPAEC-PAD of hydrolyzed material. Chromatography was performed on a PA20 column (Dionex) at a flow rate of 0.5 mL min −1 . Before injection of each sample (20 μL) the column was washed with 200 mM NaOH for 10 min, then equilibrated with 10 mM NaOH for 10 min. The elution program consisted of a linear gradient from 10 mM NaOH to 5 mM NaOH from 0 to 1.5 min, followed by isocratic elution with 5 mM NaOH from 1.5 to 20 min, and a linear gradient up to 800 mM NaOH from 20 to 43 min. Monosaccharides were detected using a pulsed amperometric detector (gold electrode) set on waveform A according to manufacturer's instructions. A calibration curve of monosaccharide standards that includes L -Fuc, L -Rha, L -Ara, D -Gal, D -Glc, D -Xyl, D -GalA and D -GlcA (Sigma-Aldrich) was run for verification of response factors. Statistical analysis was performed using ANOVA followed by Tukey's test.
FT-Raman and FT-IR Spectral Analyses
FT-Raman spectroscopy was conducted on CWR of ball-milled mature senesced stems (2 mg) from three independent cultures. Raman spectra were collected using a Bruker MultiRAM FT-Raman system equipped with a 1064 nm diode laser (Bruker Optics Inc.). Five spectra were acquired for each sample with spectral resolution of 4 cm −1 using a laser power of 50 mW and 256 scans to achieve good signal-to-noise ratio. White light correction of the acquired spectra was performed to correct the influence of the optics on the spectrometer. Spectra in the range of 200-3500 cm −1 were smoothed and baseline corrected using OPUS software. Lignin and polysaccharides (cellulose and hemicellulose) content were determined using integrated intensities measured over the range of 1555-1690 cm −1 and 1010-1178 cm −1 , respectively. For FT-IR spectroscopy, analyses were carried out on xylem and interfascicular fibers tissues from 50-μm thick sections of the basal region of stems of five-week-old plants. For both wild type and IRX5:HCHL (line 2), five to six sections from three different plants were analyzed. FT-IR spectra were collected from a 50 μm×50 μm window targeting xylem vessels or interfascicular fibers, and normalization of the data and statistical analysis (Student's t-test) were performed as described (Mouille et al., 2003).
Isolation of Cellulolytic Lignin (CEL) and Size Exclusion Chromatography (SEC)
CEL lignin was purified from wild type and IRX5:HCHL (line 2) plants. One gram of ball-milled mature senesced stems was mixed with 50 mM NaCl (30 ml) and incubated overnight at 4° C. After centrifugation (2,800 g, 10 min), the biomass was extracted sequentially by sonication (20 min) with 80% ethanol (three times), acetone (one time), chloroform-methanol (1:1, v/v, one time) and acetone (one time). The obtained CWR were ball-milled for 3 h per 500 mg of sample (in 10 min on/10 min off cycles) using a PM100 ball mill (Retsch) vibrating at 600 rpm with zirconium dioxide vessels (50 mL) containing ZrO 2 ball bearings (10×10 mm). Ball-milled walls (490 mg for wild type and 480 mg for IRX5:HCHL) were transferred to centrifuge tubes (50 mL) and digested four times over three days at 30° C. with crude cellulases (Cellulysin; Calbiochem; 60 mg g −1 of sample) in NaOAc pH 5.0 buffer (30 mL) under gentle rotation. The obtained CEL was washed 3 times with deionized water and lyophilized overnight. CEL recovered were 131 mg for wild type (27.3%) and 101 mg for IRX5:HCHL (20.6%). For SEC analysis, 1% (w/v) CEL lignin solutions were prepared in analytical-grade 1-methyl-2-pyrrolidinone-DMSO (1:1, v/v) and sonicated for 3 hours at 40° C.
Polydispersity of dissolved lignin was determined using analytical techniques SEC UV-F and SEC UV-A as described elsewhere (George et al., 2011, submitted). An Agilent 1200 series binary LC system (G1312B) equipped with FL (G1321A) and DA (G1315D) detectors was used. Separation was achieved with a Mixed-D column (5 mm particle size, 300 mm×7.5 mm i.d., linear molecular weight range of 200 to 400,000 u, Polymer Laboratories) at 80° C. using a mobile phase of NMP at a flow rate of 0.5 mL min −1 . Absorbance of material eluting from the column was detected at 300 nm (UV-A). Excitation 250 nm and emission 450 nm were used for UV-F detection. Intensities were area normalized and molecular mass estimates were determined after calibration of the system with polystyrene standards.
Cell Wall Pretreatments and Saccharification
Ball-milled mature senesced stems (10 mg) were mixed with 340 μL of water, 340 μL of H 2 SO 4 (1.2%, w/v), or 340 μL of NaOH (0.25%, w/v) for hot water, dilute acid, or dilute alkaline pretreatments, respectively, incubated at 30° C. for 30 min, and autoclaved at 120° C. for 1 h. After cooling down at room temperature, samples pretreated with dilute acid and dilute alkaline were neutralized with 5 N NaOH (25 μL) and 1.25 N HCl (25 μL), respectively. Saccharification was initiated by adding 635 μL of 100 m M sodium citrate buffer pH 6.2 containing 80 g ml −1 tetracycline, 5% w/w cellulase complex NS50013 and 0.5% w/w glucosidase NS50010 (Novozymes). After 72 h of incubation at 50° C. with shacking (800 rpm), samples were centrifuged (20,000 g, 3 min) and 10 μL of the supernatant was collected for reducing sugar measurement using the DNS assay and glucose solutions as standards (Miller, 1959).
Transcriptome Studies
Microarray analysis was performed on complete Arabidopsis thaliana transcriptome microarrays containing 24,576 gene-specific tags (GSTs) corresponding to 22,089 genes from Arabidopsis (Crowe et al., 2003; Hilson et al., 2004). RNA samples from three independent biological replicates were isolated and separately analyzed. For each biological replicate, RNA from the main inflorescence stem (first two internodes) of three plants were pooled. For each comparison, one technical replication with fluorochrome reversal was performed for each biological replicate (i.e. nine hybridizations per comparison). Reverse transcription of RNA was conducted in the presence of Cy3-dUTP or Cy5-dUTP (PerkinElmer-NEN Life Science Products), and hybridization and scanning of the slides were performed as described in Lurin et al. (2004).
Statistical Analysis of Microarray Data
Statistical analysis was performed with normalization based on dye swapping (i.e., four arrays, each containing 24,576 GSTs and 384 controls) as previously described (Gagnot et al., 2008). For the identification of differentially expressed genes, we performed a paired t test on log ratios, assuming that the variance of the log ratios was similar for all genes. Spots with extreme variances (too small or too large) were excluded. The raw P values were adjusted by the Bonferroni method, which controls the family-wise error rate (with a type I error equal to 5%) to minimize the number of false positives in a multiple-comparison context (Ge et al., 2003). Genes with a Bonferroni P value ≦0.05 were considered to be differentially expressed, as previously described (Gagnot et al., 2008).
Data Deposition
Microarray data from this article were deposited at GEO (http://www.ncbi.nlm.nih.gov/geo/) and at CATdb (http://urgv.evry.inra.fr/CATdb/) according to Minimum Information about a Microarray Experiment standards (MIME).
II. Results
Expression of a Bacterial HCHL Enzyme in Arabidopsis Stems
The tissue specific activity of the IRX5 promoter was verified using the beta-glucuronidase (GUS) as a reporter gene. Gus activity was essentially detected in the xylem vessels of the stem. After prolonged incubations, stem interfascicular fibers also showed strong GUS activity, and more moderate staining was observed in the vascular system of young seedlings, siliques, rosette and cauline leaves. No activity was detected in other organs or tissues except for the style and anthers ( FIG. 9 ). A codon-optimized sequence encoding HCHL from Pseudomonas fluorescens AN103 was designed and cloned downstream of the IRX5 promoter for preferential expression in lignified tissues of Arabidopsis stems. Presence of HCHL transcripts in the main stem of five independent transformants was verified by RT-PCR in the T1 generation ( FIG. 2A ). Plants homozygous for the IRX5:HCHL construct were identified in the T2 generation, and used to analyze HCHL protein expression and activity in stems. Western blotting analysis using the ‘universal antibody’ allowed detection of HCHL in stem extracts of the five selected transgenic lines ( FIG. 2B ; Eudes et al. 2010). Furthermore, HCHL activity could be detected in the stem of these lines, ranging from 0.025 to 0.16 pkat vanillin μg −1 protein using feruloyl-CoA as substrate, whereas no detectable activity was observed in protein extracts of wild type plants (Table I). Two transgenic lines showing the highest and the lowest levels of HCHL activity, and two lines exhibiting intermediate activity level were selected for detailed analysis.
Growth Characteristics and Tissue Anatomy of IRX5:HCHL Lines
IRX5:HCHL plants had growth and development characteristics visually similar to the wild type from early rosette stage and until senescence ( FIG. 10 ). However, mature senesced stems from lines IRX5:HCHL (4) and IRX5:HCHL (5) were little bit shorter (22% and 13% reduction) and had lower dry weight yield (30% and 16% reduction) compared to control plants, whereas those from lines IRX5:HCHL (1) and IRX5:HCHL (2) were not significantly different (Table II). Stem tissues of five-week-old IRX5:HCHL plants were inspected using light microscopy. Transverse stem cross-sections stained with Mäule and phloroglucinol-HCl reagents, which are indicative of S-units and hydroxycinnamaldehyde units in lignin, respectively, showed similar patterns between transgenic and wild type plants ( FIGS. 3A and 3B ). Similarly, lignin in stem sections stained with toluidine blue O did not revealed any quantitative differences between genotypes ( FIG. 3C ). A few collapsed xylem structures were, however, occasionally observed on some stem cross-sections of line IRX5:HCHL (4), but were absent in sections from other lines ( FIG. 3C ). Overall, these data suggest that lignin content is not drastically reduced in IRX5:HCHL plants.
IRX5:HCHL Lines Accumulate C 6 C 1 Soluble Phenolics
Methanol soluble fractions from stems of five-week-old wild type and IRX5:HCHL plants were extracted and analyzed by LC-MS. Analysis was performed to focus on hydroxybenzaldehydes, direct products of HCHL activity, and possible derivatives such as hydroxybenzoyl alcohols and hydroxybenzoic acids and their glucose conjugates. Trace amounts of 4-hydroxybenzaldehyde (HBAld), 3,4-dihydroxybenzaldehyde (3,4-DHBAld), and 4-hydroxybenzoic acid (HBA) were detected in IRX5:HCHL stem soluble extracts but not in wild type (Table III). Notably, much larger quantities of 4-hydroxybenzoic acid glucoside (HBAGlc) and 4-hydroxybenzoic acid glucose ester (HBAGE) were detected in IRX5:HCHL plant soluble extracts (ranging from 0.48 to 0.57 mg g −1 FW for HBAGlc, and from 0.96 to 1.65 mg g −1 FW for HBAGE), whereas trace amounts of these HBA-glucose conjugates were present in wild type extracts (Table III).
Considering that other soluble C 6 C 1 phenolics could be glycosylated, acid hydrolysis of the soluble fractions was performed to release aglycones from conjugated forms. This procedure brought down HBAGE and HBAG pools to undetectable levels, and concomitantly increased free HBA content in samples (Table IV). HBA content in the IRX5:HCHL lines ranged between 1.59 and 2.49 mg g −1 FW, which represents a 113 to 179 fold increase compared to values observed in wild type samples, and indicates that 88-94% of HBA accumulated in transgenic lines is glycosylated. In addition to HBA, other C 6 C 1 phenolics quantified in acid-treated extracts include vanillin (Van), 5-hydroxyvanillin (5OH-Van), syringaldehyde (Syrald), 5-hydroxyvanillic acid (5OH-VA), and syringic acid (SyrA), which are only detected in IRX5:HCHL extracts, as well as HBAld, 3,4-DHBAld, 3,4-dihydroxybenzoic acid (3,4-DHBA), and vanillic acid (VA), which are on average 14, 119, 1.6, and 40 times more abundant in IRX5: HCHL extracts compared to wild type, respectively (Table IV).
IRX5:HCHL Lines Show Enrichment in Cell Wall-Bound C 6 C 1 Phenolics
Extract-free cell wall residues (CWR) obtained from mature senesced stems of wild type and IRX5:HCHL plants were subjected to mild alkaline hydrolysis for the release of loosely-bound phenolics. This procedure released from the cell wall samples some HBAld, 3,4-HBAld, Van, 5OH-Van, SyrAld, HBA, VA, and SyrA, which were quantified using LC-MS analysis. 5OH-Van, undetectable in wild type cell wall, was present in that of IRX5:HCHL samples and HBAld, SyrAld, HBA, VA, and SyrA were increased on average by approx 2, 6, 68, 2 and 5 fold in cell walls of IRX5:HCHL plants compared to the wild type, respectively (Table V). These results indicate that larger amounts of C 6 C 1 phenolics are loosely-bound to cell walls in IRX5:HCHL plants. On the other hand, amount of ferulate and coumarate released from cell walls using this procedure did not differ between transgenic and wild type samples.
Spectral Analysis of IRX5:HCHL Plant Stems
Line IRX5:HCHL (2), which showed no defective xylem structures and biomass yield similar to wild type plants, was selected for further analyses. Fourier transformed Raman (FT-Raman) spectroscopy was used to determine the chemical composition of CWR obtained from senesced stems of IRX5:HCHL plants. Compared to the wild type, data showed that lignin content and amount of polysaccharides (cellulose and hemicellulose) in IRX5:HCHL plants were not significantly different ( FIG. 4A ). Moreover, Fourier transformed infrared (FT-IR) spectral analysis conducted on lignified tissues (xylem and interfascicular fibers) of transverse stem sections of five-week-old IRX5:HCHL and wild type plants revealed differences between the two genotypes ( FIG. 4B ). In particular, significant changes in spectra were observed for bands assigned to different bending or stretching of lignin (Agarwal and Atalla, 2010, Fackler et al., 2010). For example, absorptions at wavelengths 1589 cm −1 and 1506 cm −1 (aryl ring stretching), 1464 cm −1 (C—H group deformation), 1425 cm −1 (methoxyl C—H group deformation), 1379 cm −1 (aromatic skeletal vibrations combined with C—H group in plane deformation), and 1268 cm −1 (aryl ring breathing with C=O group stretch) were modified in fibers, whereas the most significant difference for xylem cell walls was observed at band 1367 cm −1 (methoxyl C—H group deformation). Overall, spectral analyses suggested compositional modifications of lignin in plants expressing HCHL.
Monosaccharide Content and Composition in IRX5:HCHL Plant Stems
Monosaccharide composition was determined after sulfuric acid hydrolysis of total cell wall polysaccharides from mature senesced stems of line IRX5:HCHL (2) and wild type plants. Although both genotypes had similar amount of total monosaccharides, IRX5:HCHL plants showed reduction in glucose (−12%) and increase in xylose (+22%) and arabinose (+16%) compared to wild type plants (Table VI). Moreover, hemicellulosic monosaccharides released from CWR using trifluoroacetic acid showed that total amount of sugar quantified in this hydrolysate was 23% higher in IRX5:HCHL stems which corresponds to higher xylose (+23%) and arabinose (+22%) contents compared to wild type (Table VI).
Incorporation of Unusual C 6 C 1 Monomers into the Lignin of IRX5:HCHL Plants
Lignin content and monomeric composition in mature senesced stems from wild type and IRX5:HCHL (2) plants was determined on CWR. In two independent cultures, klason lignin (KL) was identical and accounted for about 20% of the CWR for both wild type and IRX5:HCHL plants (Table VII). Lignin monomer composition was evaluated by thioacidolysis, a chemical degradative method that generates thioethylated monomers from lignin units involved in labile β-O-4 bonds. Data showed that total amount of conventional H, O, and S monomers released from CWR after thioacidolysis (or total yield) was reduced by 25% and 16% in the two independent cultures of IRX5:HCHL plants compared to the wild type, indicating that fewer of these three monolignols are crosslinked as β-O-4 bond in transgenics (Table VII). Considering identical KL values for both wild type and IRX5:HCHL CWR, these data indicate higher frequency of thioacidolysis-resistant bonds between lignin monomers in transgenic plants. The relative amount of G and S units recovered from this lignin fraction was unchanged, both wild type and transgenic samples showing an S/G ratio ranging between 0.34-0.36, however, molar frequency of H units was significantly higher in IRX5:HCHL plants (Table VII). Furthermore, the content of non-conventional units such as Van, Syrald, and SyrA released by thioacidolysis showed on average a 1.44-, 20.8-, and 1.65-fold increase in IRX5:HCHL plants compared to wild type plants, respectively. Interestingly, two new lignin units were released from the lignin of transgenics plants, which were identified as C 6 C 1 vanillyl alcohol (Vanalc) and syringyl alcohol (Syralc) (Table VIII). On the other hand, the content of coniferaldehyde end-groups (Cald) and VA was unchanged between the two genotypes (Table VIII). Overall, these data showed higher amount of C 6 C 1 phenolic end-groups among monomers released by thioacidolysis from IRX5:HCHL stem cell walls compared to wild type.
Lignin of IRX5:HCHL Plants has Reduced Molecular Mass
The polydispersity of cellulolytic lignin purified from wild type and IRX5:HCHL (2) stems was determined using size exclusion chromatography (SEC). Elution profiles acquired by monitoring UV-A absorbance (SEC UV-A 300 ) and UV-F fluorescence (SEC UV-F ex 250/ em 450) of the dissolved lignin revealed differences between wild type and IRX5:HCHL plants ( FIG. 6 ). First, total area corresponding to the largest mass peak detected between 7 min and 13.5 min was severely reduced in transgenics due to significant diminution of the largest lignin fragments which elute between 7 min and 9 min. Similarly, smaller molecular mass material which elutes later in a second peak between 13.5 min and 19.5 min was more abundant (increased by 27% and 16% using UV-A and UV-F detections) in IRX5:HCHL samples. Finally, the amount of the smallest lignin fragments detected between 19.5 min and 26.5 min using UV-F is increased by 55% in transgenics ( FIG. 6 ). These results demonstrate smaller chains and reduced polymerization degree in lignin purified from IRX5:HCHL plants.
IRX5:HCHL Lines Show Increased Saccharification Efficiency
To examine impact lignin size reduction on cell wall digestibility caused by the expression of the HCHL enzyme in lignifying tissues, saccharification assays were conducted biomass derived from mature senesced stems pretreated with hot water, dilute alkaline, and dilute acid. After a 72-h incubation with cellulase and glucosidase, pretreated biomass of IRX5 HCHL plants released more reducing sugars compared to wild type ( FIG. 7 ). In particular, improvement of saccharification efficiency observed for the different IRX5:HCHL lines ranged from 34% to 77% after hot water, from 43% to 71% after dilute alkaline, and from 15% to 31% after dilute acid pretreatments ( FIG. 7 ).
III. Discussion
Expression of HCHL in plants has originally been considered for in planta production of valuable and soluble compounds such as Van and HBA. Due to strong ectopic HCHL expression, however, adverse phenotypes such as chlorotic and senescing leaves, stunting, low pollen production, male sterility, collapsed xylem vessels, and reduction of biomass were observed in transgenic tobacco, and sugarcane (Mayer et al., 2001; Merali et al., 2007; McQualter et al., 2005). In this study, the inventors selected the promoter of a secondary cell wall cellulose synthase to preferentially express HCHL in the lignifying tissues of Arabidopsis stems ( FIG. 9 ). Successfully, plants transformed with the IRX5:HCHL construct were not dwarf or sterile, and young rosette leaves did not show reduced epidermal fluorescence which is symptomatic of alteration in phenylpropanoid-derived soluble phenolic pools. Although two IRX5:HCHL lines showed reduced biomass, and in one case some occasional collapsed xylem vessels caused by stronger HCHL activity and possibly modification of call wall integrity, some other IRX5:HCHL lines were comparable to wild-type plants.
As expected, the transgenic lines show increased amount of soluble C 6 C 1 aldehydes (HBAld, 3,4-DHBAld, and Van), which are produced upon HCHL activity after cleavage of hydroxybenzoyl-CoA, 3,4-dihydroxybenzoyl-CoA, and feruloyl-CoA ( FIG. 11 ). HCHL has no activity against sinapoyl-CoA, suggesting that Syrald is a conversion product of Van, which is supported by the identification of the new intermediate 5OH-Van (Mitra et al., 1999; FIG. 11 ). Similarly, the data presented herein cannot exclude that some of the 3,4-DHBald and Van accumulated in transgenics derive from HBAld after successive hydroxylation and methoxylation on the C-3 position of the phenyl ring. Interestingly, several genes encoding monooxygenases are upregulated in plants expressing HCHL, but no known or predicted O-methyltransferase showed altered expression level (Table IX). Analysis of soluble aromatics in transgenics also shows that C 6 -C 1 aldehydes are oxidized into their respective acid forms. This conversion could be a response to reduce the amount of these chemically reactive compounds since several genes from the short-chain dehydrogenase/reductase (SDR), aldo-keto reductase (AKR), and aldehyde dehydrogenase (ALDH) families are upregulated in plants expressing HCHL, ( FIG. 11 ; Kirch et al., 2004; Kavanagh et al., 2008). In particular, AKR4C9 (At3g37770) encodes an enzyme known to metabolize a range of hydroxybenzaldehydes (Simpson et al., 2009). In addition, soluble C 6 C 1 phenolics predominantly accumulate as conjugates in transgenics since we showed that glucose conjugates (phenolic glucoside and glucose ester) represented around 90% of the HBA soluble pool, presumably for vacuolar storage as previously described for other C 6 C 1 phenolics (Eudes et al., 2008). This C 6 C 1 acid glucoside accumulation is in agreement with what was observed in tobacco, sugar beet, datura and sugar cane plants expressing HCHL (Mayer et al., 2001; Mitra et al., 2002; McQualter et al., 2005; Rahman et al., 2009). Interestingly, expression analysis of HCHL plants revealed seven up-regulated genes of the UDP-glucosyltranferase (UGT) family and among them UGT75B1 and UGT73B4 were previously shown to catalyze glucose esterification and phenolic glucosylation of benzoates (Table IX; Lim et al, 2002; Eudes et al., 2008).
Furthermore, this study showed that some C 6 C 1 phenolics are released from extract-free cell wall fractions of senesced stems upon mild alkaline hydrolysis. Higher amounts of HBAld, 5OH-Van, SyrAld, HBA, VA, and SyrA were measured in the ‘loosely wall-bound’ fraction of IRX5:HCHL lines compared to wild type. Although the type of linkages involved is unclear, loosely attached C 6 C 1 phenolics were previously extracted from cell walls of Arabidopsis leaves and roots (Tan et al., 2004; Forcat et al., 2010).
The lignin from plants expressing HCHL shows increased content of C 6 C 1 phenolics. Notably, analysis of lignin monomers released after thioacidolysis identified two novel units (Vanalc and Syralc) and showed large amounts of Syrald, Van, and SyrA. This suggests part of C 6 C 1 aldehydes are converted into alcohols and acids and demonstrates that they are incorporated into the lignin as β-O-4-linked C 6 C 1 monomer end-groups in lignin ( FIG. 11 ). Due to the absence of phenyl propanoid tail, these new monolignols when incorporated in lignin end chains, should block further polymerization of the polymer and act as condensation terminator or stopper molecules. Interestingly, transgenic plants also show higher content of conventional H-units (+30%), which preferentially distribute as terminal end-groups in lignin and contribute to modifications of lignin size and structure (Lapierre, 2010; Ziebell et al., 2010). In addition, plants overproducing C 6 C 1 monolignols and with similar lignin content as wild type plants show a lower thioacidolysis release of monolignols, indicating a reduction in the availability of free propanoid tail in lignin end-chain for polymer elongation. It also indicates higher carbon-carbon linkages and increased lignin condensation degree.
It was postulated that higher incorporation of end-group units in lignin would hinder more frequently chain elongation and ultimately reduce lignin branching and polymerization degree. This hypothesis is further supported by the analysis the polydispersity of lignin in plants overproducing theses “stopper” molecules, which shows significant reduction of high molecular masses and significant increase of low molecular masses, hence supporting smaller lignin chain length. These observations are relevant for understanding the higher susceptibility of the biomass from HCHL lines to polysaccharide enzymatic hydrolysis. Although saccharification efficiency of biomass is determined by several characteristics of cell walls, the observed saccharification efficiency improvement after different pretreatments suggests that less ramified lignin would reduce cross-linkages and embedding of cell wall polysaccharides (cellulose and hemicellulose) and would favor their accessibility to hydrolytic enzymes. This hypothesis is supported by the fact that total sugar content is unchanged in cell walls of plants overproducing theses C 6 C 1 monomers.
it is concluded that in planta the over-production of lignification “stopper” molecules can be used to modify the lignin structure in order to reduce lignocellulosic biomass recalcitrance. Since this approach does not require any particular genetic background, it should be easily transferable to various energycrops. Restricting the biosynthesis of these lignification “stopper” molecules in supporting lignified tissues (i.e. schlerenchyma fibers) as well as avoiding strong production in conductive tissues (i.e. vessels) should limit the risk of adverse effects on plant development and biomass yield.
Example 2
Expression of Bacterial HCHL in Rice
This example illustrates expression of bacterial HCHL in a monocot, rice. Rice plants were transformed with the DNA constructs described in Example 1. Rice lines were engineered ( FIG. 12 ) that expressed the HCHL gene, as demonstrated by RT-PCR ( FIG. 13 ). Furthermore, evaluation of rice lines demonstrated that they accumulated pHBA (para-hydroxybenzoate) ( FIG. 14 ), which is generated from the conversion of p-coumaroyl-CoA by HCHL.
This experiment additionally demonstrated that a secondary wall promoter, pIRX5, from a dicot ( Arabidopsis in this example), can be used in a monocot (rice in this example).
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, accession numbers, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
LIST OF REFERENCES
Agarwal U P and Aralla R H (2010) Vibrational spectroscopy. In C Heitner, D Dimmel, J Schmidt eds. Lignin and Lignans: Advances in Chemistry. CRC Press, Boca Raton, pp 103-136
Bechtold N, Pelletier G (1998) In planta Agrobacterium -mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82: 259-266
Berthet et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. The Plant cell (2011) vol. 23 (3) pp. 1124-37
Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519-546
Bonawitz N D, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44: 337-363
Boudet A M (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68: 2722-2735
Bradford M M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
Brown et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell (2005) vol. 17 (8) pp. 2281-95
Brown et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis . Plant J (2009) vol. 57 (4) pp. 732-46
Buer C S, Imin N, Djordjevic M A (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52: 98-111
Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60: 165-182
Chen et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis . Plant J (2005) vol. 43 (2) pp. 273-83
Chen F, Dixon R A (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25: 759-761
Crowe M L, Serizet C, Thareau V, Aubourg S, Rouze P, Hilson P, Beynon J, Weisbeek P, van Hummelen P, Reymond P, Paz-Ares J, Nietfeld W, Trick M (2003) CATMA: a complete Arabidopsis GST database. Nucleic Acids Res 31: 156-158
Dence C (1992) Lignin determination. In C Dence, S Lin, eds, Methods in Lignin Chemistry. Springer-Verlag, Berlin, pp 33-61
de Vrije T, de Haas G G, Tan G B, Keijsers E R, Claassen P A (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii . Int J Hydrogen Energy 27: 1381-1390
Dien B S, Jung H-JG, Vogel K P, Casler M D, Lamb J F S, Iten L, Mitchell R B, Sarath G (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30: 880-891
Dien B S, Sarath G, Pedersen J F, Satler S E, Chen H, Funnell-Harris D L, Nichols N N, Cotta M A (2009) Improved sugar conversion and ethanol yield for forage sorghum ( Sorghum bicolor (L.) Moench) lines with reduced lignin contents. Bioenerg Res 2: 153-164
Dien B S, Miller D J, Hector R E, Dixon R A, Chen F, McCaslin M, Reisen P, Sarath G, Cotta M A (2011) Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol 102: 6479-6486
Elissetche J P, Valenzuela S, García R, Norambuena M, Iturra C, Rodríguez J, Teixeira Mendonça R, Balocchi C (2011) Transcript abundance of enzymes involved in lignin biosynthesis of Eucalyptus globulus genotypes with contrasting levels of pulp yield and wood density. Tree Genet Gen DOI: 10.1007/s11295-011-0367-5
Eudes A, Pollet B, Sibout R, Do C T, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana . Planta 225: 23-39
Eudes A, Baidoo E E, Yang F, Surd H, Hadi M Z, Collins F W, Keasling J D, Loqué D (2011) Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae . Appl Microbiol Biotechnol 89: 989-1000
Eudes A, Bozzo G G, Waller J C, Naponelli V, Lim E K, Bowles D J, Gregory J F 3rd, Hanson A D (2008) Metabolism of the folate precursor p-aminobenzoate in plants: glucose ester formation and vacuolar storage. J Biol Chem 283: 15451-15459
Fackler K, Stevanic J S, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2010) Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme Microb Technol 47: 257-267
Forcat S, Bennett M, Grant M, Mansfield J W (2010) Rapid linkage of indole carboxylic acid to the plant cell wall identified as a component of basal defence in Arabidopsis against hrp mutant bacteria. Phytochemistry 71: 870-876
Franke et al. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J (2002) vol. 30 (1) pp. 33-45
Fu C, Mielenz J R, Xiao X, Ge Y, Hamilton C Y, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon R A, Wang Z Y (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108: 3803-3808
Gagnot S, Tamby J P, Martin-Magniette M L, Bitton F, Taconnat L, Balzergue S, Aubourg S, Renou J-P, Lecharny A, Brunaud V (2008) CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Res 36 (database issue): D986-990
Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon R A (2011) Selective lignin downregulation leads to constitutive defense response expression in alfalfa ( Medicago sativa L.). New Phytol 190: 627-639
Gasson M J, Kitamura Y, McLauchlan W R, Narbad A, Parr A J, Parsons E L, Payne J, Rhodes M J, Walton N J (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273: 4163-4170
Ge Y C, Dudoit S, Speed T P (2003) Resampling-based multiple testing for microarray data analysis. Test 12: 1-77
George A, Tran K, Morgan T J, Benke P I, Berrueco C, Lorente E, Wu B C, Simmons B A and Holmes B M (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chemistry. (Submitted)
Gou J Y, Yu X H, Liu C J (2009) A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis . Proc Natl Acad Sci USA 106: 18855-18860
Grabber J H, Hatfield R D, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9: 2510-2516
Ha et al. Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana . Phytochemistry (2002) vol. 61 (1) pp. 7-14
Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25: 989-994
Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao R P, Bitton F, Caboche M, Cannoot B, Chardakov V, Cognet-Holliger C, Colot V, Crowe M, Darimont C, Durinck S, Eickhoff H, de Longevialle A F, Farmer E E, Grant M, Kuiper M T, Lehrach H, Leon C, Leyva A, Lundeberg J, Lurin C, Moreau Y, Nietfeld W, Paz-Ares J, Reymond P, Rouze P, Sandberg G, Segura M D, Serizet C, Tabrett A, Taconnat L, Thareau V, Van Hummelen P, Vercruysse S, Vuylsteke M, Weingartner M, Weisbeek P J, Wirta V, Wittink F R, Zabeau M, Small I (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14: 2176-2189
Jones et al. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis . Plant J (2001) vol. 26 (2) pp. 205-16
Kavanagh K L, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65: 3895-3906
Keasling J D (2010) Manufacturing molecules through metabolic engineering. Science 330: 1355-1358
Kim H, Ralph J, Yahiaoui N, Pean M, Boudet A M (2000) Cross-coupling of hydroxycinnamyl aldehydes into lignins. Org Lett 2: 2197-2200
Kim H, Ralph J, Lu F, Ralph S A, Boudet A M, MacKay J J, Sederoff R R, Ito T, Kawai S, Ohashi H, Higuchi T (2003) NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org Biomol Chem 1: 268-281
Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5). Org Biomol Chem 8: 576-591
Kirch H H, Bartels D, Wei Y, Schnable P S, Wood A J (2004) The ALDH gene superfamily of Arabidopsis . Trends Plant Sci 9: 371-377
Ko et al. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis . The Plant journal: for cell and molecular biology (2009) vol. 60 (4) pp. 649-65
Lalonde S, Sero A, Pratelli R, Pilot G, Chen J, Sardi M I, Parsa S A, Kim D Y, Acharya B R, Stein E V, Hu H C, Villiers F, Takeda K, Yang, Y, Han Y S, Schwacke R, Chiang W, Kato N, Loqué D, Assmann S M, Kwak J M, Schroeder J, Rhee S Y and Frommer W B (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2, Frontiers in Plant Physiology doi: 10.3389/fphys.2010.00024
Lapierre C, Pollet B, Rolando R (1995) New insights into the molecular architecture of hardwood lignins by chemical degradation methods. Res Chem Intermed 21: 397-412
Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple J C, Boerjan W, Ferret V V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119: 153-164
Lapierre C (2010) Determining [sic] lignin structure by chemical degradations. In C Heitner, D Dimmel, J Schmidt eds. Lignin and Lignans: Advances in Chemistry. CRC Press, Boca Raton, pp 11-48
Lim E K, Doucet C J, Li Y, Elias L, Worrall D, Spencer S P, Ross J, Bowles D J (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277: 586-592
Li X, Weng J K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54: 569-581
Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst S A, Martin C, Michael A J (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21: 318-333.
Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette M L, Mireau H, Peeters N, Renou J P, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16: 2089-2103
Mayer M J, Narbad A, Parr A J, Parker M L, Walton N J, Mellon F A, Michael A J (2001) Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-CoA hydratase/lyase enzyme function. Plant Cell 13: 1669-1682
McCarthy et al. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis . Plant Cell Physiol (2009) vol. 50 (11) pp. 1950-64
McQualter R B, Chong B F, Meyer K, Van Dyk D E, O'Shea M G, Walton N J, Viitanen P V, Brumbley S M (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3: 29-41
Merali Z, Mayer M J, Parker M L, Michael A J, Smith A C, Waldron K W (2007) Metabolic diversion of the phenylpropanoid pathway causes cell wall and morphological changes in transgenic tobacco stems. Planta 225: 1165-1178
Meyer et al. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis . Proc Natl Acad Sci USA (1998) vol. 95 (12) pp. 6619-23
Milkowski C, Strack D (2010) Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta 232: 19-35
Miller G L (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428
Mitra A, Kitamura Y, Gasson M J, Narbad A, Parr A J, Payne J, Rhodes M J, Sewter C, Walton N J (1999) 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL)—An enzyme of phenylpropanoid chain cleavage from Pseudomonas . Arch Biochem Biophys 365: 10-16
Mitra A, Mayer M J, Mellon F A, Michael A J, Narbad A, Parr A J, Waldron K W, Walton N J (2002) 4-Hydroxycinnamoyl-CoA hydratase/lyase, an enzyme of phenylpropanoid cleavage from Pseudomonas , causes formation of C(6)-C(1) acid and alcohol glucose conjugates when expressed in hairy roots of Datura stramonium L. Planta 215: 79-89
Mitsuda et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell (2005) vol. 17 (11) pp. 2993-3006
Mitsuda et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis . Plant Cell (2007) vol. 19 (1) pp. 270-80
Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant J 35: 393-404
Moura J C, Bonine C A, de Oliveira Fernandes Viana J, Dornelas M C, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52: 360-376
Morreel K, Ralph J, Lu F, Goeminne G, Busson R, Herdewijn P, Goeman J L, Van der Eycken J, Boerjan W, Messens E (2004) Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol 136: 4023-4036
Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X, Zhao P X, Dixon R A (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11: 829-846
Rahman L, Kouno H, Hashiguchi Y, Yamamoto H, Narbad A, Parr A, Walton N, Ikenaga T, Kitamura Y (2009) HCHL expression in hairy roots of Beta vulgaris yields a high accumulation of p-hydroxybenzoic acid (pHBA) glucose ester, and linkage of pHBA into cell walls. Bioresour Technol 100: 4836-4842
Ralph J, Lapierre C, Marita J M, Kim H, Lu F, Hatfield R D, Ralph S, Chapple C, Franke R, Hemm M R, Van Doorsselaere J, Sederoff R R, O'Malley D M, Scott J T, MacKay J J, Yahiaoui N, Boudet A, Pean M, Pilate G, Jouanin L, Boerjan W (2001) Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry 57: 993-1003
Ralph J, Kim H, Lu F, Grabber J H, Leple J C, Berrio-Sierra J, Derikvand M M, Jouanin L, Boerjan W, Lapierre C (2008) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J 53: 368-379
Reddy M S, Chen F, Shadle G, Jackson L, Aljoe H, Dixon R A (2005) Targeted downregulation of cytochrome P450 enzymes for forage quality improvement in alfalfa ( Medicago sativa L.). Proc Natl Acad Sci USA 102: 16573-16578
Rohde et al. Molecular phenotyping of the pall and pall mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell (2004) vol. 16 (10) pp. 2749-71
Sibout et al. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis . Plant Cell (2005) vol. 17 (7) pp. 2059-76
Simmons B A, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13: 313-320
Simpson P J, Tantitadipatak C, Reed A M, Mather O C, Bunce C M, White S A, Ride J P (2009) Characterization of two novel aldo-keto reductases from Arabidopsis : Expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J Mol Biol 392: 465-480
Sluiter A, Crocker D, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton, D (2008) Determination of Structural Carbohydrates and Lignin in Biomass NREL/TP-510-42618. Laboratory Analytical Procedure, National Renewable Energy Laboratory, Golden, Colo., USA
Studer M H, Demartini J D, Davis M F, Sykes R W, Davison B, Keller M, Tuskan G A, Wyman C E (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 108: 6300-6305
Taboada A, Novo-Uzal E, Flores G, Loureda M, Ros Barceló A, Masa A, Pomar F (2010) Digestibility of silages in relation to their hydroxycinnamic acid content and lignin composition. J Sci Food Agric 90: 1155-1162.
Tan J, Bednarek P, Liu J, Schneider B, Svatos A, Hahlbrock K (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65: 691-699
Turner and Somerville. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell (1997) vol. 9 (5) pp. 689-701
Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem rev 9: 1-17
Weng J K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytologist 187:273-285
Weng J K, Mo H, Chapple C (2010) Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. Plant J 64: 898-911
Wu et al. Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol (2010) vol. 153 (2) pp. 542-54
Zhong et al. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis . Plant Cell (2006) vol. 18 (11) pp. 3158-70
Zhong et al. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis . Plant Cell (2007) vol. 19 (9) pp. 2776-92
Zhong and Ye. Regulation of cell wall biosynthesis. Curr Opin Plant Biol (2007) vol. 10 (6) pp. 564-72
Zhou et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis . Plant Cell (2009) vol. 21 (1) pp. 248-66
Ziebell A, Gracom K, Katahira R, Chen F, Pu Y, Ragauskas A, Dixon R A, Davis M (2010) Increase in 4-coumaryl alcohol units during lignification in alfalfa ( Medicago sativa ) alters the extractability and molecular weight of lignin. J Biol Chem 285:38961
ILLUSTRATIVE SEQUENCES
SEQ ID NO: 1
Amino acid sequence for Pseudomonas fluorscens HCHL
(GenBank Accession No. CAA73502)
MSTYEGRWKTVKVEIEDGIAFVILNRPEKRNAMSPTLNREMIDVLETLEQDPAA
GVLVLTGAGEAWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRMYAKP
TIAMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTV
GHRQSLYYIMTGKTFGGQKAAEMGLVNESVPLAQLREVTIELARNLLEKNPVVL
RAAKHGFKRCRELTWEQNEDYLYAKLDQSRLLDTEGGREQGMKQFLDDKSIKPG
LQAYKR
SEQ ID NO: 2
Polynucleotide sequence encoding SEQ ID NO: 1
(codon-optimized by GenScript)
ATGTCTACTTACGAGGGAAGATGGAAGACTGTTAAGGTTGAGATCGAGGATGGA
ATCGCTTTCGTTATCCTCAACAGACCTGAGAAGAGAAACGCTATGTCTCCTACT
CTCAACAGAGAGATGATCGATGTTCTCGAGACTCTCGAGCAGGATCCTGCTGCT
GGAGTTCTCGTTCTCACTGGAGCTGGAGAGGCTTGGACTGCTGGTATGGATCTC
AAGGAGTACTTCAGAGAGGTTGATGCTGGACCTGAGATCCTCCAGGAGAAGATC
AGAAGAGAGGCTTCTCAGTGGCAGTGGAAGCTCCTCAGAATGTACGCTAAGCCT
ACTATCGCTATGGTTAACGGATGGTGCTTCGGAGGAGGATTCTCTCCTCTCGTT
GCTTGCGATCTCGCTATCTGCGCTGATGAGGCTACTTTCGGACTCTCTGAGATC
AACTGGGGAATCCCTCCTGGAAACCTCGTTTCTAAGGCTATGGCTGATACTGTT
GGACATAGACAGTCTCTCTACTACATCATGACTGGAAAGACTTTCGGAGGACAG
AAGGCTGCTGAGATGGGACTCGTTAACGAGTCTGTTCCTCTCGCTCAGCTCAGA
GAGGTTACTATCGAGCTCGCTAGAAACCTCCTCGAGAAGAACCCTGTTGTTCTC
AGAGCTGCTAAGCATGGATTCAAGAGATGCAGAGAGCTCACTTGGGAGCAGAAC
GAGGATTACCTCTACGCTAAGCTCGATCAGTCTAGACTCCTCGATACTGAGGGA
GGAAGAGAGCAGGGTATGAAGCAGTTCCTCGATGATAAGTCTATCAAGCCTGGA
CTCCAGGCTTACAAGAGA
SEQ ID NO: 3
Polynucleotide sequence containing IRX5 promoter (pIRX5)
ATGAAGCCATCCTCTACCTCGGAAAAACTTGTTGCGAGAAGAAGACATGCGATG
GCATGGATGCTTGGATCTTTGACATTGATGACACTCTTCTCTCAACCATTCCTT
ACCACAAGAGCAACGGTTGTTTCGGGTAAATAAACTAAACTTAACCATATACAT
TAGCCTTGATTCGGTTTTTGGTTTGATTTATGGATATTAAAGATCCGAATTATA
TTTGAACAAAAAAAAATGATTATGTCACATAAAAAAAAATTGGCTTGAATTTTG
GTTTAGATGGGTTTAAATGTCTACCTCTAATCATTTCATTTGTTTTCTGGTTAG
CTTTAATTCGGTTTAGAATGAAACCGGGATTGACATGTTACATTGATTTGAAAC
AGTGGTGAGCAACTGAACACGACCAAGTTCGAGGAATGGCAAAATTCGGGCAAG
GCACCAGCGGTTCCACACATGGTGAAGTTGTACCATGAGATCAGAGAGAGAGGT
TTCAAGATCTTTTTGATCTCTTCTCGTAAAGAGTATCTCAGATCTGCCACCGTC
GAAAATCTTATTGAAGCCGGTTACCACAGCTGGTCTAACCTCCTTCTGAGGTTC
GAATCATATTTAATAACCGCATTAAACCGAAATTTAAATTCTAATTTCACCAAA
TCAAAAAGTAAAACTAGAACACTTCAGATAAATTTTGTCGTTCTGTTGACTTCA
TTTATTCTCTAAACACAAAGAACTATAGACCATAATCGAAATAAAAACCCTAAA
AACCAAATTTATCTATTTAAAACAAACATTAGCTATTTGAGTTTCTTTTAGGTA
AGTTATTTAAGGTTTTGGAGACTTTAAGATGTTTTCAGCATTTATGGTTGTGTC
ATTAATTTGTTTAGTTTAGTAAAGAAAGAAAAGATAGTAATTAAAGAGTTGGTT
GTGAAATCATATTTAAAACATTAATAGGTATTTATGTCTAATTTGGGGACAAAA
TAGTGGAATTCTTTATCATATCTAGCTAGTTCTTATCGAGTTTGAACTCGGGTT
ATGATTATGTTACATGCATTGGTCCATATAAATCTATGAGCAATCAATATAATT
CCGAGCATTTTGGTATAACATAATGAGCAAGTATAACAAAAGTATCAAACCTAT
GCAGGGGAGAAGATGATGAAAAGAAGAGTGTGAGCCAATACAAAGCAGATTTGA
GGACATGGCTTACAAGTCTTGGGTACAGAGTTTGGGGAGTGATGGGTGCACAAT
GGAACAGCTTCTCTGGTTGTCCAGTTCCCAAGAGAACCTTCAAGCTCCCTAACT
CCATCTACTATGTCGCCTGATTAAATCTTATTTACTAACAAAACAATAAGATCA
GAGTTTCATTCTGATTCTTGAGTCTTTTTTTTCTCTCTCCCTCTTTTCATTTCT
GGTTTATATAACCAATTCAAATGCTTATGATCCATGCATGAACCATGATCATCT
TTGTGTTTTTTTTTCCTTCTGTATTACCATTTTGGGCCTTTGTGAAATTGATTT
TGGGCTTTTGTTATATAATCTCCTCTTTCTCTTTCTCTACCTGATTGGATTCAA
GAACATAGCCAGATTTGGTAAAGTTTATAAGATACAAAATATTAAGTAAGACTA
AAGTAGAAATACATAATAACTTGAAAGCTACTCTAAGTTATACAAATTCTAAAG
AACTCAAAAGAATAACAAACAGTAGAAGTTGGAAGCTCAAGCAATTAAATTATA
TAAAAACACTAACTACACTGAGCTGTCTCCTTCTTCCACCAAATCTTGTTGCTG
TCTCTTGAAGCTTTCTTATGACACAAACCTTAGACCCAATTTCACTCACAGTTT
GGTACAACCTCAGTTTTCTTCACAACAAATTCAAACATCTTACCCTTATATTAC
CTCTTTATCTCTTCAATCATCAAAACACATAGTCACATACATTTCTCTACCCCA
CCTTCTGCTCTGCTTCCGAGAGCTCAGTGTACCTCGCC
SEQ ID NO: 4
Sagittula _ stellata _E-37__ZP_01746375 (amino acid sequence)
MTATEATLPANDPDLSGDNVAVAFEDGIAWVKLNRPEKRNAMSVSLAEDMNVVLD
KLEIDDRCGVLVLTGEGSAFSAGMDLKDFFRATDGVSDVERMRAYRSTRAWQWRT
LMHYSKPTIAMVNGWCFGGAFTPLICCDLAISSDDAVYGLSEINWGIIPGGVVSK
AISTLMSDRQALYYVMTGEQFGGQEAVKLGLVNESVPADKLRERTVELCKVLLEK
NPTTMRQARMAYKYIREMTWEESAEYLTAKGDQTVFVDKEKGREQGLKQFLDDKT
YRPGLGAYKR
SEQ ID NO: 5
Saccharopolyspora _ erythraea _NRRL_2338_YP_001105000
(amino acid sequence)
MSTPTTDPGTTTTPWGDTVLVDFDDGIAWVTLNRPEKRNAMNPAMNDEMVRTLDA
LEADPRCRVMVLTGAGESFSAGMDLKEYFREVDQTADPSVQIRVRRASAEWQWKR
LAHWSKPTIAMVNGWCFGGAFTPLVACDLAISDEEARYGLSEINWGIPPGGVVSR
ALAAAVSQRDALYFIMTGETFDGRRAEGMRLVNEAVPAERLRERTRELALKLAST
NPVVLRAAKVGYKIAREMPWEQAEDYLYAKLEQSQFLDAERGREKGMAQFLDDKS
YRPGLSAYSTD
SEQ ID NO: 6
Solibacter _ usitatus _Ellin6076_YP_821552
(amino acid sequence)
MDQYEEKWQTVKVEVDAEGIAWVIFNRPAKRNAMSPTLNREMAQVLETLELDAAA
KVLVLTGAGESWSAGMDLKEYFREVDGQPESHQEKIRREASLWQWKLLRMYAKPT
IAMVNGWCFGGAFSPLVACDLAIADEKAVFGLSEINWGIPPGNLVSKAVADTMGH
RKALHYIMTGETFTGAQAAEMGLVNAAVPTSELREATRTLALKLASKNPVILRAA
KHGFKRCRELTWEQNEDYLYAKLDQALHRDPEDARAEGMKQFLDEKSIKPGLQSY
KRS
SEQ ID NO: 7
Ralstonia _ solanacearum _GMI1000_NP_521786
(amino acid sequence)
MATYEGRWNTVKVDVEDGIAWVTLNRPDKRNAMSPTLNREMIDVLETLELDGDAQ
VLVLTGAGESWSAGMDLKEYFRETDGQPEIMQERIRRDCSQWQWKLLRFYSKPTI
AMVNGWCFGGAFSPLVACDLAIAADDAVFGLSEINWGIPPGNLVSKAVADTMGHR
AALHYIMTGETFTGREAAEMGLVNRSVPRERLREAVTELAGKLLAKNPVVLRYAK
HGFKRCRELSWEQNEDYLYAKVDQSNHRDPEKGRQHGLKQFLDDKTIKPGLQTYK
RA
SEQ ID NO: 8
Xanthomonas _ albilineans _YP_003377516 (amino acid sequence)
MSNYQDRWQTVQVQIDAGVAWVTLNRPEKRNAMSPTLNREMIDVLETLELDSAAE
VLVLTGAGESWSAGMDLKEYFREIDGKEEIVQERMRRDCSQWQWRLLRFYSKPTI
AAVNGWCFGGAFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAVADTMGHR
NAMLYIMTGRTFTGTEAAQMGLVNASVPRAQLRAEVTKLAQELQQKNPVVLRFAK
HGFKRCRELTWEQNEDYLYAKVDQSNHRDPEKGRQQGLKULDDKTIKPGLQTYKR
SEQ ID NO: 9
Acinetobacter _ baumannii _ATCC_17978_YP_001084143
(amino acid sequence)
MKMSYENRWETVDVKVEDGIAWVTLNRPEKKNAMSPTLNREMIDVLETLELDQNA
KVLVLTGAGDSWTAGMDLKEYFREVDTQPEIFQERIRRDSCRWQWQLLRMYSKPT
IAMVNGWCFGGGESPLVACDLAIAADEATEGLSEINWGIPPGNLVSKAMADTVGH
RASLYYIMTGKTFSGKEAETMGLVNKSVPLAQLKAEVTELANCLLEKNPVVLRTA
KNGFKRCRELTWDQNEDYLYAKLDQCIHRDTENGRQEGLKQFLDEKSIKPGLQSY
KRTG
SEQ ID NO: 10
Acinetobacter _sp._ADP1_YP_046390 (amino acid sequence)
MTYDKRWETVDVQVEHGIAWVTLNRPHKKNAMSPTLNREMIDVLETLELDSEAKV
LVLTGAGDSWTAGMDLKEYFREVDAQPEIFQERIRRDSCRWQWQLLRMYSKPTIA
MVNGWCFGGGFSPLVACDLAIAADEATFGLSEINWGIPPGNLVSKAMADTVGHRA
SLYYIMTGKTFTGKEAEAMGLINKSVPLAQLKAEVTELAQCLVEKNPVVLRTAKN
GEKRCRELTWDQNEDYLYAKLDQCNHRDTEGGRQEGLKQFLDEKSIKPGLQSYKR
TG
SEQ ID NO: 11
Chromohalobacter _ salexigens _DSM_3043_YP_572340
(amino acid sequence)
MSDYTNRWQTVKVDVEDGIAWVTLNRPEKRNAMSPTLNREMIDVLETIELDQDAH
VLVLTGEGESFSAGMDLKEYFREIDASPEIVQVKVRRDASTWQWKLLRHYAKPTI
AMVNGWCFGGAFSPLVACDLAIAADESVFGLSEINWGIPPGNLVSKAMADTVGHR
QALYYIMTGETFTGPQAADMGLVNQSVPRAELRETTHKLAATLRDKNPVVLRAAK
TGFKMCRELTWEQNEEYLYAKLDQAQQLDPEHGREQGLKQFLDDKSIKPGLESYR
R
SEQ ID NO: 12
Burkholderia _ cenocepacia _AU_1054_ZP_04942909
(amino acid sequence)
MSKYDNRWQTVEVKVEAGIAWVTLNRPEKRNAMSPTLNREMLEVLDAVEFDDEA
KVLVLTGAGAAWTAGMDLKEYFREIDGGSDALQEKVRRDASEWQWRRLRMYNKP
TIAMVNGWCFGGGFSPLVACDLAIAADDAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGAEAAEMGLVNSSVPLAELRDATIALAARLMDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKTIKPG
LQAYKR
SEQ ID NO: 13
Burkholderia _ ambifaria _MC40-6_YP_776799
(amino acid sequence)
MSKYDNRWQTVEVNVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGSAWTAGMDLKEYFREIDGGSDALQEKVRRDASEWQWRRLRMYNKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGVEAAEMGLVNSSVPLAGLRDATIALAARLMDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 14
Burkholderia _ cepacia _AMMD_YP_776799 (amino acid sequence)
MSKYDNRWQTVEVNVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGSAWTAGMDLKEYFREIDGGSDALQEKVRRDASEWQWRRLRMYNKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGVEAAEMGLVNSSVPLAGLRDATIALAARLMDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 15
Burkholderia _ thailandensis _MSMB43_ZP_02468311
(amino acid sequence)
MSKYDNRWQTVEVKVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGTAWTAGMDLKEYFREIDGGPDALQEKVRRDASEWQWRRLRMYGKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRCALHYIMTGDTFTGVEAADMGLVNRSVPLAELRDATIALAARLIDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 16
Burkholderia _ ubonensis _Bu_ZP_02382374
(amino acid sequence)
MSKYENRWQTVEVKVEAGIAWVTLNRPDKRNAMSPTLNQEMLQVLDAIEFDDDA
KVLVLTGAGAAWTAGMDLKEYFREIDGGPDALQEKVRRDASEWQWRRLRMYGKP
TIAMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTV
GHRRALHYIMTGDTFTGVEAADMGLVNRSVPLAELRDATIALAARLIDKNPVVL
RAAKHGFKRSRELTWEQCEDYLYAKLDQAQLRDPERGREQGLKQFLDDKAIKPG
LQAYKR
SEQ ID NO: 17
Azotobacter _ vinelandii _AvOP_YP_002798614
(amino acid sequence)
MNKYEGRWKTVIVEIEGGIAWVTLNRPDKRNAMSPTLNREMRDVLETLEQDPAAR
VLVLTGAGSAWTAGMDLKEYFREVDAGPEILQEKIRREACEWQWKLLRMYAKPTV
AMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTVGHR
QALYYIMTGKTFDGRQAAEMGLVNQSVPLAQLRETVATLCQDLLDKNPVVLRAAK
NGFKRCRELTWEQNEDYLYAKLDQSRLLDEEGGREEGMRQFLDEKSIKPGLQAYK
R
SEQ ID NO: 18
Pseudomonas _ putida _KT2440_NP_745498 (amino acid sequence)
MSKYEGRWTTVKVELEAGIAWVTLNRPEKRNAMSPTLNREMVDVLETLEQDADAG
VLVLTGAGESWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRLYAKPTI
AMVNGWCFGGGFSPLVACDLAICANEATFGLSEINWGIPPGNLVSKAMADTVGHR
QSLYYIMTGKTFDGRKAAEMGLVNDSVPLAELRETTRELALNLLEKNPVVLRAAK
NGFKRCRELTWEQNEDYLYAKLDQSRLLDTTGGREQGMKQFLDDKSIKPGLQAYK
R
SEQ ID NO: 19
Pseudomonas _ fluorescens _SBW25_YP_002872871
(amino acid sequence)
MSNYEGRWTTVKVEIEEGIAWVILNRPEKRNAMSPTLNREMIDVLETLEQDPAAG
VLVLTGAGEAWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRMYAKPTI
AMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTVGHR
QSLYYIMTGKTFGGQKAAEMGLVNESVPLAQLREVTIELARNLLEKNPVVLRAAK
HGFKRCRELTWEQNEDYLYAKLDQSRLLDTEGGREQGMKQFLDDKSIKPGLQAYK
R
SEQ ID NO: 20
Pseudomonas _ syringae _NP_792742 (amino acid sequence)
MSKYEGRWTTVKVEIEQGIAWVILNRPEKRNAMSPTLNREMIDVLETLEQDPEAG
VLVLTGAGEAWTAGMDLKEYFREVDAGPEILQEKIRREASQWQWKLLRMYAKPTI
AMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGNLVSKAMADTVGHR
QSLYYIMTGKTFDGKKAAEMGLVNESVPLAQLRQVTIDLALNLLEKNPVVLRAAK
HGFKRCRELTWEQNEDYLYAKLDQSRLLDKEGGREQGMKQFLDDKSIKPGLEAYK
R
SEQ ID NO: 21
Ralstonia _ eutropha _JMP134_YP_299062 (amino acid sequence)
MANYEGRWKTVKVSVEEGIAWVMFNRPEKRNAMSPTLNSEMIQVLEALELDADAR
VVVLTGAGDAWTAGMDLKEYFREVDAGPEILQEKIRRDACQWQWKLLRMYAKPTI
AMVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHR
QALHYIMTGDTFTGQQAAAMGLVNKSVPRSQLREHVLELAGKLLEKNPVVLRAAK
HGFKRSRELTWEQNEDYLYAKLDQAQLRDPEHGREQGLKQFLDDKSIKPGLQAYK
RA
SEQ ID NO: 22
Burkholderia _ glumae _BGR1_YP_002908688
(amino acid sequence)
MSYEGRWTTVKVTVEAGIGWVVLNRPEKRNAMSPTLNKEMIDVLETLELDDEAQV
LVLTGEGDAWTAGMDLKEYFREVDAASDVVQERIRRDASRWQWQLLRMYSKPTIA
MVNGWCFGGGESPLVACDLAIAADEATFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGDTFTGKQAAQMGLVNQSVPRAALREATVALAAKLLDKNPVVLRNAKH
GFKRSRELTWEQNEDYLYAKLDQANYRDKEGGREKGLKQELDDKSIKPGLQAYKR
SEQ ID NO: 23
Burkholderia _ phytofirmans _PsJN_YP_001887778
(amino acid sequence)
MSYEGRWKTVKVDVAEGIAWVSFNRPEKRNAMSPTLNKEMIEVLEAVELDAEAQV
LVLTGEGDAWTAGMDLKEYFREVDAGPEILQEKIRRDACRWQWQLLRMYSKPTIA
MVNGWCFGGGFSPLVACDLAIAADEATFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGETFTGQEAAQMGLVNKSVPRAELREATRALAGKLLEKNPVVLRAAKH
GFKRCRELTWDQNEDYLYAKLDQAQLRDPEGGREQGLKQFLDDKAIKPGLQTYKR
SEQ ID NO: 24
Burkholderia _ mallei _ATC_23344_YP_105383
(amino acid sequence)
MSYEGRWKTVEVIVDGAIAWVTLNRPDKRNAMSPTLNAEMIDVLEAIELDPEARVL
VLTGEGEAWTAGMDLKEYFREIDAGPEILQEKIRRDASRWQWQLLRMYAKPTIAMV
NGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRQALY
YIMTGETFTGAQAAQMGLVNRSVPRAQLRDAVRALAAKLLDKNPVVLRNAKHGFKR
CRELTWEQNEDYLYAKLDQAQLRDPEHGREQGLKQFLDDKTIKPGLQAYRR
SEQ ID NO: 25
Burkholderia _ pseudomallei _Pasteur_ZP_01765668
(amino acid sequence)
MSYEGRWKTVEVIVDGAIAWVTLNRPDKRNAMSPTLNAEMIDVLEAVELDPEARV
LVLTGEGEAWTAGMDLKEYFREVDAGPEILQEKIRRDASRWQWQLLRMYAKPTIA
MVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGETFTGAQAAQMGLVNRSVPRAQLRDAVRALAAKLLDKNPVVLRNAKH
GEKRCRELTWEQNEDYLYAKLDQAQLRDPEHGREQGLKQFLDDKTIKPGLQAYRR
SEQ ID NO: 26
Burkholderia _ multivorans _ATCC_17616_YP_001583186
(amino acid sequence)
MSYEGRWKTVKVAVEGGIAWVTLNRPEKRNAMSPTLNAEMIDVLEAIELDPEAQV
LVLTGEGDAWTAGMDLKEYFREVDAGPEILQEKIRRDASRWQWQLLRMYAKPTIA
MVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRQ
ALYYIMTGDTFTGQQAAQMGLVNKSVPRAQLRDEVRALAAKLLDKNPVVIRNAKH
GFKRCRELTWEQNEDYLYAKLDQANYRDPEGGREQGLKQFLDEKSIKPGLQAYKR
SEQ ID NO: 27
Burkholderia _ vietnamiensis _G4_YP_001116289
(amino acid sequence)
MGYEGRWKTVKVEVAGGIAWVTLNRPEKRNAMSPTLNTEMIDVLEAIELDADAQV
LVLTGEGDAWTAGMDLKEYFREIDAGPEILQEKIRRDASRWQWQLLRMYAKPTIA
MVNGWCFGGGFSPLVACDLAIAADEAVFGLSEINWGIPPGNLVSKAMADTVGHRE
ALYYIMTGDTFTGQQAARMGLVNKSVPRAQLRDEVRALAAKLLDKNPVVIRNAKH
GFKRCRELTWEQNEDYLYAKLDQANYRDPEGGREQGLKQFLDDKSIKPGLQAYKR
SEQ ID NO: 28
Sphingobium _ japonicum _UT26S_YP_003543683
(amino acid sequence)
MSEYLTEGPDLSRTCVDVMFDEGIAWVTLNRPEKRNAMSPTLNSEMLAILEQLELD
PRCGVVVLTGAGDSFSAGMDLKEYFRETDGLPPAQVRRIRQTAQAWQWRTLQHFGK
PTIAMVNGWCFGGAFTPLVACDLAIAANEAVEGLSEINWGIIPGGNVTKAIQERLR
PQDAALYIMTGRNFTGEKAAQMGLVAEAVPLTDLRDHTRALALELLSKNPVVLNAA
KIALKKVADMTWDVAEDYLVAKGAQTRVADKTDGRNKGITQFLDEKSYKPGLEGYR
RDK
SEQ ID NO: 29
Xanthomonas _ axonopodis _NP_641235 (amino acid sequence)
MNEHDVVSVRIENRIAWVKFARPDKRNAMSPALNRRMMDVLDELEFDDNVGVLV
LGGEGTAWSAGMDLKEYFRETEAQGLRGVRRSQRESYGWERRLRWYQKPTIAMV
NGWCFGGGFGPLFACDLAIAADEAQFGLSEINWGILPGGGVTKVAVELLSMRDA
MWMTLTGEMVDGKKAAEWRLVNESVPLERLEARTREVAELLLRKNPVALKYAKD
AVRRVGTMTYDEAEDYLVRMQEAANSFDNNARKEGIRQFIDEKSYKPGLGEYDL
SKHSA
SEQ ID NO: 30
Xanthomonas _ campestris _ATCC_33913_NP_636201
(amino acid sequence)
MNEHDVVSVHVENRIAWVKFARPDKRNAMSPALNRRMLDVLDELEFDDNVGVLVL
GGEGTAWSAGMDLKEYFRETEAQGLRGVRRSQRESYGWFRRLRWYQKPTIAMVNG
WCFGGGEGPLFACDLAIAADEAQFGLSEINWGILPGGGVTKVAVELLSMRDAMWM
TLTGELVDGRKAAEWRLVNESVPLERLETRTREVAELLLKKNPVALKYAKDAVRR
VGTMTYDEAEDYLVRMQEAANSFDNNARKEGIRQFIDEKRYKPGLGAYEPDAGTN
SEQ ID NO: 31
Azospirillum _sp._B510_YP_003451575 (amino acid sequence)
MTQQQAAARTGTAEDVVTVELDNGVAWVTLNRPDKRNAMNPALNARMHGVLDD
LEVDDRCQVLVLTGAGESFSAGMDLKEYFRETEAKGHMATRRAQRDSYGWWRR
LRWFEKPSIAMVNGWCFGGAFSPLFACDLAVAADEAQFGLSEINWGIIPGGNV
TKVVADLMSQREAMYYILTGETFDGRKAAEMKLVNFSVPHAELRAKVRAIADN
LLEKNPQTLKAAKDAFKRVVEMPFDAAEDYLVVRQESLNYLDKSEGRKQGIKQ
FIDDKTYRPGLGAYKR
SEQ ID NO: 32
Agrobacterium _ vitis _S4_YP_002549228 (amino acid sequence)
MTVAEKSDADTVLVDIEDRIAFVTFNRPEKRNAMNPALNIRMAEVLEELEADDRC
GVLVLRGAGTSWSAGMDLQQYFRDNDDKPRHATLKSRRQSGGWWQRLTYFEKPTI
AMVNGWCFGGAFNPLVACDLAIAANEATFGLSEINWGILPGGNVTRAVAEVMNHR
DSLYYIMTGEPFGGEKARDMGLVNESVPLEELETRVRKLCASLLEKNPVTMKAAK
DTFKRVRNMPWELADDYIYAKLEQMLLLDKTRGRDEGLKQFLDDKTYRPGLGAYK
RK
SEQ ID NO: 33
Rhizobium _ etli _Brasil_5_YP_001985541 (amino acid sequence)
MTENTSPVLVEFDGGIAFVTLNRPEKRNAMNPALNARMLEVLDELEGDERCGVLV
LRGAGQSWSAGMDLKEYFRDNDDKPRDATLKARRQSGGWWGRLMYFEKPTIAMVN
GWCFGGAFTPLVSCDLAIAAEEANFGLSEINWGILPGGNVTRAVAEVMRHRDALY
YIMTGELFGGRKAAEMGLVNEAVPLVDLETRVRKICASLLEKNPVTLKAAKDTYK
RVRNLPWDLADDYIYAKLEQMLFLDKTKGRDEGLKQFLDDKTYQPGLGAYKRGR
SEQ ID NO: 34
Rhizobium _ leguminosarum _bv_trifolii_WSM1325_YP_002973001
(amino acid sequence)
MTEDKSPVLVEFDSGIAFVTLNRPEKRNAMNPALNIRMLEVLDELEGDERCGVL
VLRGAGESWSAGMDLKEYFRDNDDKPRDVTLKARRQSGNWWGRLMYFEKPTIAM
VNGWCFGGAFTPLVSCDLAIAAEEANFGLSEINWGILPGGNVTRAVAEVMRHRD
ALYYIMTGELFGGRKAAEMGLVNEAVPLAELEPRVRKICASLLEKNPVTLKAAK
DTYKRVRNLPWDLADDYIYAKLEQMLFLDKTKGRDEGLKQFLDDKTYQPGLGAY
KRGR
SEQ ID NO: 35
Amino acid sequence for IRX5
(GenBank Accession No. AF458083_1)
MEPNTMASFDDEHRHSSFSAKICKVCGDEVKDDDNGQTFVACHVCVYPVCKPCYE
YERSNGNKCCPQCNTLYKRHKGSPKIAGDEENNGPDDSDDELNIKYRQDGSSIHQ
NFAYGSENGDYNSKQQCRPNGRAFSSTGSVLGKDFEAERDGYTDAEWKERVDKWK
ARQEKRGLVTKGEQTNEDKEDDEEEELLDAEARQPLWRKVPISSSKISPYRIVIV
LRLVILVFFFRFRILTPAKDAYPLWLISVICEIWFALSWILDQFPKWFPINRETY
LDRLSMRFERDGEKNKLAPVDVFVSTVDPLKEPPIITANTILSILAVDYPVNKVS
CYVSDDGASMLLFDTLSETSEFARRWVPFCKKYNVEPRAPEFYFSEKIDYLKDKV
QTTFVKDRRAMKREYEEFKVRINALVAKAQKKPEEGWVMQDGTPWPGNNTRDHPG
MIQVYLGKEGAFDIDGNELPRLVYVSREKRPGYAHHKKAGAMNAMVRVSAVLTNA
PFMLNLDCDHYINNSKAIRESMCFLMDPQLGKKLCYVQFPQRFDGIDHNDRYANR
NIVFFDINMRGLDGIQGPVYVGTGCVFNRPALYGYEPPVSEKRKKMTCDCWPSWI
CCCCGGGNRNHHKSKSSDSSSKKKSGIKSLLSKLKKKNKKKSDDKTMSSYSRKRS
ATEAIFDLEDIEEGLEGYDELEKSSLMSQKNFEKRFGMSPVFIASTLMENGGLPE
ATNTSSLIKEAIHVISCGYEEKTEWGKEIGWIYGSVTEDILTGFRMHCRGWKSVY
CMPKRPAFKGSAPINLSDRLHQVLRWALGSVEIFFSRHCPLWYAWGGKLKILERL
AYINTIVYPFTSIPLLAYCTIPAVCLLTGKFIIPTINNFASIWFLALFLSIIATA
ILELRWSGVSINDLWRNEQFWVIGGVSAHLFAVFQGLLKVLFGVDTNFTVTSKGA
SDEADEFGDLYLFKWTTLLIPPTTLIILNMVGVVAGVSDAINNGYGSWGPLFGKL
FFAFWVIVHLYPFLKGLMGRQNRTPTIVVLWSILLASIF
SLVWVRIDPFLPKQTGPLLKQCGVDC
SEQ ID NO: 36
Polynucleotide sequence PATCESA7_PATIRX3
TGGGAACTTTCGGTACATTTTCCAATAAAATCTATATACTATAAGATATTAAAT
ATACACAAATATATCTAAGTGAATCATACAAATTATGTAGGCACACAGGAAGAG
GCTGCTGAGGCTTATGACATTGCAGCCATTAAATTCAGAGGATTAAGCGCAGTG
ACTAACTTCGACATGAACAGATACAATGTTAAAGCAATCCTCGAGAGCCCGAGT
CTACCTATTGGTAGTTCTGCGAAACGTCTCAAGGACGTTAATAATCCGGTTCCA
GCTATGATGATTAGTAATAACGTTTCAGAGAGTGCAAATAATGTTAGCGGTTGG
CAAAACACTGCGTTTCAGCATCATCAGGGAATGGATTTGAGCTTATTGCAGCAA
CAGCAGGAGAGGTACGTTGGTTATTACAATGGAGGAAACTTGTCTACCGAGAGT
ACTAGGGTTTGTTTCAAACAAGAGGAGGAACAACAACACTTCTTGAGAAACTCG
CCGAGTCACATGACTAATGTTGATCATCATAGCTCGACCTCTGATGATTCTGTT
ACCGTTTGTGGAAATGTTGTTAGTTATGGTGGTTATCAAGGATTCGCAATCCCT
GTTGGAACATCGGTTAATTACGATCCCTTTACTGCTGCTGAGATTGCTTACAAC
GCAAGAAATCATTATTACTATGCTCAGCATCAGCAACAACAGCAGATTCAGCAG
TCGCCGGGAGGAGATTTTCCGGTGGCGATTTCGAATAACCATAGCTCTAACATG
TACTTTCACGGGGAAGGTGGTGGAGAAGGGGCTCCAACGTTTTCAGTTTGGAAC
GACACTTAGAAAAATAAGTAAAAGATCTTTTAGTTGTTTGCTTTGTATGTTGCG
AACAGTTTGATTCTGTTTTTCTTTTTCCTTTTTTTGGGTAATTTTCTTATAACT
TTTTTCATAGTTTCGATTATTTGGATAAAATTTTCAGATTGAGGATCATTTTAT
TTATTTATTAGTGTAGTCDTAATTTAGTTGTATAACTATAAAATTGTTGTTTGT
TTCCGAATCATAAGTTTTTTTTTTTTTTGGTTTTGTATTGATAGGTGCAAGAGA
CTCAAAATTCTGGTTTCGATGTTAACAGAATTCAAGTAGCTGCCCACTTGATTC
GATTTGTTTTGTATTTGGAAACAACCATGGCTGGTCAAGGCCCAGCCCGTTGTG
CTTCTGAACCTGCCTAGTCCCATGGACTAGATCTTTATCCGCAGACTCCAAAAG
AAAAAGGATTGGCGCAGAGGAATTGTCATGGAAACAGAATGAACAAGAAAGGGT
GAAGAAGATCAAAGGCATATATGATCTTTACATTCTCTTTAGCTTATGTATGCA
GAAAATTCACCTAATTAAGGACAGGGAACGTAACTTGGCTTGCACTCCTCTCAC
CAAACCTTACCCCCTAACTAATTTTAATTCAAAATTACTAGTATTTTGGCCGAT
CACTTTATATAATAAGATACCAGATTTATTATATTTACGAATTATCAGCATGCA
TATACTGTATATAGTTTTTTTTTTGTTAAAGGGTAAAATAATAGGATCCTTTTG
AATAAAATGAACATATATAATTAGTATAATGAAAACAGAAGGAAATGAGATTAG
GACAGTAAGTAAAATGAGAGAGACCTGCAAAGGATAAAAAAGAGAAGCTTAAGG
AAACCGCGACGATGAAAGAAAGACATGTCATCAGCTGATGGATGTGAGTGATGA
GTTTGTTGCAGTTGTGTAGAAATTTTTACTAAAACAGTTGTTTTTACAAAAAAG
AAATAATATAAAACGAAAGCTTAGCTTGAAGGCAATGGAGACTCTACAACAAAC
TATGTACCATACAGAGAGAGAAACTAAAAGCTTTTCACACATAAAAACCAAACT
TATTCGTCTCTCATTGATCACCGTTTTGTTCTCTCAAGATCGCTGCTAATCTCC
GGCCGTCCCT
SEQ ID NO: 37
Polynucleotide sequence PATCESA8_PATIRX1
TTTAGTGCAGTCTAGGAAGACGGATCCAAAGGAGATAAACAGAGTTCAAGAAGCT
CTTAACTACTATACAATCGAATCGTCAGCCGCGCTTTTTGTTTCGTTCATGATCA
ATTTGTTTGTAACTGCGGTTTTCGCGAAAGGGTTTTATGGAACCAAACAAGCTGA
TAGTATAGGACTGGTTAACGCGGGATATTACCTACAAGAGAAATATGGCGGTGGT
GTTTTCCCGATACTATACATTTGGGGGATTGGTTTATTAGCTGCTGGACAAAGCA
GTACTATAACCGGGACTTATGCTGGACAGTTTATAATGGAAGGGTTCTTAGATCT
TCAAATGGAACAATGGCTATCAGCTTTTATAACGAGAAGCTTTGCTATTGTACCT
ACTATGTTTGTTGCTATTATGTTTAACACATCCGAGGGCTCGCTCGATGTTTTAA
ACGAATGGCTTAACATTCTTCAGTCGATGCAGATTCCTTTCGCGGTTATTCCTCT
TTTGACTATGGTTTCTAATGAACATATCATGGGTGTCTTCAAGATCGGACCTTCG
CTTGAGGTAAAGCAATTTTTTGTCATCTCTCTTTATTGTTATGTGCTTTTGATTG
TAACGAGTTAGTTGGGATCTTTGCAGAAGCTAGCTTGGACTGTGGCGGTGTTTGT
GATGATGATAAATGGGTATCTTCTTCTAGATTTCTTCATGGCTGAAGTGGAAGGG
TTTCTTGTTGGGTTTCTGGTTTTTGGTGGAGTAGTTGGATACATCAGTTTCATCA
TCTATCTTGTTTCTTATAGAAGCTCACAATCTTCTTCCTGGTCGAGTTTAGAAAT
GTCAGAGAGAGTTGTTTCCACAGAGACGTAGAAACCCATAACTTTAGTATTCTTC
AACCCTTACAACTTATCTGAGCAAAATCAGAAGGTCGAATTTGATGGATGGTTTT
GCTGTATTTGGTCAACGGTTTTATTTGAGACAGTAGACCAGAGGAAACTCAGATG
TGATGATGCAAAGACTGAATTGGTTAAGAGTGTAGATTGATTTGTTCTAACATTG
CAAATGTAGAGTAGAATTATGCAAAAAACGTTAATGAACAGAGAAGTGATTAAGC
AGAAACAAAATTAGAGAAGTGATATTATATCTCAAAATTTATTTTTGGTACAGCT
AAAGCTCAAATTGTTATAGAGATTAGAGATATTAAACCAAATGACGAGTGTTTTC
TTTAGTAGTAAACGGTGAAAATTCTCTTCTGACAAAGACAATTAAAATTTTAGGT
TTAAGACTTTAATATTTGTCACAAATTGTCATTTACCTAAATAAAAAAAAAACTA
AATATTTTTTTTAGATACATATGTGTCTTATAATTTTAACTATAAATTTTAATTT
TATGTCTTAAATAATTGTTTACACTATAAATTTAAATATTTTAATGCTAAAATTA
ATTTGATTCAAAAAAGTGATTTTAATTCTTATTTTTCTTATAGAAAGTTGGTGAT
TGAAAAGATTTACTTAAAAATTATAACAACTTCAATGGTGAATAACCCGACCCGA
ATAAACCGGATATAACAACTTCAATGTTAGCTTGATATAGAAAGTACGGTGACGC
TTAGGAGGCAAGCAAGCTAGTATCTGCCGCTGGTTAGAGACAAAGAACATGTGTC
ACTCCTCTCAACTAAAACTTTCCTTCACTTTCCCGCAAAATCATTTCAAAAAAGC
TCCAAATTTAGCTTACCCATCAGCTTTCTCAGAAAACCAGTGAAAGAAACTTCTC
AACTTCCGATTTTTCACAATCCACCAAACTTTTTTTAATAACTTTTTTTCCTCTT
ATTACAAAACCTCCACTCTCATGGCTTCTCAAACTTGTTATCCATCCAAATCTCA
ATCCCTAATTAGGGTTCATTTCTCTGTTTCTCCAAACAGGGGAATTCGAAG
SEQ ID NO: 38
Polynucleotide sequence PATNST1
GTTTGTAGAGTTGGATCAGCATCCAGATTTAAACCCTTATTTTTGTTTTTGCCAA
GCATCCAGACTTAATCCTATATTAGATACTGTATATGCATCTTGATGGAATATAG
ACTATATAGAAAGACCAAAAATGGAAGAGTACGAATAAAAATGCATAATATACCT
TGGAAATTATTCTTGGTTATTGTGAAACTTAAAACATTTCAACGAAGTCATATAC
TATTATTTAATCATTGATTTAAAATTGCTAATCAAATCACGTGTTGTTGTTATAT
ATGGATAAAGAGTTAAACTATAACACAACTGAGAAAAAAATAAAGTTATCAATTT
TGTTAAGAATCAATGAAGGTTTCACAAGACTGGGAAGAAAAAAAAATAGATATAT
GGAGTACATAAAACATTAAAATTTTGCTAAATTTTACTTTTGAACTCTATTGATT
CGGGTTGACATGATGATAATGTTACATTCGTACAATTTCACAATGAAAAAAACGA
GTACTAAATATTGTCAATCAAACATATGAATGTACAAAAATCCATAAACTCTACC
AAAATAGAATGAAGATTCTGAAATCAAACCTACTTTTTCTTTTTAATTATAAATT
CAACTATATTATAAATTTATTTATCACAAATAATAGAGGAGTGAGAATATTTTAG
ACAACGCAAATTTCTTTTATTTAGTTCTTATACTTTATTTTTTACCAAACGTTAA
TTAAAAAAATCACACATACATAATTTCTAAAAAAAATGTATTCTTCAAGTAATAT
ATCTTTCTGAGTACTAGTTTATCTATTTATCTCCGTATTTAATAATCAAAAGTTA
CGTTTAAAATAGAAACAACTTTTATCAAACAAAATATATTAGAAAACGCATGGTA
CTGGCTACTGGAAAGAATCATGACCTGTAAATTTCTACAGTTTTCCCGTTTTATA
TAGTACTTAGAAACTTTGGATTTTCATAGCGCAACCAATAAACACATGGACTTAA
GACACAAAAAAAGTTGGGTGCAATGTCATTAATCAAACTAAAAAAATAATGATTA
AAAGCATGGAATTCCGAAAACGCAACAAAATGATTCTGTGTTTAGACAAATGCAG
AAAGGCCTCTTAACTAATCTTAAATAAAGTCTTAGTTCCAACCACATAAACACTC
CTTAGCTCCATTAATTTTGGTTTTCTTAATTACGTTTCTACACAAGTACACGTAC
TTACACATACAATTCCACAGTCTAAATGATAAAACTATGTGGTTTTTGACGTCAT
CGTTACCTTTCTGTCGTCTCACCTTTATATAGTGTCTCTAACAGAACGTAACAAC
CAAATGTTTAAAAAAATAAAAACAGCACCCCTTAATTAGGCTCATTCGTTTTGCA
CTAACCATACTACAAATCATCTCGAACGATCGAGCAAAGATTTGAAAAATAAATA
AACGTATAACTCTAGAGATTTTCATTAGCTAAGAAAAGTGAAATCGATTGTTAAT
CCTATTTCAGACGGGACAGGAACACTCATTACCCAACTCTATCATCTCTCGAACA
CCAAACTATATCTACCGTTTGGGGCATTATTTCCCACTTTCTTTCGAAGACAATT
TCCCATATATAACATATACACATTATTACTAATATATTTTTATAAATTTTCGTCA
CATCCCAAAAAAAAACACTCTTTGTCACATCAACTAGTTTTTTTGTAACGATCAA
ACCTTTTCGTTTAAAAAAAAAAAACTTTTGTAGTGTAAACGTTTATTTATCGATG
AAAAAAGCCACATCTTCCGGAGGGAAACTTTTTAAGACACCCTATTTCGACTTTA
TTTTGTAAATACAGTGTGCATGTGCATATAAAGAGAGATATCATTTGTATAAATA
TCAAGAATTAGAAGAGAAAAAGAGAGAAGAAGACAATCTATTACTATTACGATGT
GTGGGTTGTTAATTTGTTTAAAGGGAGCTTTTCTATAGAGATTTTTAAGGTCAAG
GGTCATCGTTCGATGTGGGCTTGCTTCCTACAATCTAGTTGCCTTACGGGGCCTA
CTCTTTTTCTTTTGATAACTACATCACCTTTTTTTTCTCCGACAACTATATATCA
CTTTTTTTATGTTTTCCTTTTTTTCTTCACAATAATTCTTTACTCGTTGCAAATG
TAAAGATACACAAAGTTACTTATTTTGTTTACGATGGTTCTTAGTAGTTTAAAGA
ATTAATGAATAAGATAAACCTAAACTTTGAAAAGACTAAAAAAAATGTATAACAA
CATACATTATACGTATTTGAAATAGTCCAAGTGATATTATGTCATTGATATTAGC
ACAAATAATTACGATGCCTGATATTGTCACATTTGATGATTTTAAGTTCTTGTAA
AAGATAAGTGTAACTAAATCACTATAGTGAGGCCCACGTTTTAATTTCTAAACTA
ATTACAATGACAATAAAATAGCAAAACTATTTAAAACTAGACGCCAAAAAAAATT
GAAACTAATAATTGTGAAAAAAGAACAAGAGAATAATAATCATTAATAATTGACA
AGTGAAATTAATATATTGCTCTTGGAGGGTTATATTTTAATTTTCAAACTAAATA
ATGAATACAAATGGAAAAGCTAATGATAAGAGTTGAATTTTAATAATTAAGAAAA
ACAAAAAAAGGTGTACAAGGAGACACATGCGTTTTCCTCATGCATCTTGTTTTTA
TACAACAATATATATATATATATTGAGTCATTCTCTGCTAGCTCTCTCATCTCCA
ACTTTCAGTATGATATATAGTTACAATTAAATAAACCTCACATGCTCTATTCTTG
CTTGATTTTTGAGTTAATCTTGAATCTCTTTG
SEQ ID NO: 39
Polynucleotide sequence PATCESA4_PATIRX5
ATGAAGCCATCCTCTACCTCGGAAAAACTTGTTGCGAGAAGAAGACATGCGATG
GCATGGATGCTTGGATCTTTGACATTGATGACACTCTTCTCTCAACCATTCCTT
ACCACAAGAGCAACGGTTGTTTCGGGTAAATAAACTAAACTTAACCATATACAT
TAGCCTTGATTCGGTTTTTGGTTTGATTTATGGATATTAAAGATCCGAATTATA
TTTGAACAAAAAAAAATGATTATGTCACATAAAAAAAAATTGGCTTGAATTTTG
GTTTAGATGGGTTTAAATGTCTACCTCTAATCATTTCATTTGTTTTCTGGTTAG
CTTTAATTCGGTTTAGAATGAAACCGGGATTGACATGTTACATTGATTTGAAAC
AGTGGTGAGCAACTGAACACGACCAAGTTCGAGGAATGGCAAAATTCGGGCAAG
GCACCAGCGGTTCCACACATGGTGAAGTTGTACCATGAGATCAGAGAGAGAGGT
TTCAAGATCTTTTTGATCTCTTCTCGTAAAGAGTATCTCAGATCTGCCACCGTC
GAAAATCTTATTGAAGCCGGTTACCACAGCTGGTCTAACCTCCTTCTGAGGTTC
GAATCATATTTAATAACCGCATTAAACCGAAATTTAAATTCTAATTTCACCAAA
TCAAAAAGTAAAACTAGAACACTTCAGATAAATTTTGTCGTTCTGTTGACTTCA
TTTATTCTCTAAACACAAAGAACTATAGACCATAATCGAAATAAAAACCCTAAA
AACCAAATTTATCTATTTAAAACAAACATTAGCTATTTGAGTTTCTTTTAGGTA
AGTTATTTAAGGTTTTGGAGACTTTAAGATGTTTTCAGCATTTATGGTTGTGTC
ATTAATTTGTTTAGTTTAGTAAAGAAAGAAAAGATAGTAATTAAAGAGTTGGTT
GTGAAATCATATTTAAAACATTAATAGGTATTTATGTCTAATTTGGGGACAAAA
TAGTGGAATTCTTTATCATATCTAGCTAGTTCTTATCGAGTTTGAACTCGGGTT
ATGATTATGTTACATGCATTGGTCCATATAAATCTATGAGCAATCAATATAATT
CGAGCATTTTGGTATAACATAATGAGCCAAGTATAACAAAAGTATCAAACCTAT
GCAGGGGAGAAGATGATGAAAAGAAGAGTGTGAGCCAATACAAAGCAGATTTGA
GGACATGGCTTACAAGTCTTGGGTACAGAGTTTGGGGAGTGATGGGTGCACAAT
GGAACAGCTTCTCTGGTTGTCCAGTTCCCAAGAGAACCTTCAAGCTCCCTAACT
CCATCTACTATGTCGCCTGATTAAATCTTATTTACTAACAAAACAATAAGATCA
GAGTTTCATTCTGATTCTTGAGTCTTTTTTTTTCTCTCTCCCTCTTTTCATTTC
TGGTTTATATAACCAATTCAAATGCTTATGATCCATGCATGAACCATGATCATC
TTTGTGTTTTTTTTTCCTTCTGTATTACCATTTTGGGCCTTTGTGAAATTGATT
TTGGGCTTTTGTTATATAATCTCCTCTTTCTCTTTCTCTACCTGATTGGATTCA
ATATTAAGTAAGACTAAAGTAGAAATACATAATAACTTGAAAGCTACTCTAAGT
TAGAACATAGCCAGATTTGGTAAAGTTTATAAGATACAAAATACAAATTCTAAA
GAACTCAAAAGAATAACAAACAGTAGAAGTTGGAAGCTCAAGCAATTAAATTAT
ATAAAAACACTAACTACACTGAGCTGTCTCCTTCTTCCACCAAATCTTGTTGCT
GTCTCTTGAAGCTTTCTTATGACACAAACCTTAGACCCAATTTCACTCACAGTT
TGGTACAACCTCAGTTTTCTTCACAACAAATTCAAACATCTTACCCTTATATTA
CCTCTTTATCTCTTCAATCATCAAAACACATAGTCACATACATTTCTCTACCCC
ACCTTCTGCTCTGCTTCCGAGAGCTCAGTGTACCTCGCCT
SEQ ID NO: 40
Polynucleotide sequence PATGAUT8_PATIRX8
ACGAGCTGACTTGTACCGATGAGCTGGCTCTTCTGGGCGAGCTGGCTGATCTTGA
CGAGCAGACTTCTCCCGACGAGCTGACTTGTGTCGATGAGCTGGCTCTTCTGGGC
GAGTTGGCTGATCTTGACGAGCAGACTTCTCCCGACGAGCTGACTTGTGTCGATG
AGCTGGCTCTTCTGGGCGAACTGGCTGATCTTGACGAGCAGACTTCTCCCGACGA
GCTGACTTGTGCTATCCTTTCTCCAGGTCTCGAAAAAGTCCCCTTTCCCGAGACT
TTCTATTCCTTATTTATACCCGTCCGTATAGTAGGGTACGCAAGGTGAATTCTCG
AGAGTGCCCCTTTTCTACGCAGCCGAACTCACATCCTGACCAGGCCGGGCTTCGG
CCTGGTGGGCCGGCTCGAGTTCTAAAGTGATGGTCGGGGCTGGGTCGTTATTCCT
TGAAATGGGCCGGTTGATCACTGAGGCCCAATTGATGTATCAACATGTGGTTTTT
ATAAAAAGAGTCGTGAGAAGAGTTTTCTCTAAAAATCCCTTGTGTTTGGTAATCA
AACTTCATTCAACCAACGAATTCCAAAAAAACAACTAAATTGTTCGGGTATATAA
AATGATTGGTAATGATATATCCCATAGAGGCCGTAGACATAGGCCCAAAAAGTTT
CCATAACTAGCAGAAATTGAAACTTGCAAGTTGCAAATATTATTACACTGGAAAG
GCAACAAGTCTTGAAGTACAAACTACAAAGACTTCTTGTTTGGATGGGGACGACT
GACGAGTTTGAATAACTTAAGAGAAAAGGGTCGCAATCGAAATTAGACAAGAAAT
TAGTCCTCAAAAAGTAAATTCTGAAGTTGAAGCTCCAATGTCTTTGTTCAAAGAC
TTTATTTAGATGTAAAGTTATGTCTTGTAACCACCAAACAGCTCCTTTTCATCTA
CACTCCCAATTTTTTTAACATCTATGTTTTGCATTGCCTTTGACTTGTCTTTCTC
TCTCCAACTTCTCTCCTTCAACATAAAGCCAAATCCTAAATCCAAATCCCTTAAA
CCGAACCGAATTAAACCGAAGCTGTTGAACTATCGCAAAATTTCAGATCTTACTA
ATCATAAACATGTGACGTTTAATTCATTTTAAGAGTTTCATGATTTGCACTGAAT
GGTATTCCGAGTCCACCGGAAAAAAACTTTTCCTACAAGTAGAAAAAGGATAACC
CCATAAATCCAAATAACCTAACCGATCAAACATATACCAATATAAACCAAAACAA
GATTCAGATTCATCGGTTTAGTAATCGAAGTAATGTACTAATGTGTAATATTGAT
TCCACCACCAGCTTAGAGATTCGAACCAAAAACCGAATAGCGCATAACCGAGAAA
ACCCAAAGCTTCCTAACAAATACATAAAACCGTGGTGTTTCTAATTCTAACCAAC
ACACGTTTCCTTTTTATTCACAAGAAACATCAGAGTTATGATCTGCCATTAATAA
CCTAAACACAAAGCAAGGTTAGGTAAATGATATGGACCCCTAATGAATAATCATA
CAATACATAACAACGTAAGATCCAGTTTCCCTCTTCG
SEQ ID NO: 41
Polynucleotide sequence PATNST2
AACGGTGGCGTGATGGAGCTTCATCCTCCCATCTTCGCCGAATTCATCACCAACG
AATTTCCCGGCCATGTCATCCACGACTCTTTAAGCCTCCGCCACTCATCTCCACC
GCTTCTCCACGGCGAAGAACTCTTTCCCGGTAACATCTACTACCTCCTTCCTCTT
TCTTCTTCCGCAGCCGCGACCGCTCAACTGGATTCCTCCGACCAACTATCAACGC
CGTACAGAATGTCTTTCGGGAAGACGCCGATAATGGCGGCTTTGAGTGGCGGTGG
TTGTGGAGTGTGGAAGGTGAGGCTTGTGATAAGTCCGGAGCAGTTGGCGGAAATT
CTTGCGGAGGATGTGGAAACGGAAGCGTTGGTGGAAAGTGTGAGGACGGTGGCGA
AGTGTGGCGGTTACGGCTGCGGCGGAGGAGTTCATTCGAGAGCGAATTCAGACCA
GCTAAGCGTTACGAGTAGCTTTAAAGGGAAATTGTGGTAAAATTTCGAATTATGA
ATAAACTACGTTTATGTTTTAATCTGTTTCACGATTTAAGCATTTAAATTAGTAT
GTTGATTTCCGTATTCATTGAAGACTTGGAACGATTATATAAGTTTATCAACGTA
GATATATTTGAAATATCATTGTTATCTCTCATGAAACAATTAATTTATGAAGTCG
TAGACTCGTAGTTAGAGATTATTTAATCTTCCCTATTCAATGCCAAAAGTCTAGA
AGAGCAAAACAAAAGGGAGAAACTCTTTTATTTCAGGCCCAATGACACAAAGCTG
GCCAGAAACAGTTTAAGATTAGGCTAAAGTTATAAGTCCGACAAGCACGAGTGCT
AATATATATAGTTATATGACGTCTCACCATTAAGGGTTTAATAAATTTTGAAACA
CCTCAAATTAAGATTGCTTCCCATGCAAACTTCCTTCATCTTCTAGAAAAATTAC
GATTTGTAATACTTCAATTATATCATTTTAGTTTTTTGTCACTAATTATCATCAA
TTTATCATAGCTCCGTGCCGCAACAACGTTCGTTTTAATCAGATTATATATTACT
CTGCTATAAACTCAGAACCATGTTAGAAAAATGAAAAAGACATTTCAGAATATTC
ATTAACTCAAAATTTTAATCTCATGATTTAATTTTTTATTAACAATGTTATCCTA
TAGCACATGGCAAATTTGAACGGCCCTTGCGTATTAATCTATTATAATCTCAAAA
CCATGTGTAAGAAAAAGGAAATTCAGAAAATAACCTTTTGTAAATAGGCCCCCAC
AAAATCTACAACATACGTAGATACCTCCTCGCTTACAGTTGTAAACAACTGTTCA
TCTAGATTCATGCCGTCATTCAAGTTTAAATTAATACAATAATTTAAAATTTTAA
TTTGGATGAATCGAATCCACCGTCGTTTCCTGAATACCAGATAGGTTAACTTTAT
GATTAGTTCGAGTGAACCACATGCACAATATTCGAATCTTAGACATTCGTTGCAA
TGTTAACTTCACATATATTTGATAAACGCTTCTTGAATCAGATCTTAATCTCTTT
CTTTCTCTCCATCTTCTAAGGAGGTTGTGGATTATCATGTAGTATATCATTATCT
TCGCATCACCTTCAACAAGAACAAGCTACGAGCTTTAAAGTCGTATTTAACACAA
TAATGTATAAAGTCTTTCTTCATCACATCACATACATTTTTTGTTGCCATCACCC
TTCATTCACTTTTTTTGTTAACACTATTCGTTTCTATATAAAATAAAAATAAAAT
GAGGAATGTCTTGTCCATAGAGATTTTTAAGGTCGAGGGTCATCGGAGCGATGTG
GGCTTGCTTCCTACATTATAGTTGATATGTGGATCCCGCGTGGACCATATTTTTA
CCCAATAGCTACGTGCATGGTCCCACCGCTCTCTCTCACGCACTATTCCGAAATT
GCCATAAACAATTTCACCGGACAAAAAGAGCAAATAATTTCGATGTTTAATAAAG
AGACCATTAGTATATTTGACCCAAAAAAAAATAAAAAAAAAAGAGAGACATTACT
ATAACTTTTATTAGATGAAATATTGCAACATTGTATTTATAACGGATCTAATTTA
CTGAATCATATTTTTTTTCTTTGTTAAAGAGATACTGAATCATGCAGAAAAATAG
ATAGATTTTTAAATACTAGGTGAACTCATGACGAATCAACCATTACGAGAGATTT
CTGGATAAAAGCAAAAACAAAACAAAACTAACATGCTAATCTAGGCAATTAGTAG
AGCGAAAAGTCGGCAAAACCAAAGGCCGAAGAAGCTTGATCGATATACTTTTTTT
TTTTTGTTTTGGCTGGATATACTTGGTATGAACTAAGAATTAAGTAAAAACTCAT
AGGGAGTAATTTTTCGAGAAGTGCATTCACTATGAGTATAAAACAGACATTTTCA
AATTATTAAAACAAGCTCTTAGAGGCTCATATGTTTAATTGTAAGTGGCGGCTCA
TGCGAACTTATAATGAAAACATCAAATATTCGGAAAAATAATACTCCACTGTTAA
AAAGAAAACTTAACAAAGGAATTAAAAATATGAGAGCAAAAGAACACATGCATTT
TCTCATGCATGTACTATTATTTATTTTTTTGCAGAGTTGATGTAAAAAATATACA
CATATATATAGACATACTTTGGTTAGTTATAAACTCGTTCTATTTTCTTCTCCTT
TTTCTATCTTTAGCA
SEQ ID NO: 42
Polynucleotide sequence PATNST3
ATTCTACACATTCACAAAGTTTACTACACTATATATAATTTACCCAACAAACACT
TATTTTACTGCATTATTCAGTATATTATCTTACCTATAAATGTGTATCATCATCA
TCAATAACGCGATTATTTGTGCTGAAGGATTATATATTCAAAATGATCTAGTTAT
ATATGTCACATGATTGCCGTTAACAAGACACATTTGAAGAAGCTAAGCAAGAAAA
ACGGACACTITTGCGACTTGTTACATAATTTAACTTATAGGTCAAAAGAATTTGA
TTAGTCATTGCAACTACGTGTGGATGTCACTTTCTATTCAACCAAAACTCACAAT
ATTATATGATCTAGTTTTGTCGTATTACTGATTTGTATTATAAAATGTTATTTAA
TTTGAATTCTACGTAGATATTGCTCATGCATGATAGTATGTATCTAAACTATTCA
AATAACTAACTACGTGGATATTTTATAATCCAAGTAAAAAGCAGAAAGTGGGTAA
CTACGTCAGTATGACTATACTTTTATCGGAATTGCTTGACATCCAAACTTTTGCT
ATGCTTCACCAACCAATGCAGTTTCACTTAATTATTAACTATTGACTATGTCTTA
TTAAGTTAGCACTAATTCGTTAATCATTCAAAACGTTATTTGATTGAATTACATA
TTACACTCTCTTTCTGCATCACCACTCACACCATATGCAACTATAACCAACTCAT
ATTCAAATGTATTAATTGGATTTTGGTGCGAGATTAAAAATTGAAAGGAAACAAC
ACAATATGATAATGGGATAAAATCTTGAACGGAAACTCAAACTAATCCTCATAAG
GTATAACAAAATAACAATTTAAGCTAAGCACAACAACATACAAGTTCGACCTTTT
CCTTTGATGATCCAGCCCAACAGTTCTCTTATATCTCAAACCATTCGACCATTTG
AGCCAAACTAGCTAAACCTGCAGGAATCAAAACCAACAAAGATTCAGATTAGCTA
AACCGGTTTCATCCCTTTGTCACATGACTCACATCCGTCTTCTACATAACGATTT
CTAATGATGTGAGCTCTTAACTTGCTCCAGCAAGATCATCAACTTTGGAGCACCT
TCAATGATTTAGTTAACATGTTAGATAAATTAAATATTCTTGTTTCAATATATAT
CAACTTTAGTGTAAAAGCCTTAACATTCTCTTGAATATTTAATTTATTTCTCCTT
ATTTCGATTTAATGACAAATGTGAATTAATTTTTGTGATATTTTTGTTCGAAATT
AGTTTTCAGTTAATAACATACATGTGAGCATGGGACACACATGATTTAACAAAAG
GGAATGACGAAATGATATATCAAAATATTAGTATGGGAACAAATTACGAGGTGAA
ACTTCACACTCAACTCAATTAAAACTAGAATAAAGAAATGGAAAAAGTGAAAGAA
TGAGAGGTCAAATGTGGTTAATCATTATGTGGTATTAGTTAATCCATCAATTGTG
TACCCAAAAGCATGATTAAGCATAGAATTTAGAGAAACAAAACATCATTATTAAT
GTTGAAACACAAAGATCCCATCAACAGACAAATGATAAGTACAGTGCATGTAGGG
TAACAACTTTTATGTACATGTTATATACTTATATTATATAATAAGAAAACGATTA
AAGTGTCATTGCTCCAGCCTCTATTTGTAAATCATATTATATCAGTATGCTTAAT
TCCAATAATTAAGTCCATAACTAAAATATATACACATATATGTATGTTAAATGGT
TGAATATATACATATATTTTCATAAACAAATATTGCTAATTAATTCAGTTATTTG
TGTACATAATCCAACTATCACCTTTTTAGCTGGAAGTGGATATTCCAACATGTCA
GTCTGTCACTCCCACATTCATACTCTCTATTCTTTTTAGCTATTTCAATATCTAC
GGTTAAATATTAATGGCTATATAGCCTTACCCTTCATTTTAGTTTTTTTTTGGTA
TTCGCATAACCATCGAATACTCAAACTTACTATGTAAGATGGTCTGAATAACTAT
TTCCGATTTAAGATGAATAGCTAGATTGAAATATACATGCACTAATTGGACATGC
ACTAAAGGCAGAGGTGAATTAAATGATGAAATGAAGATGAAGTGTCACACTTGTG
CAAAAAGCATGTCCCCTGCTCTTCTCCGCTTGTTTCAATTTCTTTGACTTTCATC
ACGTTTTTGTCACTTAAATACACCAAAAAATATAGTACAATTAAACATCGAAAAT
CGTCCAAAAAGAAGAAAAAAAATCATGGAAAGTTCTTTCGTTAATGTTACACACA
TTATCTTGATTAGGTGACACCAGATATTAGAATAAAAATGATAGATTATGAAAAG
AAAAAAAAAATTGATGTATTTTTAGGATACATCGAAAGGAATGAACATACCAAAA
ACATGGGAAAAAATAGATAACTAATTAACATGGTAGAATGTAGATGACGTAGATC
ATGAAACGAGTGTGTGATATATTAATGAAAATTATTTTAATATACGTAGCTATAT
TAGAAAATAATTTACATTTATTTTCTTCTAAACAAATCTATACTTTATATTTACA
TACATTAGTAAAGACCAAAACACATGGAATTCAAATTCTGCAATAAGTAATTGCA
AGAAAACACAAAGATTAATCCCCCACTAAACCCGTTTATTTACGTTAGTATTTTT
CCGTTTTATACATTACACATGACATGACATTACACGTCAAAAGAAATATGTCTTA
CGTCAGAACTTACGTATGATCAAACTCGATTTAAACATAGAAACATCTGTTTACT
AAATTATACTAATTTCATAAAGACACTTTAATGCATGAACTTCTTTGTTTAAATA
ACAATTTCCCCCTTTTGGGGGCTATGTCTCGTCGAGTCCTACCACCATTATAAAT
TATCTCATCGTTTGCTTTCTTTTTTTTAAGTTGTAACCATTTCCACTCGTAATCA
TACAACTTCTCTACTCTTCTAGAGCAAAAACCCAAAAATATATTGCTATCTTCGT
TA
SEQ ID NO: 43
Polynucleotide sequence PATFRA8_PATIRX7
CTTCAAATCTCTTGTATCATTAAATAGTAACGTTTTAAATATTTTCTGGATAAGCA
TAAGTTTCTTTGAAAACTATTTTGTATATATTCCTACTTCTCCATTTTTCTAAATT
ATTTTATATTATACATAGTTTTCCAAATTATCAAACATTTTTACATGTTTTGACTA
ATAAATAAACATATTACTGCGAATTAATTAAAAATAAATATTCCACACAATAATTA
CCTTACAAGCGAATAAACTTTTACTATGTTTTCGATGTAAATTTTTCTTACATATT
TGTAACTGAAATTTCTAACTTGTTGTTTCATAAGTTTTAAAATTTATTATCTAATT
ATCTACTTTTATGTGTTCTAGAGCAAAGTGCTAAATGTATATATACTTAGATGTTG
TGTTGTAATCCAATGTCAATATAATCAATGATTTAGCTATTTGTAAACATACTAAA
TAGTATTCCACCAAAAAAAAAACATACTAAACAGTAAACAAACAGCAAAAACAAAA
TCCACATGTCCTAAAAGATAGTCTGATTTTCGTTCATAATGCTCTGGTTTTTGAAA
GATAATAATTGTGTTGTATGAGTGTATGACAAATATTCATTGGTTTGAGAAGTTAA
CAAAATTTGGTGGCTACAAATGGTTTCCTATTCGAGTTGGGTCCATTATCCCTTGG
CGTGTACGGAAATAATACCTACCCATCATAATCTGATCAAAGATGAGGTAGTCTTT
AAATAAATTTTGCGGCTTATATCAATCTTTATGTACTATAAACTGTGAACTTTTTG
TTCTTCAGGACTTCCACATCATTGCCCAATCCGGTTATACCTTCGCTAGTTAATAT
GTTAATTAACATTAAATTAAAGAGCTAACATTTCTTAGGTAGTAAAATAGAAGTTT
TGAACTACTATACTACTAACATGTGAAAATACTTTAGTCACAAATATGACAATATA
CAAATTTATTGGAATGCAAATTCTTGAATTTCAATTGTTTGAAAATTATATATTTC
TACATAACAATTCTTTATAAACTAAAAATATTAATTTTCCATGGCTATGCGTTATA
CGTATATGTCAAATATTTTTATTATTTATATAATTTTACGATAAATTAGTACTCCT
ACTTTACTATATTACTCAACACTAAAAGACCTCTTTAACTCCGCCTAACAAGATAT
GTTTTCTTTTGAATGTTTCGGTTAAACATGACAGAGATTTGTITTCTTGCTTTCGC
TCAATACATATTTGTGCTCCTTTAGAAAAGTAGTATTTCCTAACAATCCAACATTT
TCATATTTATTATATCTTTTAAATATTATCATGGTTCTTTTTCTTTCGTCATGTTT
GGCCTCTTTAAAATAATTCTTGAATTGTATGAGCATTAATCCAATAACGTCCTGAT
CCCAAAAACCTCATATTAGGTTTGAGAGTCCGAAAATATACTTTTCACATAAAGCA
CCTAAGGTGTCATACTTTAACAACTTCACAAAATATGCAAAATTTGTCATTGTCAC
TTTGAGATGTAAGTTTTTTTTTACATGCAAATAGATTGAGTCTCTTTACGTGTAAA
TTCATTTAATAAAATTGTATGGAATATCTATTTATATCATATATTTCTAACATATA
TATAAATATCTATACAAAAATACGACTTTTTGGCACATGTAATTAGAAAAATCCAC
AAGAAACAGAAAAAAGAAACACCAAATACAACGAAATGAAGAAATTATTATAAATT
TGAATGGCTTAACATCTCTTAAGAGTCAACAAGGTAAAGGATTAATTAGTAGTCTT
CATCAATCTTTCTCCACCTTCTTCTATTCCTTAATCTCCACTTTATCTCCCAAACC
CGAAAACTCCTCTICACCAACTTAAACCCTATTAACTAATCCCAACAATCAGATGT
TTCGAATTCAACAACCAGCTCAGGCCATAAGATTCATCCCGGAGAAACAAGAACG
SEQ ID NO: 44
Polynucleotide sequence PATIRX9
CGGGTTTTCGGTTCGACCCGGACTCGAAACGGGTCTAGATGAAGAAAACCTCATCT
CTTTTTGTGTCTAAGGATTTTTTGGTACTGAAACTCTCACTCTTTTTTTTGGTTCC
TCTGGTCCCTCTCTATATGATTCAGATCGAACACTGTGGTTTTATATTTTTTAATG
TTTTGTTATGTTCACACGTTGGGTTCAGAAAAATTGACGGCCGAGATCTTTTCTAT
AAGAGGAAATCGGTGGTTCTACTTAGCTAATCCTTTTTACTAGAAAAGTTTAACAT
TTTGTACTTTTTGTCTGTATGCTCTCTAGTTGTTTGTTGAGATCTCTTGCTGCTAG
ATTCACTTTTTGGGACACATTGCTTTGTATTTGAAGCTAGAAAGTTTATATCAACA
TGATCTAAAAAAGTATTTTAAGAGAACTACATTGAGGTAGTTATTTCTTTTCCTAA
ATTAGTCATTGGTAAATTACATCGTGACATTTATAGAACATTGCAGAGCATAAAAG
ATTGAAAAAAAAATGAGCTGAGATTTGTATGTATATAAAGAAAACGTATTAGCATA
GCTTTCTTTCAGATTTAACGGTGGAAATCATACAAAACTTTCTTGCAGAACAATGA
GTATATATATGAAGGACTCGTTAACGAAAATATTAGTTTAAATCTAGATATCTTCC
AGTAAAATATGAGTTTCGCCTTCGTATATGATACGGCAATAACTTTGGGACCAACT
AATTTGCATATCACATGTTGATATCTCTTTCAGTTCTACTCATTCTTTTTTTTTGA
AAACAACAAATTATTGGCTGCAAATGTTTTTTGGTTTAACTAGTGCTTCTCTAATT
GTCAAGTATCTTAGTCTAGAGTTAATTACTTAAATACTAAAAGGCTGTCGACAAAA
TCAAGCTTGAATCTCCTTGTGGTATCTTCAACTCTTCGTTGTCTGCTTACGAGTGG
TTTACTCAGTAATTATCTATAATATGTTATTTTTTTTCCCTCATCTTTTAGTTGTT
GTTTCATTACATTGAAAAGCTTGTAATGTCTTTATATGGTATATATGGATCTTATG
AGTGAGGCAAGATCCATGATGTTTTTGATCTTAGAATGTATATGATGATCTTAGAA
TGTATTTGACCGCCCACAAATTATTGTTCATTGGGATTATATCTCTAGTCCAACTC
CAAGCAATCGAAATGGGTCCTGCTTTTAAGAACAACAGTATATGTTTAAGAATAAT
AACTTTATATATTCTCGATTTTAAGATCTTTTGACAAAACCTCCTTTTCGTTAGGA
GCGTACTAATTTCCAAGTGTTTGATTAGTGGGGTCTCCGTAAATTTATTTAGAGTT
TCTATCTATTTATTAATAGCTCAATTAATTAATCTATACTGTATCTAAACATCAAT
TTATATATTTACTCTTGAGACCAAAACTGTCAATTTATAACATTGGATAGTTTCTT
AATTCTTATTATATATTTTTCAAACACTTTTCAAGACTAATCTCCACATTAGGTAC
TCTCTCTAGAGATAAAAATATTTATCAAAAACATTTTTATTTATTTATTAAGTAGT
AGATAAACTACTGTGGCAAAATCGTAAATGTCTAAATGCTGATGAATTTTTTTTGC
TGCTCCAATCTGGTTTAGTGCTCCATATACATCCACGGCCAAAATGAATCTATGGC
GGCATTAAGATTCATTAGTAAGCAACGATTATATTAATATAATTGTTTTTAGCAAT
GATTTTCCGTAATTTCCCAAATATGTTTCAGTTAATGTGTTCCAATCCCAACAACT
GGTTGTTGCAAAAGACCACCAACGCAAGCAATCATCAAACATCAAAATAATCTTAC
CTTAGCGAACAAACAATAACTACACAATTCTCATAAAGCTCTTATATATCACTAAC
TTCACACATTTTGTTTTCCACAAAAATAAAAACGGAACTCACTCAAGAAACCTTCT
TCCTTGAAGAGAGGGTT
SEQ ID NO: 45
Polynucleotide sequence PATGUT1_PATIRX10
AATAACAACCACTTAAGTTACTGCAAGTTACCACAAAGAAAAATGATCTAGCAA
ATGAGTAGCATCATATTGATCAAAGACACTGCAAGATAAAAGTCACCTTGCTAA
TGTTCGAGATAATGATAAAGTGTAGACTTGGAGCAAGAAGCCATTTAAACTAAC
AACTTCCTAATTGAGACCTTTCATGTAACTTAATGTCAAAATCACAAGCAACTA
GAGGAAGAAATAAAAATGTACCAGGTAGCTTCTTGGGCTTCCTCATGGGAACAA
ATTTGGCACCAATAGCCAACGCAATAGGAGGGCCAAAAATGAAACCTCTAGCTT
CAACACCTGCATTTACCACAACATCAATTTAGGCAGAACCAAAAATCATCCACC
AATTCATTTCAACTTTTCAGTTTAAGCTAAAGCACTCAGTATCTAAAAAGGCCA
AAAGAAACTAAATCCACAAGCTGTTAATCGATTGGAGTACCAAACAGAACCATA
CGAGTTGTTACCTGCAACAACAGATATGCCTTTATCTTTGTATCTATCAACAAA
CAAAGCAATAGTATCCTTAAAGGCCTCAGTGTCGAGAAGAAGCGTCGTTATGTC
CTGAAACATGATTCCTGCCAAGTATCCAAATTAAAACCTTAAGATCCCAACGCA
GATCAAGACTAGAGACGATATTAATCGGTATAAATGGAAAAAATGGAGACCTGG
TTTAGGGAAGTCGGGGATGACTCTAATGGAAGAGGCAATCTTAGCGATTCTGGG
ATCTTGCACATCTTCAGTCGCCATTTCACTGTCCCGACTGGCTGCTGCTTTAGC
AAAATACTCGGCGTCAGATTTGCAAACACAGAGAGACCCTAAAGACTCAATAGA
GAGACACAGTGATGAAAAAATGACCAATTTATCCCGAATGGTAACGCTTTGACG
GAATTGCCCCACGCAAGCAAAATATCTTTTTCAAAAGGAAACAAAAAGTTTAAA
AGGGAAATAGAAGGTGGTGGGGTCTACCGGCGGAGGAGAAGAGGCGGAGTGAGG
TGGTTGAACGGTGGTTTGAGAGGCGGATCGAAGGAGGAGCACGGTGGTGGTTGT
TGAGAAGACGGTTGCAAGGAACAGCACGAGCAAGACAGAGACGATGAGAAACAA
GTGGAGAAATTATTATTGTTTGCATTGTCTTTGGACTGAGAGATCTTAAAAGAG
AATGTAAATTACTTTAAACACGGAATAATGGACAAAAGCCGTGATCAATGACTT
TTCAAGTCTTAACCAAACCTATAACTCATCCATTGTTTGTTTTTTCTACATATT
TCTTCACATAAAATTGGATGATTTAGAATCTTTCAGAGTGTTCACACTCCAACA
GATTATTATCCACAATGTTATGGTTACATTTAGAGATATATAACAATGTTCATT
TCATCGTTGCTAATGACATAAAACGATCAAAAACTGAATCATAGTACTTCTTTT
ACAGTGATCTCAAATATATTAATCGCTAATCAATGAATTATGTCACCTATAATT
GTCGTATTACCAACAACTATAAAACATATATATAAAAAATTGTTGTCGTTAACT
AGTTGTTGATAGTGGCCACTCTAAAACGATCATGACCTACTACGGAAGTTATAA
CTAGTCAACGTTGGACGTTAGCAAGGCCCAATGGACATTAACTCAGCCCATAAT
AGCACGCGCCTTGTGATGTGCACCAGTTTCCGTCTTTGGTCGTTGAATTCAAGG
AAAAAAAAAGTACATCACAAGCAATTTCTTACTTATCTGTGACTTGAAGCTATT
TCTCCAATTTCGTTTTCCATCGACACTCTATTTCATTTTCACCATTCACGTCTT
CCTTCTGAATAAAATAAACCCTAAAACCTAATACCGAAGTAAACTCGTCAACCA
CTGCGCCCATGACCTCCCAACGATACTCTTCCCTTATATTCTTCCTCTTCCTTC
TTCCTTTCTGCGATCCAAACCTTCAAACACATCTCCGGTAGAT
SEQ ID NO: 46
Polynucleotide sequence PATIRX14
ACCTGCATCGAATTTATATAAATTTAAAACACATTATCATCATCTCTAACTTGAA
CTTTTAAACAAGTTTATCTTTTTGTTTCACAAAAAAAAACAAGTTTATCTTTATG
TCCCTCCTGAGACATATAAAACAAGATTATCTTTCTTCTTAGTAGGGATATAGCA
AGTCCGGACGAGATCAAAAGTAGATTGACTCTTAAGATCTTACTAAGTTTGAGCT
TGCTTTGGTTCCCACCTCTAAAAACCAGTTTTGCATAGTCTGAGACTCGTGTTAA
ATTCGATCAAATCTCTCTTTCAACGACGGTTAACTATGGACGTATTCGCAAAACA
TCACATAAAAACATCTCTAAAGTATTTGGCTATTTGCATAAATATTTCACTCTTA
CAGTCGTCAAAAGTATGAATGAACTCTACATATCGGCCCAATATGAACCAATTTG
TAAGACCATAATGGAAAGCCCATGTTTCTCTTGTGCTTGTTTTAGTTGCAGAATC
ATTAGTTCACATATTGACCGGATTATATTAGTTTTTAAAAACGCATGTATGATGT
AGTCACTGTATCATACCCAAGTTACTGTATTCATTACCCAAGTTCAAACTCGATA
AAATGCATAAACTAAACATACGTTCTTTAGCCTTTTGTTTTCACTTCAATTAACT
CATTTTGTGCGTTGTATATTTTTTTTCTTTCCAACAGCTACTTTTCTCACGTCTA
TATTTTTTACCGTTTGTGATTTTTGAGTCTCAAATATATGGAATTGTTTTTTTTA
AATGGCTACTTTCCAAAGTCTTATATTTTTTACCGTTGTAAATGTTCAGTTTCAG
ATATATATGGATTTCTTTTTCTAATGGCTACTTCTCTAACGTCTATATCTTTTAC
CGTTGTAAATTTTAAATTCTGAAATATATTACCGTTTGTGATTGAGTTCACTTGA
CACACCTTCGTTAAAAATTACACAACAAAAAGCGTTCACAATAAGCCCAATGGGC
CTAAAAGACCCTAACAATCGAACATACCCTTCTGACCAACACATTTTCTTAAGGA
GACACTGTTGGTCCATTTACTCATTTAAGTAGGATTCATAACACTTGTCATGGTC
GTCATTTCTTGTTCAAATGCCTTTTTAAGTAATAACGCAATGGAAGCATATATAT
ACTTTAAACCCACAAATTAATAATGCATATGTATCTATTTTTCTTGCATATACTA
AACATGTCTAAGTATGATATAAACTTTGACACTTTGGTGGTGCTGAGTAATCATC
ATATTTATGCTTTGTGTGCAAGTGAAAACGAACCGATAACAATCTTTAAGACTTC
CCTACCAAACCGGTTTAACCTTCACAACAAACAAACCTAGATCAATTATCTCTAA
ACCAAAACCCTTCAAACCATGTCTTTTGTCGGACCAAACTGTACTCTTATATATG
ACATGCAGATACGTCGTTTTCATGGGCCTTACTAATGGCCCATTAAAAACATTCG
TAATCAATTATTTTGGTTAGTCTTTCCCAAATTCGTCTACATTCCTCCTCGATAA
TCACTTTTAATTAAAACCATATGAATTTACGAAAAAAACAAAAACACAATTATCA
TTATGCAAAACATTTAATTCAATAAATTGAGGGATGTTTAATGTTAACACCAAAA
ATTATTACCAAAAATTGACTTCAATTAGAGACATATTAAAACGACCCTGATTTTA
CTCAAAACTTAATTGAAAGATTTAATTATCCAATAATAAAACGACACGTGTACCT
CCTTGTCGCTTTCCTCTGCTTTCTTCGATGGCGTTGCATCGAAGCATCAGAGAGA
TTGGTATGGTGGTGGTGGTGAGAGAGCAGCAACAACAGCAAGAAGAGAAAGCGAT
AATCGAACTGATTAAGATCGTGAAATCCAAGTAATCTCTGTTGCTTAATCTCAGA
TCTTTTTGATAAGGAGAAGGAAGCAGAAGAAAGAGGTCAACGAAGAAG
SEQ ID NO: 47
Polynucleotide sequence PATMYB46
GTTACACTAACGGTTTCTTGTTAGATTTAGCTGACGTGTCTTTATGAATATATAT
AGAGTTAAATTTTAATATTTTAAGAGTAGTATTACTTCATTAAAAGCTTAGTTGT
AAAATTACTAAAGATTTTCATATATTATAAACTATTTTTTCCTGGCAAACTTATA
TTATAAAATTTGTTGAGCGATTGTGTGATTCTTTCATCCACAATTAGATTAAAAA
AAATCGCAAAAAGTAATACAAGAAAAAATAATAATTTTACAAATTAATAATGATT
GTTTCTTTGGCTAAGAGTTCAGATTTGCAGAGTGTTTTTTGGTCCTTGGGCGATA
TTACGAAAAGTGAATTGTAAAGATATGTATAGATTGTGAGGAAAATGCGAGAATA
ACTGAGAGCTAGGGCTATGCATGAGATGATTGAAATATCATGAACCAAATGGTTA
GATGAGAGCTTGGAGTGAGAGGTGACACTTGTTTGAGATGGGGAATAGCGGATTA
ATGTGCTTGCATGACCTTGGTTCTGAATTTTCGATTGATGAAATCTTGCATTTCG
TTATTTTCAAACTTTGTCCACGAGTTTTACATAACTAGGTTCATTCAAGTTACAA
CTTAAATTGGTTAGCTGACGTCTTTTTTCATGCATATACAAGAGGTTGCATTTGC
AAGCTTCAAAAGAGATTACACCAAAAACAATTTCCCCTAAAGGTTAAGATATATC
TTTGGCCITCAATTCGACATTAGGAATTATGITCAAGATTCAAGATTCAGTACTA
TTCTAACTTCTTTTGTACTTTATCTATGGATGTCTTGTTTATGATTGTATAAAAA
GTTTTGTTTTTTCGGATGGGTGGGCTATTAATATTATAAATCATATAATATGAGT
GTTCTGTAAAAAAATAAAAATGATATGAGTGTAAATCGAGAACTTAAAAAATCAT
GACACACGTTTATATATTAAAGAAAAAACGAATATAAAATATATGGATAAAAGGA
GTATAACATTTTCTTCATTACAATAATTAGATTTCTTCAAGTATACGTGTTGGTG
CGCGAGAGGTGGTTGTGTGAAGCCGAAGCAAAACTTCTTGCTCGCTAAGCCTCAT
ATAACACAAAAAAAGGGTTCTGTGACACACGTCGATTTATTTTATACAATTGAAA
TATGCTTACATACGTATACAATTAATTAAATAACACAACATTTGCTTACCTTGAA
AATGAAGACATCTTTGAATAGAAATAGACATGCTCATGAATATATATATTAATGT
TATATACTATCATATATCAATGTTATATATCATATATATACACACGTAAGGTTAA
CGAATTAGATATGTCTGTAATGTATACCTTGTGAATGAAGAAACTAATAGAAATG
AGTTATATATTCAAAAAGAACAAGAAAAGAAGAAAATAAAATTAAGAACAAGTGA
AGAGCACTTCTCCTTTTTTTCTTTGATGTTTTGCATATCGGGTCTTTTTCAAAAC
CGTTTTCGTCCATGACCGATCAACTAACGTTTCTTCATTTCGTCAAATTAGTTAT
ATACAAAACATACATTTGTTGTTGGTGTATTTTATTTTATTTACCTTACACAATA
TATGCCGACAAAAAAAATGTGTTTAATTTGAAAAAGAGCCAGGGTTCGGATGTTT
TTCTTTTATGTTTTAAAACAAAGCAACACTATATTATAAATATAATATATACAAT
AAAAATATAATTAAGGAATAGAGATTAAAAAGGAAGAAGTGCAAATGGTTTTTCT
TCCCAGAATTGTAAGCAAACCATACAACCATCCCTTTCTCATCATCATCATTCTC
CCTTCATCAAGTCTTCTCTCTTTTCTCTCTCTATTATAAAACAAACTTCACTCGT
TCACATCAATGGATCCTTGAGAAAGACAAACAAATTGAAGAGAAATAATAACAAT
TAACTCAACCAAAAAT
SEQ ID NO: 48
Polynucleotide sequence PATMYB58
CAAAGACTAGAGACAGAGGCGTGCCAATAGCAACACGTTTGCTTTCGTCATGCA
AATTGGGATATTTCAACTTTCTTCCATTTTTTCAACCTAGTTTACTAAACTTTT
CTTTTTCCAGTGCGAACCTAATTGGTTCTAGTTAAAATAACATTTTCGTAAGTT
GTTCACCAAACAAAGGAACATATGATTATAACTTTACTAGAGATGCATGCACAA
TAATGCTATTGTCGAATAAATACTTATATCTTCTCCAAAAAAGTTTCTTTATTA
TGTTAGAAGATCCATCAATATACTAATTGATTTTTGGTTATATGTTTTGATTTA
AAGACAAAACTATACAGGACATGCATGTGAGAACAAAAATTGTTGTTGTTGTAG
TTGCTAGTTGAGTTTTATTTATGTTGCCAAAATAACACCATGTCAACTTTAATT
TTCGTCATATAATTTAACGTAAGCATGATGTGTTTCGTCATATCTTGTTTGGCA
TATGGAATATAAATCATACTATTGATTTGGAATCTTTAACTTAACTTCCTATTA
AGTAAGCGATTGATGCTGATATGTATGTTTCTTTAGATTGATGAACGTAATATT
AATCAGTAGTGGATATACATTGTATCTTTAGAATTTAGGTTAGTATATTATGGC
CAAAATGACTAAATTGAGTACCATAAACTAAAGTTAAAGTAGTGGTAAAAGCTT
ACGATATTGTTTTATAACAATTTTCAAAAAGTAAAAGATATATAAATGTTAGAG
GTTTTGGATAACCATATTGTTCTATAACATTTTAAACATATGTCATATATGTTT
CGTTTATAATATTTATGACTTGACCAAATAATTTGTGTATGTTATTTAAATCCA
AATATATATGAGAAATATATAGACGACATGATTAAAATTATTTAAAAGAGTCAT
GATGAGAGGGATGGAGACTAAAAAAAAGAGGAGAAAAAGATAGAACGTCGAGAA
ATGTTGTGTGTGTATAAAGTAAAGGAAAGCTAATTTGATCATTGTATTCGAAGA
AAACAAAAAAGTATACACATGTTACAGGGTTATAGGACCCATTTTCTTTAAAAT
AAATCCACTATGGACTGATGTACATATTTTTTCTTACTGTTCTTAAGCATGATT
TTATATGTATAATATGGTTATAGATTAGAATTTTATTCAGCCTTCCACGATTCT
TAACCCTAACCAGTCAATTTTTTCTTCCTTATAAATATGAGTGCCAATCGGAAG
GTGATAGCATCCTTACGTCTTGTTTGGTAGATTACTAAGTCAAGTTTTATTCAT
GAAATTTCCACTTATCAAACTTTCTCATTTTGTTAAAATTTAAAACCGTTTTTC
AAAAGTTGGTATAGCCATAGACAGAAAAAAATTATTACAATCCTATCTGATTTG
ACTCAGACACCCTAATTAGTCAAATCTCAAAATTAGCTAATATTAACTAACGAG
TTGCGCATTTTGCAGCAGTACAACAAAATTAGTCAAAATAATTTAGGATAACAG
CACTAATCACAGGAACAGGTATTTTTTTTTTTCCTTTCTTTTGACATCATAAAG
ATGGATTCAACTTATAGATTGGTCAGAGGCAATCTTTATAGGTTTCATGATTGA
ATAAAAAATATGAGACTCAGTATCTAAGTTTCAAACATGTTTCATCTGTGTTTA
GTTGATTACATTTTCATAATAGTTTATTAATGACATATAGAAATGCGAACTATA
CAATTATAAAAAAGATGTGAATTTTGCCAGATACTCATCCACAATATAGACAAG
TTTTTAACCTCAACAAATCTGATGTGACATTTGTCAATGTCTGTGGTTTATAAC
ATGTTTCTCAATGTCAGGATCACACACACCACTTCTCATGTATAAATACACATA
AAAGCAATTGGATTTGGTAAGAGGGAATCTCAAAAGTGTGTGTCTGTGAGAGAG
GAGAGAGAGAAT
SEQ ID NO: 49
Polynucleotide sequence PATMYB63
GTTGATATATATTAATATGTGTCCCTATTATGATCACACAAAACATACACATGCA
GAGCTTTATTCCAATAGCTAAAATCTGAACTTTAAAGTCAGTACACTCGAAATTG
ATATTGACGTATGTATTACTAATAGCAACATGTGTTCTTTCATCATAAGTTTACA
TAATTTTTTAATTTTATTCTACTTAATTAATGTCACAGTTTCCATCGTTTTGATA
AGGTCCATACTCCATAGGGACGTTGAAAATTTAATTTAATTTTTTCCACTCATAG
TTGTCCTTTTTTTCTTAGTAAAGTTTGGGAAAGTTTTCCCACTCATACTTGTTTG
TTCACCAACCTTCTGATTACCAAGAGTCGTATAAAAATGCAAAACTAATAGATCG
TCATTTATATATGTTGCTCCTATAGACTTTTATCGACAAAATTTTCCGAATTAAT
CATTTTGTAACTTCAATACATATACGTCCAGATATTTACCCTAGTGAAAAATATT
TCTTCTTTTTCAAACCTCTTTTCCTCTCTATTCCTCCTAAGAGCTTGTTAACGTA
ACAAAATTGTTGGGTTTATTAACTTCAATTATTGTCGATACTTAGTACTTTAAAA
TATTTGGAGTAATAGATGTAGTGATGGCTGTGTCGTAATTGCTTGAATAATTTTG
GATGGGTACAGAGGAATTAATTAAGTAATGAAGGTTTGGTGGAATTAAGTAATTA
ACGTAGCCAAGAGCCAACAACAACACCAAACCCACCAAACATTAAAAAAGTCAAA
AAGACGTAAGTCTTTGACCTCTTCCACTCTCTTTGGTCTTTAGTTTGGTGAGTTC
GTGCACTATGCTCACACACACTCCTTACGCCTTTTGGTGTTTTCGGATGTGATTA
GAAATGACTTTTTAACAGTTTTTTTTTTTTTCTGTCTCTCATTTTAATGTTATAT
TTAAGGATTATATATATTTCTGCTTTTTTGTATACAAAATATGAAAATATTCCAT
GGAGTGACGTATGGAGTGACTGCGTACTTAGTAAAACAGCATTATTAGTGAGAGT
TCATTTTTCTCGTGTTACACTGTATCTACATGATGATCACGGGACTATCTATTAT
TCAAAAGTTGGTAATTATACACTGAGCCTGATTACAGAAGACTCGCAGACAAAAA
CTAATATAATCAATTCCTCCTATGTATACCTTAAGCTAATTCTTAATTAACAAGT
TGCAGATTTACAATCTTATTTTAGTCAAAACACTACCTAATATTTTGCCACTTTA
TAACTATATATTCTTACTCCTCCAAAGTATTTTTATTAAGAAATACATAAAACTC
TTATCATTACCGCTGTAAATTCCTAAGACCATTTCAATTAACACTCGTCGACATG
TAGTAGTTTCTTACATTAGCGAAATTTATTTCAGACAATTTTATAAGATATGTCA
AATCTGATAATATTTTTAACACGAGATGCTAGTTTCCATTATTACTTGATGTCAA
AAAAGAAGAAAATATTATTTAAGGATTTTGGTTTCTAAAAACGAATGTGAAATAT
TCATGCATCGGTGTTAGAAGGAAAGATAAGTTGCATGCATCATAAGGATGCCAAA
TGAAGTAAAAATGAGAAAATGGAATCATACCAAATAATCAACCATACCACAGACA
GACAACCTTTTCCCACTCAACAAATCTGATTTGACATTTATCAATTCCTCTGTTT
ACATATTCATCTTTTCTCATGTCAAGATCACACACTCTTACCTCTCATATATATA
AAACAGAACCAAATTATCTTTGGTAAAAGTGAATCTCATCAGGAACTGAGTGATA
TAAAGTTATATATATAGAGGAGAGAGGGAGTGAGAGGGAGTGAGAGAGAGAGA
SEQ ID NO: 50
Polynucleotide sequence PATMYB83
TTTGATACAGCAACAGAAAAAAAATAAAAATACAGAAGAACATTAAGAATGATC
TTCTACCATCTGAGAATGGCAAATCCAGAAAGGATGAGAGAAGAGATGATCATG
ATAATAGACATTCCTGGGAAACAAGAGGCTCCTGTCTGTGACTCTGAATCGTAC
TGTGCGGAGGCGGTAAAGACAGAGGAGAGCGTCATTGTGGCGAAAACAGCCATC
GCTGTGTATTGATTGTAGCCAGAAGCCATGTTTACTAAATTTGACCCTCTCAAA
ACCAATTATGTCACCTTTGGCTTTGGCTTTACCAATGTTGTTGTTTTATAGGGA
AAGAAGAAGTTCGTGGGGACGTGAAGAGCATAAGGTTAATGCTCATTTCATAAA
ACCCCACTTTCTGTTTGTTGGTCAACGATTGTTATTGTAATGACTAATGACCTA
TAGAACAAAACCCATCTAACATGAATCTTCTTTTAAATGGATTTGGTGAAAAGA
CCAAGTTTTAAAATCATCATACGTGCGATGAAAGAATACCCAATTTGAAGCATG
AGCCCAATGATAGTTTATAGGCCCAAATAATTTTGATTTATAGTCACAGACAGG
ACAGGAGCCTCTTGTTTTATGAGTTGAATTGGGCCGAAGATGATACAATATAAA
GCATGAGACCAATAGAGGACTGACCAGTTTCTTACCTTCGTTCGTCGAAGAATC
GAACAGTCCCTTAATTTTTCCAGATTCAGATTAATAGCCTATGTATCATCTGTT
TGGATGTGTTAGGCTCTTTTGAATTTCTTAAAATTAGTCTAGATTTTGATTTGT
GATATCCTTGTTATACAAAATTTGAATTTTTCAGAAAATTCATACTTAATTTCA
TGGTAGACTTGTCGAACACTGTGATTTGTTTGGGAAAAAAAAGGTTTAGTTTAT
ATTCATTACGTACGTGATGCATGATGCTTAGTATGCATTAAGATAGAGTATATG
ATCCGTGCTCCATCATTACTTGCTATTATCGATCGATACTTACTATTATTGATC
CTTAAAAGCTGATTTTTGCATGCGCATTATTTTCAATATGCTATTTTGAAAATA
TTTTTTGATGATGATGATTGTTTTATTTCGGTTATAAGTTATAAACGGACTCGT
TTTTGTGATTGAATTATGGGCTTTTGATATCACATCAAATGTTATTTATGTGGA
AATGAATTGAGAAAAAATGATGATTTTATCTTGCACCTATTCTTAAGTTTGGCT
TTGATGTGTTTGGCTTTTGATGCTATATTTCTGTCAAAGAATCCTGAATTTATT
TATTTATTTAGATTCGGTTGATTGTGTCGTAAAATGGAAGTTACTTCAAAATAA
GCCTCCTTGCAAGAGTATATATACTATATTACTTTTAGATAGTGAAAATTGGTT
ATTAGTTGTCGTTTAGAAAGAAGGAAATTTTAAGAAAAAATACTGATCGTAAAC
TATAACCAATGTATGTATTAGTATACTTTGATACTTCAAACACACGTGTGTGGT
GCGGGGATGAGACAGAGAAAGAGGTTGGTCTTGTTCTTGTCTTTGACTCTAAAC
CAGTCTTTTTCGATACATTTTTCTTCACTCACAAGTCTATCATCATGTTTCTAA
CGAAGACATTTATTTTATTTATATTTTGTAACAAAAAAATGAAGACCCACCTCT
TGCTTCTTCTTCACATCCCCATTTCATCTTCTCTCTGTCTCTCTCTATTAGAGA
CTCTCTCTACTCTACCCATCAATCTCAACAAACACTACTTTCTATCTCTTTCTC
TCTTTGTCATATCCATTACGCATATTCGTATCATTCCAAAGCAATCCCCACAAA
TCATATCATCCTCTCCATCTTTCCTTGCTTCTTACAATCTCTCCAATTTCAAAT
CTGTATACTCTTCTTCAAAAAGGCTCCACCAGTCCAAA
SEQ ID NO: 51
Polynucleotide sequence PATMYB85
CTTAGCATACAATCTTTAATTTTTCATGGAAGATTTTTAAAACATTTCCGATCC
GATTAAACAAAGAAGCGAGCGAGCCACATTCTGACAATAATTAAGTAGACACTA
TGATACGACGAAGAATATTAATTTAATATTGAAAGATAGATCAATTTGTAGCAA
AACCATGAAGCCAAAATTGCAAGTCACCCACAAGTCGCAAAGATTAGAAACATA
TATTGATACAGTGATCTATACGTGTACACCATGTGTCAAATGGATATTCGTCTA
TTATTTTTCGTATCGGCGACAAAGTATTTTGTGCGGCAATTCATTATTGAAGCT
TTTACTAAGTTTCTTCTATGTTATGTAAAAAACAAATCTTACCAAAATTAGAGA
CTCGTATATAATATACTTAATAGGTTTGTTAGGGTTGCCAAAAAAAATGGTTTA
TCGCAATGGACTAAAGATCTCAATTCTCAAAACTTATCGGATTTTGCCATAGTT
GAACCGGACCAAGCCAATTATTTGAGATTCTGAAAAGAGTATTATTATGGGCAA
ATTCTGAATATTTTATGTAAAATCGGTTTTGTAAAGACTGGATCATATTTTTAT
TCGTGTTTATTTCACAGCTGATAGCGACAACAATGAAAAATTCATTTTTTTTGT
GTGTGTCATCAACTATTAGAGTCGGTGATTTATATACAGTTTTGGTGACAGAAT
AAGTGCCTACAACTTAAAACTACACTAGTTTTAGTTATCAAGATCCTTAGTACT
TAATGTTGAAATTAATACATTTTTTAATAAATAAATACAAAGTATATATTTATT
TGAAACTTGAGCAAGTATTTGAGTAAAAAAGGTATGAATCGCACGTGTGATTGC
GTACATTCGCACGCATCCTATCCTTTCACATTAGTTCCAAAGTCATTTTCACCA
ACCAAATGCGACATCTCCAATACTCCTTTCTATGATCCTACTAGCAACAGATTT
GACAAAGTAAGACAAATTATATTTCTTAACCTTAATCATTTCTGACCAAAAAAA
ACCTGAATCATTATTTATTAGAATAATCTTATTTTATCAGAATTCGTAATTCTT
TAGCTGACTAACTCCTAATTAAAATGAACCATTCAATATAAAAATATAAACGAA
CGTATTATGTATAAAGTCAGATACAGAAGATCTTCTTTGAAACTGTTGTAATTT
CCCCATCATGACACCTGTATATACATACGTACCTTAAAAAAATTCTGATCTATA
TGTACTTTTGTATGAACGAGTAATGCATAATTCTTATTTAGATTAGACATTCTT
TAATGATAAAATAGTGAAGACGGGTATTATACATATATTAAGTCACTATTAGGG
TGATTAATTGTATTTATATACCAAGAAATCTCTAAGTGACAACATTATGAGGGT
GATTAGTAGTCCGTACTGTTTTTCATTCTAACCAATCACATAAAAGAATACTAA
AAGCGACAAAAAAAACTATTATCAGCTTTTTATACCATTTTATATGTTCGTTAT
TTATACCGTTTTTAATTATTTATATGTTATCAATTACTTTTTTCATATCGACAA
AAGATTTTATAATTTTTTGTGTTACCAATCGAACCATGTATATATATATAACCG
TTACTAGTTAAAATGCTTTGCCATAATGCCACTAGAATTTTTAATAAAAGTTAC
TAAAACAATTTCGAAAATATTAAGATGTAAAGTTATTTTTTCCTGAAACCAATT
GTGGGGGAAAGGTGTGAGAAGGTTATATATAGGTGGGTGAGCTTTGGTAAGCTT
TTGACATAACTTGCAAGCTGTTGAGATTTTCCATCCTCGATAACTTTATTCTTC
CATATCTCTTCCATTTCGCTCTCTATTTCACATCCCCATATAACATAATATACA
ATCACACATATCATTTCTATATAGTATTTA
SEQ ID NO: 52
Polynucleotide sequence PATMYB103
TGGTGCCCTGGTCTACAGTTCCCTAGTTAAGATTCTATTTTGACAACAAAATTGA
GTATTCCAATCATCCATATTTGTTATAGGGAGAAATTGAGCATGCTATATACGGT
GATATATATGATATTTATTTAATATATTGAATAACAAACACAGAACTAGTGTTAT
AGGTGCAGGTATGTAAATATAATGTGATAAACATTTTTTATATAGATTGGAAAGA
ATACGAGATTGTTGTTGCTCTGTTAGAACGAACAAACAGAACTAGTGTTATAGGT
GCAGGTAAGGTAAATATAATGTGATAAACATTTTTTATATAGATTGGAACAAATA
AACATTTTTCTGTTAGAACGAACAAAGGCCTGTCAAAAAGAACAAACCTGATGTG
ACATATTACATATATGATTATAATTGATTATTGTATATATAGTATTGCATGACTA
TCTTTACAAGATTTCAATACGAAAATAAATTAAAAGGAGAAAATTTATAAACGAA
GCGATTTCATTCTCGGTAAGGTTTTCCGATATGTCTCCTAACTAAATCAAAGCCT
TGTAATTGAAACTTGTAATGATTGTTATTCTATATATCTTTGAAGAAAGCTTCGG
TATTGGACGTACTTAATATAATTGGATTTTATTTAAATTACAAAAATCACTGTAT
AATTCGGCTACATGACTTAATCAATTATTTCACGTTGAAAACAATACTATATCAA
CTTCAAATACACTCCTTGTGTATGGATTCCACAAGTTCTTTTCTATCTATAGAAA
TATAGAATCCACAAGTTCTATCTACTTTTATTAGAATTTTTTATTGTTCGTTGTT
GTTAACATAATTATAAGCAATAAATTCAAAAAAAAAAAAATCTAAAAGACACAAA
ATTTCCATCTTTGATAGGGCTTCGGAATCATTAATTACTTTTTACAAACAAAAAA
GAAGAAGATAGGGCTTCGGAAATTATTAGAAAGATGGAAGGATATTGTATTAAAT
TTGGCTTCATATTTTCCTTTGGTTTGCGGCCATCAAGTACTAGTACTACTCAGTA
CCCACAGGCCACAGGAAAAAAAGTAGTACTGCTTTATTAAGTGTGTTACGATAAA
TGGAAAGCGTTTTAGTATGTGATTACAAATTGTTGTATGTGATCATTAATTAGTT
ATTGGTCCGACTTCTAAGTTTAAATATTTTCAGAATTCAGTTAGTTTAATTATAC
ATGTTAGACGAAATGACTCTTTTTGAGCCAATATATAATGTATCTGAATTTTTCA
TTTTGAAAAATCTTTTTATAAAATAATAGGTCAACCTCGAATTATTATAATAAAA
TAAATAATTTGCGTTACTATGAAAATTAATTTACTGAATACAGTATATAGAGAGA
GATAGAAATAGAGGAAAACAGTGGATAATACATGATTAGTTGATACTCATGTGCA
GCGAGTCTATATATATTATATACTCATGATTAGTTGATACATATGTGACGATTAG
TTCTACGAATCAATCTCTAGTTTTCGTCTTAAAATCATTTGGTTTTATAGAATAT
AAGAAACAAAGAAAACAGGAACTTTCGCGGGAGACAGAAGGGTACGTGAAGAGAA
AAACACATAAAAGTGATAAGGGCTTAACGTAATAATACTACAACAAAACCTCTCT
ACGTACAACGAGTAATAACACATGAAAATAGAAAGTCGATGAGACATCGTTTTAA
GGTTAGATCGATGAAGAAATATCTCAGGCCCCACCCCTGGGACCCGACCCGACCC
GACCCGACCCGACCTTTGTCTCCTCTCCTTTTAAAAACTCTCCATTGCTTCTTTG
TCTTCTCTCTTCTATAACATAACTCAAGAAATTAAAGAAGATAGATAGAGAGAGA
GAGAGAGAGTAAAAACCTAAAGGGTGATATACTTATATAAAAATTAATTTAAGAT
TGTGATTAAGTGGTTCACTATATTTAAGTTACTTTGAGGAGCTACTAATC
SEQ ID NO: 53
Polynucleotide sequence PATCADC
AAAGCAAATCGATCTGCCAAACATATCACAGCTCTTGGAGAAAATGCAGGTCTC
TTCAGACTCTGATATTTCGGATCTCGATAGCCTTAAATTCGATGCTCCATTGCC
TAGTCATATGCAACTAAGCTTTAATTTGTTGAAATCTAGAGTCGAAACTTGTGA
CAAAAATTAGATTTTTTTTCTTACCGAGCTTTCTTCTTTGTGTTCATTGAGGCC
CAAGTATTTGTGTATTTGGACCTGAATATTCTCATACAAAGATAAATAATTATA
ATTAAATGATTTTTCGCATATAATCATTATTGTGGTATGATTAACACAGTTGGT
GTGATGACTGATTGACACAATAATCACCGTTTGGATTCGATTCCTTTAATACTT
GTCACTAGAGTTGTTTGACTAAACAGCTAACTTGTCACTAGAGTTATTGTGTTT
GTATTTTGATCTGTTATTAATCTGATTGGGTATAATTACAGATAGAGAGACATC
TATATTGTAATTAAGACAATCTTAAAGTGTAAACTAAAAAGATCTCTCTGACCT
CTGGAAAACGAAAGGTGGGTGACACATCACTCTAGCTATGAATATGATGAATAT
TCAGTACCTAACCGAACAAAGACTGGTTTGGTATTTTTATTGGAAAAAAGAGAT
AAATAATTGTGAATGTGAATTATCCTGTCTGAAAGGTAAGCTGATGACATGGCG
TTATATGATTGGACGAGCTTCAGAACAAAAGAGTAGCGTCGAATCGAATCTTTA
CCTACTACACTTTGAACTTTGAAGTACATTACCTACTTCCTCCTTGATCGAACG
TCTTTTCTCAAAACTATTTTATTTCCCCAATTAAAGTAGTGGTGATAAATTCAC
AAAAATACAAACACTTTTATTTTTGACGTCAAAAACAAATACTTCTTTGAACAG
GCTATTACAATATTTTTAAGAAAAAAGTAAGCAAAATAGTCCACAAACCAAAAT
CTGTAACATATTAAACGATTTATGTTTTTTTTTTTTTTTCTTAACTAGAGAACA
ATTCGGGCTTTTACTAAGGATGATGAGTGTAGTTACCGAATAGTGTATTCATAT
AATCTTTTAATGAGCTTAAGATATGATATTATTTCGACTAATCAGATAAGAGTA
GTTAGATAATTTCGTAATAGAGCAACTCTTTCGCAAATAAAACCATTGTAAACA
TTACCAATTAGTTTTTCTTTTTTTTTGGTCACAACCAATTAGTTTGTTTGTTCT
ATTTTATGAAGTGCGTATTAAAGCTAACGTGTTTACAGTAACGCCACACAAATA
AAAATAAAAATAATTATGTACTTTATGGATTTATAGAAAAAACAAGAATAGTCA
CCAAAAATTGATTGTGTCATATATCTTTTGTCAACTATTTTATCTTATTTTTCT
ATGGATATGTATGTCCAAAATGTTAGACAAAAAACCAAAAAATCATGTCCAAAA
TTTCGTTAGGCTGCCGATATCTCTGTTTCCCTTTCAACGACTATCTATTTAATT
ACCGTCGTCCACATTGTTTTTAATATCTTTATTCGAGGTTGGTTTAGTTTTTTT
TACCAAACTCACTTTGCTACGTTTTTGCCTTTTTGGTATGGTTGTATTTGTACC
ACCGGGAAAAAAAAGATAAGAGGTTTGGTTGGTCGAGCTTACTGATTAAAAAAT
ATACACGTCCACCAAATATTAAAACAATATATCCCATTTTTCCTCCTCTCTTTT
GGTATTACATTAATATTTTATTATTTCCCCATTTGCTCTGTATATATAAACATA
TGTCAATAGAGTGCCTCTACAGTCATGTTTCCATAGACATAATCTCTCACCATT
GTTTTTCTCTGCAAAACTAAAGAAACAAAAAAAGAAAAATCGGAGAAACCAAGA
AAAAAGAA
SEQ ID NO: 54
Polynucleotide sequence PATCADD
GCTTCGGTGATGCATTTCTCCTTCTCATCAATCATCCTAGCAATGTTTTGAAGC
TGAGAAATTCTCCACTCGTAGCTCTTCGTTCTGCCAGAGTTGAAGTTGCTTCTG
AGCTCATCTACAAGCAAAGCTGCTTCTTTTCCACTAAAGTCTGATGCTTGCTCC
TTTACCACAGCAGATAGTGTTGCATAACAAGTACTGATTCAAGACACCAAAACC
GCAATGTGAGAGACTTTAAGACTAAAAATCATGGATAAGACTAAAAAAACATGG
ATAAGTATCAACTGTTCTCACGATTATTTATTCATACCACTGTACTTAAACTTA
AAACCCACTATACTAAATAGAAAGGTAATCATCAAAAAATCAGTATGTAAAAAC
CACTTTTGTGAATAAAATATGTAAAATGGGTGAATAAAGAAATGTGCTTACAAT
TTCAACCGATAAGGGATACAAGCATTGCTGCAATATCCACCACCACCACGACGA
GATATCCGAAAAGGTGAAGTTGCAACATTTAATCTGCAACAAAAGAGGCCATTC
ATTAAAATGGTACTAATTAGATCTAATCATATCATATTGAATGACCAAATCATT
CACAGAAGCATCCATTGCTCCAATTAACATTCTAGACCAAATTCAACTTAAAGG
TAACTCTTTTATACAGGAAACCGAGAAACCGAAAACGCAATTCACATAAAAAGG
AAGGCTTGTTTGGAGAAGCAGAATCGAACAAGTCAATCTCAAACCCTGATGAGC
AGGTTTTTCAAGTTACCTGGCAGGAGAAAAACCCTTGGCAAAACAAAGGGTTTG
AATATGATTAATCTCTAGAAGCTTCGTCATGACTTGGGTTCAGTTAAAAATCTC
AAATTGGAGACATTATTGGTGTTTATATATTTGAGAGAGAGAGCCAGAGAGGAG
ACGTTGAATTGAATGAAGGGTGTGGTCGGAAGAGAAGACGTGTAGAAGAGACGA
GACAAGTAAATTTAAGCATTGGCCCCATTTACAGCCACAAGTCCGCTACAACAA
ATTATTTCCAAGAAACTCTGAGATAACGTCGTGATGAAACGGCTCATGCTGCTG
TTGTGATTCGTGAATTAGAGGTTTATCTTTTGGGTTTTTGAATGTTACTTAATT
GGACGGTCGATTTTTCAAACTGGGTGTGAAATGTGAATGGGTCATTCATAATGG
GCTTTTGTTTTAATGTGAAGCCATTCACACACTCTTTGTCCTTCTTTTCTATTA
TTCATAACTGTCACTCTTTGTTCTTCGAAATAGTAAAGAGCAAATCGATTCTTT
GTTGATCTGGGCCGTAAAATTTCCATGGTTGTGGGAAGTATTCTCGCAGCTGAT
CTGGGCCGTCAATGCTACAGTTTCATGTCAGAGAGAGGTCAAGAATCAACACGT
GGCCAACCATGATTTTAAACCAAAGCAAACACACGATTAGACCCCACATTGTTT
GTTCACCAACCCCCGTGGACCCTCCTTTAGCCGACGTGTCCACGTCAATAGTGG
TTTTTCTTCCTTTCAAAGTACACAAATTCCATTCTTTCTCATTTTACTTTTTGG
ATTACGTTGTTGTTATAAACTGGTAAAATGAATTATGAATGCAAATAAATTTCA
TTTAAGTTTTGTIGGCTICTAATATTTTTTTCACCTAAAATTCTAATAAACTAC
ACAGCCATGAGCCATCGTATGAAAAGAAGAAGAAAAAAAATGTCTTTTTCTAGA
AGGATCTTTCAACGACTAAAAAAGATTTTAAGCTTTTGACTAATTTTGTCAATA
ATATACACAAATTTACACTCAATTATAGCCATCAAATGTGTGCTATGCAGAAAC
ACCAATTATTTCATCACACATACGCATACGTTACGTTTCCAACTTTCTCTATAT
ATATATATAGTAATACACACACATAAACAGCAAAAGCGTGAAAGCAGCAGATCA
AGATAAGAAAGAAGAAAGAATCATCAAAAA
SEQ ID NO: 55
Polynucleotide sequence PATPAL1
TTTTCCCAATGATACAACTATAAATCAAAAAGAAAAAATGTACTGATAAACGAA
ACTAAACGTATAAATTAATATATTTCTTGACATAAATAGGAGGCTTTTGCCTGC
TAGTCTGCTACGATGGAAGGAAAAATGCATGCACACATGACACATGCAAAATGT
TTCAATGAAGACGCATTGCCCAATTAACCAACACACCACTTCTTCCATTCCACC
CATATTATTTATTTCTACCATTTTCTTTAATTTATTGTTTTTTCTTTGATTCAT
ACACTGTTTATGACTATTACATTTTCCCTTTCGACTAATATTAACGCGTTTAAA
CCAAAGAATGGATTTGATAATGAAATTTTATTTTATTAGCATATAGATAATGGA
TGGCTTCATGCTTGGTTTCCATGACAAGGAATGACACAAGATAATTATTTTGAA
TAAAATCATAAATATGATAATACTAGTTGTAAAAAAACTTGAGTGTTTCGTGTG
TTATTTTTCGGTTTCTTGACTTTTTATATTTCTCGTTTTTGTAATTTTAGGATG
GATTATTTAGCTTGCTTTTCTCTTTTATTACTTTCTAAAATTTTATTTATAAAC
TCATTTTTAATATATTGACAATCAATAAATGAGTTATCTTTTAATTAATAAAAA
ATTTGTAAACTCTTGTAAACAGATCATAGTCACTAAAAGCTATTATAAGTTATT
TGTAGCTATATTTTTTTATTTCATGAACTTAGGATAAGATACGAAAATGGAGGT
TATATTTACATAAATGTCACCACATTGCCTTTGTCATGCAAACGGCGTGTTGCG
TCACTCGCCTCCTATTGGGAATCTTATAATCGCGTGAATATTATTAGAGTTTGC
GATATTTCCACGTAATAGTTATCTTTCACAAATTTTATACTCAATTACAAAATC
AACGAAAATGTACATTTGTATCTTTAACTATTTACGTTTTTTTTACGTATCAAC
TTTCAGTTATATGTTTTGGATAATATATTTTTTTACTTTTGACTTTTCAGTTTT
CACCTAATGATTGGGATATACATATGCATGCATAGTTCCCATTATTTAAATGTA
AGCTAAGTGCATATGAACTGTTAGTCAAAATTACGAAGTTTATTTGTACATATA
TATAGTTATAACAAAATGGTACAGTAAATTAAACAGAACATCAAGAAAGTACAA
AAGACTGAACACAATAATTTACATGAAAACAAAACACTTAAAAAATCATCCGAT
AAAATCGAAATGATATCCCAAATGACAAAAATAACAATATAGAAAATACAAAAA
CAAAAACAAAATATGAAAGAGTGTTATGGTGGGGACGTTAATTGACTCAATTAC
GTTCATACATTATACACACCTACTCCCATCACAATGAAACGCTTTACTCCAAAA
AAAAAAAAAAAACCACTCTTCAAAAAATCTCGTAGTCTCACCAACCGCGAAATG
CAACTATCGTCAGCCACCAGCCACGACCACTTTTACCACCGTGACGTTGACGAA
AACCAAAGAAATTCACCACCGTGTTAAAATCAAATTAAAAATAACTCTCTTTTT
GCGACTTAAACCAAATCCACGAATTATAATCTCCACCACTAAAATCCATCACTC
ACTCTCCATCTAACGGTCATCATTAATTCTCAACCAACTCCTTCTTTCTCACTA
ATTTTCATTTTTTCTATAATCTTTATATGGAAGAAAAAAAGAAACTAGCTATCT
CTATACGCTTACCTACCAACAAACACTACCACCTTATTTAAACCACCCTTCATT
CATCTAATTTTCCTCAGGAACAAATACAATTCCTTAACCAACAATATTACAAAT
AAGCTCCTATCTTCTTTCTTTCTTTTAGAGATCTTGTAATCTCCTCTTAGTTAA
TCTTCTATTGTAAAACTAAGATCAAAAGTCTAA
SEQ ID NO: 56
Polynucleotide sequence PATPAL2
TTTCCCTGTTTTTTTTCCCCTCTTTCTGTTTCCCATTTGAAAGTAAAAGATCATTT
AAGCACCTAACTCAATTTTATTTTATTTTAAACACCTAATGTCATGCTCCTTGGCT
CCTTGTAATTAGTTGATCGTTTCAATTTAGACCAGCAAAACATTTTAGTATGTTCG
TAAATATTGCGTACATGCCATTTCGTTTGTCATGCAAACGGTGTGTGTTTCTTTAC
TTAGCTTCTAGTTGGTGTATATTGCGTCGCATTAATATCGGTTTACCTTCCTCCTG
TCTACGTAATGATATATTCTCCACCACAAATTTAAATTCTTATTGAAATTTCCTAA
TTTTTTAGGTAGCTCAAGGTCTCAAGTATACTACGTACCCTATTTTTTTGAATATC
TATCTATATTATAACAAGAGTTTTTCTGAGCTAGTTAATGAGATGACAATATTCTA
CATAAATAAATGACCCTCGAAAGTTTCAAGTACTTTAGGATCTGACCAAATCGGGG
TAAAACATTTTGAAACTAATTACGTTCACATCTACCATCGATGATTGACAAGCTTA
TTGTCACCTTTTATGTTAAAGTGACATGGTCTTGACGTTAATTTGCATGTTATTCT
ACATCTATAGTCCAAAGATAGCAAACCAAAGAAAAAAATTGTCACAGAGGGTTCAA
TGTTACTTAGATAGAAATGGTTCTTTACAATAATAAATTTATGTTCCATTCTTCAT
GGACCGATGGTATATATATGACTATATATATGTTACAAGAAAAACAAAAACTTATA
TTTTCTAAATATGTCTTCATCCATGTCACTAGCTCATTGTGTATACATTTACTTGC
TTCTTTTTGTTCTATTTCATTTCCTCTAACAAATTATTCCTTATATTTTGTGATGT
ACTGAATTATTATGAAAAAAAACCTTTACACTTGATAGAGAAGCATATTTGGAAAC
GTATATAATTTGTTTAATTGGAGTCACCAAAATTATACAAATCTTGTAATATCATT
AACATAATAGCAAACTAATTAAATATATGTTTTGAGGTCAAATGTTCGGTTTAGTG
TTGAAACTGAAAAAAATTATTGGTTAATAAAATTTCAAATAAAAGGACAGGTCTTT
CTCACCAAAACAAATTTCAAGTATAGATAAGAAAAATATAATAAGATAAACAATTC
ATGCTGGTTTGGTTCGACTTCAACTAGTTAGTTGTATAAGAATATATTTTTTTAAT
ACATTTTTTTAGCAACTTTTGTTTTTGATACATATAAACAAATATTCACAATAAAA
CCAAACTACAAATAGCAACTAAAATAATTTTTTGAAAACGAAATTAGTGGGGACGA
CCTTGAATTGACTGAACTACATTCCTACGTTCCACAACTACTCCCATTTCATTCCC
AAACCATAATCAATCACTCGTATAAACATTTTTGTCTCCAAAAAGTCTCACCAACC
GCAAAACGCTTATTAGTTATTACCTTCTCAATTCCTCAGCCACCAGCCACGACTAC
CTTTTCGATGCTTGAGGTTGATATTTGACGGAACACACAAATTTAACCAAACCAAA
CCAAAACCAAACGCGTTTTAAATCTAAAAACTAATTGACAAACTCTTTTTGCGACT
CAAACCAAATTCACGTTTTCCATTATCCACCATTAGATCACCAATCTTCATCCAAC
TGGTCATCATTAAACTCTCACCCACCCCTCATACTTCACTTTTTTCTCCAAAAAAT
CAAAACTTGTGTTCTCTCTTCTCTCTTCTCTTGTCCTTACCTAACAACAACACTAA
CATTGTCCTTCTTATTTAAACGTCTCTTCTCTCTTCTTCCTCCTCAGAAAACCAAA
AACCACCAACAATTCAAACTCTCTCTTTCTCCTTTCACCAAACAATACAAGAGATC
TGATCTCATTCACCTAAACACAACTTCTTGAAAACCA
SEQ ID NO: 57
Polynucleotide sequence PATC3H
ATCGTAAGTTTTTTTGTGTGTGTGTTAACAATGTACTCACTACTCACTGTTCCAT
ATTTTTGATGTACGTATATCGAAAACATTCTGCCAACAAATGCAAACATAACAAA
AGTCAAAAACAATAACATAACCGGGAATTAAACCAAAATGTAATTGCTTTTTATT
AGTGTCAGGCCTTCTGCTTAAAAATATTCTCGGCCCAGAGCCCATTAACACCTAT
CTCAATTCATATTGAAGAAAATGACTATATTACTTGACAAAAACTTTAGTCAGAA
AAATATGGAATCTCTTTCGGTACTGCTAAGTGCTAACCTTAAATAGTATAGAATT
CTTAGTTCATTCTCAAAAACATAGCTATATGTAGATTATAAAAGTTCGATATTAT
TTCCTGCAAAAGATGTTATAATGTTACAACTTACAAGAAAATGATGTATATGTAG
ATTTTATAAACTGGTACCGTAATTCATAAAAGATGGTGGTGGGTATGTATCAGTA
ACGGAACTTACATATGCGTGTGTATTACTATGTCTATATGGTGTATTCCTTTGTG
TGGAACAATGCACGTCAGAGTTGTTTATTTTCTTATAGAATTTAAGGAATCAATT
ATTGGATTTCTCAAGGTGAAAGTGGACTTCTTTGCACGCAAGGTCTAGTTGCCGA
CTTGCCGTTGCATGTAACATGATTGTTGAAATAAAGTGAATTGAGAGAAGTTTGG
CCAGACATTTTAAATTTAACCCAAAAAAAGTAGGGCCTAACACAAAATATAACCT
CTCTTTGTTCAAAGGAAATAACACCTACGTCTTATAATTGAACCAAACATTGAAT
CATTGAACTCACCTATAATAATTATAATAACACGAATTCACAAGACACCTAAAAG
AAAAAGTTCACAAAAACAAATAAAAATTTACCTCTCACCAAACACACTCACCTAC
CCGTCTGGTCCCACTGACCCCAACATACAACACCGACTCTCTCCCACACCAATTT
TTTTTTTTGGCGTTTTAAAACAAATAAACTATCTATTTTTTTTTCTTACCAACTG
ATTAATTCGTGAATAATCTATTATCTTCTTCTTTTTTTTGTGACGGATGATTAGT
GCGTGGGGAAATCAAAATTTACAAAATTTGGGATGATTCCGATTTTTGCCATTCG
ATTAATTTTGGTTAAAAGATATACTATTCATTCACCAAGTTTTCAGATGAGTCTA
AAAGATAATATCATTTCACTAGTCACTTAAAAAAAGGGTTAAAAGAACATCAATA
ATATCACTGGTTTCCTTAGGTGACCCAAAAAAAGAAGAAAAAGTCACTAGTTTCT
TTTTGGAAATTTTACTGGGCATATAGACGAAGTTGTAATGAGTGAGTTTAAATTT
ATCTATGGCACGCAGCTACGTCTGGTCGGACTATACCAAGTTACCAACTCTCTCT
ACTTCATGTGATTGCCAATAAAAGGTGACGTCTCTCTCTCTCTCACCAACCCCAA
ACCACTTTCCCCACTCGCTCTCAAAACGCTTGCCACCCAAATCTATGGCTTACGG
GGACATGTATTAACATATATCACTGAGTGAAAAGAAGGGTTTATTACCGTTGGAC
CAGTGATCAAACGTGTTTTATAAAAATTTGGAATTGAAAACATGATTTGACATTT
TTAATGATGGCAGCAGACGAAACCAACAACACTAAGTTTAACGTTCGTGGAGTAT
ACTTTTCTATTTTCGAAGAAGACATATAACTAAGCTGATTGTTATTCTTCATAGA
TTTCTTTTCACTGCGAATAAAAGTTTGTGAACATGTCACCGTTTGAACACTCAAC
AATCATAAGCGTTTTACCTTTGTGGGGTGGAGAAGATGACAATGAGAAAGTCGTC
GTACATATAATTTAAGAAAATACTATTCTGACTCTGGAACGTGTAAATAATTATC
TAAACAGATTGCGAATGTTCTCTACTTTTTTTTTGTTTACATTAAAAATGCAAAT
TTTATAACATTTTACATCGCGTAAATATTCCTGTTTTATCTATAATTAATGAAAG
CTACTGAAAAAAAACATCCAGGTCAGGTACATGTATTTCACCTCAACTTAGTAAA
TAACCAGTAAAATCCAAAGTAATTACCTTTTCTCTGGAAATTTTCCTCAGTAGTT
TATACCAGTCAAATTAAAACCTCAAATCTGAATGTTGAAAATTTGATATCCAAGA
AATTTTCTCATTGGAATAAAAGTTCAATCTGAAAATAGATATTTCTCTACCTCTG
TTTTTTTTTTTCTCCACCAACTTTCCCCTACTTATCACTATCAATAATCGACATT
ATCCATCTTTTTTATTGTCTTGAACTTTGCAATTTAATTGCATACTAGTTTCTTG
TTTTACATAAAAGAAGTTTGGTGGTAGCAAATATATATGTCTGAAATTGATTATT
TAAAAACAAAAAAAGATAAATCGGTTCACCAACCCCCTCCCTAATATAAATCAAA
GTCTCCACCACATATATCTAGAAGAATTCTACAAGTGAATTCGATTTACACTTTT
TTTTGTCCTTTTTTATTAATAAATCACTGACCCGAAAATAAAAATAGAAGCAAAA
CTTC
SEQ ID NO: 58
Polynucleotide sequence PATCCR1_PATIRX4
AAAATTGTGTCTAAGAATGTGGAACCGAGTAGTTCTCCAGAAGTCAGGTATGAA
AGTATATAAGAATTCTAGTTTTAGTTGTTTGAAAGTTTGATCCGTGAGTGAATT
AGTTCACAATTATGGATGTAGATCCTCTATGCAAACAATGAAGAAGAAAGACTC
TGTAACAGACTCCATTAAGCAAACAAAAAGAACCAAAGGTGCACTGAAGGCTGT
AAGCAATGAACCAGAAAGCACTACAGGGAAAAATCTTAAATCCTTGAAAAAGCT
GAATGGTGAACCTGATAAAACAAGAGGCAGAACTGGCAAAAAGCAGAAGGTGAC
TCAAGCTATGCACCGGAAAATCGAAAAAGATTGTGATGAGCAGGAAGACCTCGA
AACCAAAGATGAAGAAGACAGTCTGAAATTGGGGAAAGAATCAGATGCAGAGCC
TGATCGTATGGAAGATCACCAAGAATTGCCTGAAAATCACAATGTAGAAACCAA
AACTGATGGAGAAGAGCAGGAGGCAGCGAAAGAGCCAACGGCAGAGTCTAAAAC
TAATGGAGAGGAGCCAAATGCAGAACCCGAAACTGATGGAAAAGAGCATAAATC
ATTGAAGGAGCCAAATGCAGAGCCCAAATCTGATGGAGAAGAGCAGGAGGCAGC
AAAAGAGCCAAATGCTGAGCTCAAAACTGATGGAGAAAATCAGGAGGCAGCAAA
AGAGCTAACTGCAGAACGCAAAACTGATGAGGAAGAGCACAAGGTAGCTGATGA
GGTAGAGCAAAAGTCACAGAAAGAGACAAATGTAGAACCGGAAGCTGAGGGAGA
AGAGCAAAAGTCAGTGGAAGAGCCAAATGCAGAACCCAAGACCAAGGTAGAAGA
GAAAGAGTCAGCAAAAGAGCAAACTGCAGACACAAAATTGATTGAGAAGGAGGA
TATGTCTAAGACAAAGGGAGAAGAGATTGATAAAGAAACATATTCAAGCATCCC
TGAGACTGGTAAAGTAGGAAACGAAGCTGAAGAAGATGATCAGAGAGTGATTAA
GGAACTGGAAGAAGAGTCTGACAAGGCAGAAGTCAGTACTACGGTGCTTGAGGT
TGATCCATGAATGAAGGATTGTTAGGTAAATGTTAATCCAGGAAAAAAAGATTG
GTTCTTGTGGTTTAGGTAACTTATGTATTAAGTGAAGCTGCTTGTTTAGAGACT
AATGGTGTGTTTTATGAGTAGATTCTTCTGACCTATGTCTCGTTATGGAACTAG
TTTGATCTTATGTCACCTTGCTAGCAGCAGATATTGATATTTATATATTTAAGA
GACATGCGCATGAGAATGAGGGTATGGAAAAGTCCATATCAGATGACACAAACA
ATGATCGTATGTGTAGTCACTTGTGCATTTCCAGTTTTGGACATAAAATTCTGA
TATTGCATAGAAATGTTTTTAAATAACACTAATCCAAACCTAAATAAAATATCT
CTATACATCATCTAGAAATGTATGGCTTGATCAAGAATTGTAGATAATAATACC
CTGAGTTAAATGATTGTAGGTATTATTTCAGTTTTCAAAATTGTCCAAATTTAT
GAGCTATATTAAAGATAATATTTTCAATAAGGTGTGTAGTTCTAAATGTTTCTT
CTTCTTCCACCAACCCCTCTTTCTATATGTATGTTCTTTTTTCTAAAATAATTG
TTTGTTCTTTTTTAGATATATCAAATTAAATATAAAAAATATTGACAAAACTTA
TTTACCATTGTTAGGTGAACTTGGCAAGTGTGTAAATATAAAGATAACATTCCT
TTTCGTTCTTTATATATACGAAACGTACCACAAATTTCTAACTAAAGCATTCAT
AGTCTCTCGAAAGCCTCTTTTCAGAACCGAAGCTCTTTACTTTCGTCCACCGGG
AAAT
SEQ ID NO: 59
Polynucleotide sequence PATF5H
AAATTTTTGTATGAAATATTTCTTTAACGAAAATAAATTAAATAAAATTTAAAA
TTTATATTTGGAGTTCTATTTTTAATTTAGAGTTTTTATTGTTACCACATTTTT
TGAATTATTCTAATATTAATTTGTGATATTATTACAAAAAGTAAAAATATGATA
TTTTAGAATACTATTATCGATATTTGATATTATTGACCTTAGCTTTGTTTGGGT
GGAGACATGTGATTATCTTATTACCTTTTTATTCCATGAAACTACAGAGTTCGC
CAGGTACCATACATGCACACACCCTCGTGAAACGAGCGTGACTTAATATGATCT
AGAACTTAAATAGTACTACTAATTGTGTCATTTGAACTTTCTCCTATGTCGGTT
TCACTTCATGTATCGCAGAACAGGTGGAATACAGTGTCCTTGAGTTTCACCCAA
ATCGGTCCAATTTTGTGATATATATTGCGATACAGACATACAGCCTACAGAGTT
TTGTCTTAGCCCACTGGTTGGCAAACGAAATTGTCTTTATTTTTTTATGTTTTG
TTGTCAATGTGTCTTTGTTTTTAACTAGATTGAGGTTTAATTTTAATACATTTG
TTAGTTTACAGATTATGCAGTGTAATCTGATAATGTAAGTTGAACTGCGTTGGT
CAAAGTCTTGTGTAACGCACTGTATCTAAATTGTGAGTAACGACAAAATAATTA
AAATTAAAGGGACCTTCAAGTATTATTAGTATCTCTGTCTAAGATGCACAGGTA
TTCAGTAATAGTAATAAATAATTACTTGTATAATTAATATCTAATTAGTAAACC
TTGTGTCTAAACCTAAATGAGCATAAATCCAAAAGCAAAAATCTAAACCTAACT
GAAAAAGTCATTACGAAAAAAAGAAAAAAAAAAGAGAAAAAACTACCTGAAAAG
TCATGCACAACGTTCATCTTGGCTAAATTTATTTAGTTTATTAAATACAAAAAT
GGCGAGTTTCTGGAGTTTGTTGAAAATATATTTGTTTAGCCACTTTAGAATTTC
TTGTTTTAATTTGTTATTAAGATATATCGAGATAATGCGTTTATATCACCAATA
TTTTTGCCAAACTAGTCCTATACAGTCATTTTTCAACAGCTATGTTCACTAATT
TAAAACCCACTGAAAGTCAATCATGATTCGTCATATTTATATGCTCGAATTCAG
TAAAATCCGTTTGGTATACTATTTATTTCGTATAAGTATGTAATTCCACTAGAT
TTCCTTAAACTAAATTATATATTTACATAATTGTTTTCTTTAAAAGTCTACAAC
AGTTATTAAGTTATAGGAAATTATTTCTTTTATTTTTTTTTTTTTTTAGGAAAT
TATTTCTTTTGCAACACATTTGTCGTTTGCAAACTTTTAAAAGAAAATAAATGA
TTGTTATAATTGATTACATTTCAGTTTATGACAGATTTTTTTTATCTAACCTTT
AATGTTTGTTTCCTGTTTTTAGGAAAATCATACCAAAATATATTTGTGATCACA
GTAAATCACGGAATAGTTATGACCAAGATITTCAAAGTAATACTTAGAATCCTA
TTAAATAAACGAAATTTTAGGAAGAAATAATCAAGATTTTAGGAAACGATTTGA
GCAAGGATTTAGAAGATTTGAATCTTTAATTAAATATTTTCATTCCTAAATAAT
TAATGCTAGTGGCATAATATTGTAAATAAGTTCAAGTACATGATTAATTTGTTA
AAATGGTTGAAAAATATATATATGTAGATTTTTTCAAAAGGTATACTAATTATT
TTCATATTTTCAAGAAAATATAAGAAATGGTGTGTACATATATGGATGAAGAAA
TTTAAGTAGATAATACAAAAATGTCAAAAAAAGGGACCACACAATTTGATTATA
AAACCTACCTCTCTAATCACATCCCAAAATGGAGAACTTTGCCTCCTGACAACA
TTTCAGAAAATAATCGAATCCAAAAAAAACACTCAAT
SEQ ID NO: 60
Polynucleotide sequence PATLAC4
CAATTATATTTGGTTTCGATTGAAATTCAATCTAATGTGGTTAGATGAGTCCTA
TATTACCATGTCATTGTTAATACCCATTGCCAAAAATAAAAGTGAAGCAGAAGG
AGAAATTGTTTTTGTATACCCGAAGGAATTAAGATGTACGATCTTAAAATAGAC
ATTTCGGCCATCTATCAAAATAAATGTCTAAAAGTTTTGTGGTCGTCTTAAATA
CTACTTCGAGTTCAGACGTATACGTCTCACCAAAGTAATGCACATACTTGATGT
TAAGTTTATCTCTTTTTACTATTTCAAATTTCGCGTTTGACAACACTTTAAGTC
TACATTATCCATAGAGAATATAACATAAAGATCATGAACTTCTCATGAATGTAT
AAGACAAATCAAGCTTATATATGAGATCTATTTAGTAATTTGATATGTATGTAA
TATATGATAAATCTTTGATGCAATATTTTATTATGATTATTAGATATACACTAG
TCAACTTTAACTTTAGAAGATTAATCATTCCGTCGCAAACCATACCATAAATTA
GCAAGGGATCGACTTAATATCTCCGATCCGCTATATATTTAAGAAGCATTTAGA
TTGTTTATAATACATGTCATGATTTTATAATTATGTATATATAAATACTAATTG
ATGTATGAAGTACGTAGATAATGTTACGATCTATTAATCTATTTACATTAACTT
TTAATTAGTGTTGAGTAGGGAAAATTAACATATAAACCTTTAGCAGTTGGTTGT
ATTATTAAAAATAATTTGAACTTAAAATCCACCTTCGAAAAGATAAATCAAACA
AGTATAAAAAATGCTATAAATCCAGAATATTTACCTAAGGTTTTTATTCTTCTA
CTTAATAATGTAAGATAAAACCGGCACAATACTTGTTACGTATGCATGGTAGGT
ACCGCAATTGTGTAAGCAAATCGGCACAATACTAAGGTTACATATACTAACTAA
ATAAAACAATCTGATTTCAGTGACACCGTATATCTAACCTTTATTCAAATCCAA
GGGAACATGACTTGACTTCTTCTGTTGGAACTAACTCGATCCCTCAACCATCTC
CAGGGATAGAAGAGTTAGTAAAATCAAACTTGAAGTGAGGAAGTAAGCAGTTTA
ACGACTCCATATGACTACAGTTATATACAAAGTTGGGCACAAAGTACAAGTACT
AAATACTCAAAGTCAGATAATAATTTTAATAAGTACAAACTATATATATGCAGT
ACAATTATTGAGTATATATAAACGAGACTGGTGATTTGGGGCATTGTCCACCAG
GGTGTTATATCCCAATTGAAATTTGAAAATTTAAGTGTGTGAGTGTTACGACAA
AAAAAAGTGTGTGAATTGTAGGCGCGGTGAAAAGGTAAATTAAGATTGGAACTA
GAAAAATAGTTGAATATCCTTTACTAAAAGTTGTCAATTCCGGTTTTAGTAAAA
AAAAATTTTAAAATAGAAATTTTATCCAAAAGACTTCAAACACACATATTCGCA
TATATAACATAAGATATCATTTTTTGTAAACAGTTAAAAAGAAAAACACATGTT
TTTTTITTTAATTTAGAAAAAAACATGTTATTATACAAAACAGAGTTTTGCCCA
CTTTTAATATGTTATGAAAAGAAAAATGATTTTCTTGGGTTTGGTCAGAGAGAT
TGGTTGTGGTAAGAATGGGAATCTTAATTACAAAGAATTGGATTTTGGGTCGAC
CTACCACCTAAAACGACGTCGCCTCCATCTCTGGTTTCCAAATCTCTTTCTCCT
CTCCCTTTATAAGCTTGCGTTGGCCAGTCGCTCATCTCGAAAACAGAGAGAAAA
AGACTAAAAACACAGTTTAAGAAGAAGGAGAGATAGAGAGAGAAGAGAAAGATA
GAGAGGGAG
SEQ ID NO: 61
Polynucleotide sequence PATLAC17
TAAGTTTAAGTCCAATAATTTCATTTTACTAGTAAAGATCACAATGTCATTTACC
GCATTCACTTAATAATTGCTGAATTCACATAGTGCCTGTAAATTAAGACTAATTT
TAGGTTTCAAATAATTTTTCTTTTTTACATAACTTACGATCGATATTTTAAATGG
TATTGGTAAGTTTAAGGTATATAGATAGTGTGTCTAAACTAGAGTTCGTTGAAAT
TGGTCTGAGGTATAAATACCTAAAAGGTTATATATGTTTTTAGTTTAATGTAATT
CGATAAATTTTAGTCGAAACCGTTAAGAGATATCAGAATTTCGTTTTCAAATAAT
ATGGGATATAATTACCCGGGATTAACCGTACCTGATAAAATATAGCTCTCGTACG
TGTCACATGCCTAATGCCTAGTTAAACTTAAAACGAATATCTATATTTACTGTTA
TTGATTGTGAGTTACCAACTAAAATATTGTTAAAAGACATTGTAAAACTACAAAT
GGTTCGAACTGTATACTAATGATGTAAACTCGTGTTTCATCGTTATGTCCGATAT
TTTTTTCATTCAACCATTATTCAATTTCAAGATTTCTTTATTGTCTTTTTTTCTT
TCTAGAAAGCCTATATATTTAATTACCCACTTTGCATATTCAGAGGATAAGTTGA
TACGTACTTGTTAGCAACCTGTCTAGATCATCTTTTGATTGTAGATTTGACTTTA
AATTTCTCACAATTATAAATATGAAAAATAACAAGCAAAGAATTTACAAATGTAT
ATAATTATATACACGCATTGATGAATAAACATATTTAGAAAATAATGTGTTCTAA
GGAAATTTTGTGGCATTTTTTAAAAAATAATTAAACAAATAAGAATAGTGTAAAG
TTGTTTAAATATGTATGTATAAGTGGCATGCCTTTGAGGATACGAACTTAAAAGG
GAGTTAGGTAACTTGCTTGGGAAATAAAATAGCCAACCTTAATTTGAGGTTTCCT
CAATGTTCTTATCAAAAAGAATAAAAATTTCGGAAATTCCCTTCATGGATTTTGA
TATCTAACCCTAATCGTGACCTTCTTTGATAGCTACAATCTCCCTCTCTTTGCTT
ATTCCCCAAGCAATTTTAGCTTACGAATGTTTTGACTAACTCCACATCGGTTTAT
CTCTTAAGTTCCCCACCTACAAATATACAAAAAAAGAAGTAAAATAAAAATAATT
ATTAACAAACCGATGAAGTACTTATCATTTATAAACATGCTTATGAAATGTATTT
TCTAAAACATAACCGCTAACCAGAGAAGTTTCCTAGAGTTCTGCTTCAGACTCTT
TTGGTCGATCAAGAAGTCTCCAAGAGTTGTTTTTGTTGGGTCTAAACAAAACTTG
GCCAGGGAACAAATCAAACTATATTATTAATCTTCTACATCTGGTCCTAAGTTCC
TTACTATCTCATGTTAAAATTTGAAGTCTAATATACTCAAAGCTGTCAAAGAAGC
AGAACATGGAAGAGGAACTGTCATATCTGAGAAACCAAAATTGGCAATCTTGCAT
TTCATATTTAGAATCTACGCCATAGTATTGAGATGGAAACAAAGAGTTTTCGAAG
AGGGTCAAAGAGTTTGACTTATCTTTGACACCACTCATACATTAGCTGTTCATAT
AATCTAACAACTAGTCAATATCAAGTGTCTCCAAATTACGGAGAGTACTTCTCTA
CCAATTATCTTTTTGTTTTTCATAAACATTTTACTAATTGTTTTTTCTATATCTC
CTGCTCAAGCAAACACCTAACTCTCCTTTCCTATATATACACTAAAGGTTGAAAA
CAATGAATCCACAATCTACAGCAAAACATAAGCGAGGCAGAGTCTTCAGAAAACT
TACCTGCTCTAAACAACGCCTCCGTGTCCAAGCTCACTTCA
TABLE I
In-vitro HCHL enzyme activities in
stems of five-week-old wild type (WT) and
IRX5:HCHL plants. Values are means of three
biological replicates.
Enzyme activity ± SE
Plant line
(pkat vanillin μg −1 protein)
WT
nd a
IRX5:HCHL (1)
0.112 ± 0.026
IRX5:HCHL (2)
0.075 ± 0.022
IRX5:HCHL (3)
0.042 ± 0.006
IRX5:HCHL (4)
0.160 ± 0.038
IRX5:HCHL (5)
0.025 ± 0.002
a nd, not detected.
TABLE II
Height of the main inflorescence stem and total stem
dry weight of senesced wild type (WT) and IRX5:HCHL
plants. n, number of plants analyzed. Asterisks indicate
significant differences from the wild-type (*, P < 0.05, **,
P < 0.01, ***, P < 0.001).
Height (cm)
Dry weight (mg)
Plant line
Mean ± SE
Mean ± SE
n
WT
62.4 ± 4.6
477.7 ± 51.3
16
IRX5:HCHL (1)
60.3 ± 5.0
501.6 ± 62.8
14
IRX5:HCHL (2)
56.0 ± 4.6
435.3 ± 62.5
12
IRX5:HCHL (4)
48.3 ± 4.4***
335.7 ± 63.4***
15
IRX5:HCHL (5)
54.1 ± 7.6**
399.1 ± 61.1*
16
TABLE III
Quantitative analysis of soluble phenolics in stems from five-week-old wild type (WT) and
IRX5:HCHL plants. Values are means of four biological replicates.
Mean ± SE (μg g −1 fresh weight)
Plant line
HBAld
3,4-DHBAld
HBA
HBAGlc
HBAGE
WT
nd a
nd a
nd a
2.32 ± 0.20
1.34 ± 0.41
IRX5:HCHL (1)
1.02 ± 0.07
0.33 ± 0.02
5.53 ± 0.36
544.87 ± 157.79
1653.74 ± 504.38
IRX5:HCHL (2)
0.62 ± 0.08
0.23 ± 0.02
4.77 ± 0.41
569.23 ± 138.73
1046.97 ± 439.35
IRX5:HCHL (4)
0.83 ± 0.18
0.29 ± 0.03
4.64 ± 0.57
484.06 ± 74.23
959.79 ± 189.25
IRX5:HCHL (5)
1.04 ± 0.09
0.34 ± 0.02
5.59 ± 0.27
531.29 ± 51.13
1360.03 ± 178.03
a nd, not detected
TABLE IV
Quantitative analysis of acid-hydrolyzed soluble phenolics in stems from five-week-old
wild type (WT) and IRX5:HCHL plants. Values are means of four biological replicates.
Mean ± SE (μg g −1 fresh weight)
3,4-
3,4-
Plant line
HBAld
DHBAld
Van
5OH-Van
SyrAld
HBA
DHBA
VA
5OH-VA
SyrA
WT
0.6 ± 0.1
0.1 ± 0.0
nd a
nd a
nd a
14.0 ± 2.8
10.2 ± 2.7
5.0 ± 0.9
nd a
nd a
IRX5:HCHL
11.8 ± 2.1
14.3 ± 2.0
11.9 ± 3.8
24.3 ± 2.0
1.7 ± 0.0
2492.4 ± 534.9
17.3 ± 2.4
226.9 ± 32.6
8.1 ± 0.7
44.7 ± 7.6
(1)
IRX5:HCHL
5.7 ± 1.5
10.4 ± 2.6
3.9 ± 1.28
12.4 ± 6.1
1.6 ± 0.1
1726.1 ± 706.7
13.7 ± 3.4
175.9 ± 37.1
6.2 ± 1.5
45.9 ± 10.9
(2)
IRX5:HCHL
7.2 ± 0.8
9.9 ± 0.6
6.4 ± 1.26
10.7 ± 1.7
1.7 ± 0.1
1588.3 ± 181.1
15.4 ± 1.7
183.6 ± 19.0
5.8 ± 0.3
31.3 ± 2.4
(4)
IRX5:HCHL
9.9 ± 1.2
12.8 ± 0.7
8.0 ± 1.73
16.9 ± 2.5
1.9 ± 0.1
2061.3 ± 336.2
16.4 ± 1.2
202.3 ± 9.2
7.0 ± 0.5
39.5 ± 3.2
(5)
a nd, not detected.
TABLE V
Quantitative analysis of cell wall-bound phenolics in stems from extract-free senesced mature
dried wild type (WT) and IRX5:HCHL plants. Values are means of four biological replicates.
Mean ± SE (μg g −1 dry weight)
3,4-
3,4-
Plant line
HBAld
DHBAld
Van
5OH-Van
SyrAld
HBA
DHBA
VA
5OH-VA
SyrA
WT
5.8 ± 0.6
1.1 ± 0.0
59.4 ± 6.5
nd a
17.8 ± 1.0
6.2 ± 0.9
nd a
24.2 ± 2.0
nd a
10.6 ± 0.3
IRX5:HCHL
11.1 ± 0.4
0.6 ± 0.0
36.9 ± 2.7
0.8 ± 0.1
107.8 ± 6.4
486.4 ± 28.2
nd a
42.2 ± 3.2
nd a
47.5 ± 2.3
(1)
IRX5:HCHL
8.9 ± 0.4
0.6 ± 0.0
25.7 ± 5.9
0.6 ± 0.1
99.9 ± 4.6
427.9 ± 49.3
nd a
39.6 ± 1.9
nd a
43.3 ± 0.9
(2)
IRX5:HCHL
9.1 ± 0.9
0.7 ± 0.0
29.9 ± 2.7
0.8 ± 0.1
122.2 ± 14.8
421.8 ± 28.2
nd a
36.8 ± 1.4
nd a
54.1 ± 6.1
(4)
IRX5:HCHL
9.1 ± 0.7
0.7 ± 0.0
45.6 ± 6.2
0.7 ± 0.0
122.4 ± 5.9
349.6 ± 27.6
nd a
47.7 ± 3.0
nd a
59.3 ± 3.1
(5)
a nd, not detected.
TABLE VI
Chemical composition of total and hemicellulosic cell wall sugars in senesced
mature dried stems from wild type (WT) and line IRX5:HCHL (2). Values are
means ± SE of three biological replicates. Asterisks indicate significant
differences from the wild type (P < 0.001).
Mean ± SE (mg g −1 CWR)
Total Sugars
Hemicellulosic Sugars
Sugar
WT
IRX5:HCHL
WT
IRX5:HCHL
Fucose
2.23 ± 0.08
2.21 ± 0.05
1.44 ± 0.03
1.49 ± 0.05
Rhamnose
10.83 ± 0.35
11.71 ± 0.19
9.12 ± 0.23
9.76 ± 0.26
Arabinose
16.01 ± 0.56
18.58 ± 0.54*
10.15 ± 0.30
12.40 ± 0.38*
Galactose
23.06 ± 0.66
22.69 ± 0.82
15.34 ± 0.33
16.49 ± 0.50
Glucose
442.76 ± 7.09
388.66 ± 7.58*
10.09 ± 0.34
11.25 ± 0.33
Xylose
201.63 ± 1.71
245.20 ± 3.31*
114.39 ± 0.97
141.16 ± 4.20*
Galacturonic acid
93.74 ± 2.56
99.96 ± 1.52
37.13 ± 1.86
40.58 ± 1.12
Glucuronic acid
4.10 ± 0.16
4.60 ± 0.39
2.66 ± 0.17
3.12 ± 0.09
Total
794.36 ± 13.17
793.61 ± 14.85
191.32 ± 4.23
236.25 ± 6.93*
TABLE VII
Lignin content and main H, G and S lignin-derived monomers obtained by thioacidolysis
of extract-free senesced mature dried stems from wild-type (WT) and line
IRX5:HCHL (2). Values are means ± SE from duplicate analyses.
Total yield
Klason lignin
(H + G + S)
Plant line
KL % of CWR
μmol g −1 KL
% H
% G
% S
S/G
Culture 1
WT
20.42 ± 0.14
1356 ± 40
0.98 ± 0.00
73.2 ± 0.3
25.9 ± 0.3
0.35 ± 0.01
IRX5:HCHL
20.12 ± 0.15
1014 ± 5
1.48 ± 0.04
73.7 ± 0.5
25.2 ± 0.3
0.34 ± 0.01
Culture 2
WT
20.32 ± 0.25
1238 ± 13
1.09 ± 0.00
73.8 ± 0.3
25.2 ± 0.3
0.34 ± 0.01
IRX5:HCHL
21.29 ± 0.14
1041 ± 7
1.47 ± 0.00
72.7 ± 0.1
25.9 ± 0.1
0.36 ± 0.00
TABLE VIII
Minor monomers obtained by thioacidolysis of extract-free mature senesced dried stems from wild-type
(WT) and line IRX5:HCHL (2). Values are means ± SE of duplicate analyses. Values are expressed in μmol
g −1 KL and as a relative percentage of the total main H, G and S monomers released by thioacidolysis.
Vanalc
Syralc
Van
Syrald
Cald
VA
SyrA
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
μmol g −1 KL
Plant line
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
(% H + G + S)
Culture 1
WT
nd*
nd*
4.3 ± 1
0.9 ± 0.3
7.2 ± 0.6
6.7 ± 0.2
1.4 ± 0.0
IRX5:HCHL
5.0 ± 0.1
2.6 ± 0.2
(0.31)
(0.06)
(0.53)
(0.49)
(0.10)
(0.49)
(0.25)
6.5 ± 1.4
18.7 ± 3.5
7.9 ± 0.3
6.8 ± 0.2
2.2 ± 0.0
(0.64)
(1.84)
(0.77)
(0.67)
(0.21)
Culture 2
WT
nd*
nd*
4.6 ± 0.7
0.8 ± 0.3
6.9 ± 0.1
6.2 ± 0.2
1.2 ± 0.0
IRX5:HCHL
5.3 ± 0.1
2.9 ± 0.1
(0.37)
(0.06)
(0.55)
(0.50)
(0.09)
(0.50)
(0.28)
6.3 ± 0.7
16.7 ± 1.9
6.8 ± 0.1
7.0 ± 0.0
2.1 ± 0.0
(0.60)
(1.60)
(0.66)
(0.65)
(0.20)
*nd, not detected.
TABLE IX
Comparative transcriptomics of IRX5:HCHL stems and WT. Positive and negative ratios are indicative of
upregulation and downregulation of the gene in plants expressing HCHL.
AGI Gene ID
Annotated Function
log2 ratio
P value
MONOOXYGENASES
AT1G62570
flavin-containing monooxygenase family protein
0.00E+0
AT3G28740
cytochrome P450 family protein
0.00E+0
AT4G15760
monooxygenase, putative (MO1)
0.86
AT4G37370
CYP81D8
0.72
1.20E−7
AT3G28740
cytochrome P450 family protein
0.70
5.58E−7
AT2G12190
cytochrome P450, putative
0.65
8.60E−6
AT1G69500
CYP704B1
0.58
7.38E−4
AT3G14610
CYP72A7
0.51
2.96E−2
DEHYDROGENASES/REDUCTASES
AT4G13180
short-chain dehydrogenase/reductase (SDR) family protein
0.00E+0
AT2G37770
aldo/keto reductase family protein, Transcript variant 1
0.00E+0
AT2G37770
aldo/keto reductase family protein, Transcript variant 2
0.96
0.00E+0
AT2G29350
SAG13 (Senescence-associated gene 13); short-chain dehydrogenase/reductase (SDR) family protein
0.83
AT1G14130
2-oxoglutarate and Fe(II)-dependent oxygenese superfamily protein
0.72
9.59E−8
AT1G72680
cinnamyl-alcohol dehydrogenase, putative
0.90
0.00E+0
AT1G60730
aldo/keto reductase family protein
0.65
8.30E−6
AT1G18020
FMN-linked oxidoreductases superfamily protein, Transcript variant 1
0.62
7.14E−5
AT1G18020
FMN-linked oxidoreductases superfamily protein; Transcript variant 2
0.59
4.38E−4
AT2G47130
short-chain dehydrogenase/reductase (SDR) family protein, Transcript variant 1
0.58
7.60E−4
AT2G47130
short-chain dehydrogenase/reductase (SDR) family protein, Transcript variant 2
0.58
8.36E−4
AT1G18020
FMN-linked oxidoreductases superfamily protein, Transcript variant 3
0.54
6.80E−3
AT5G14780
FDH (FORMATE DEHYDROGENASE); NAD binding/oxidoreductase, acting the CH—OH group of donors
0.53
1.24E−2
AT1G54100
ALDH7B4 (ALDEHYDE DEHYDROGENASE 7B4); 3-chloroallyl aldehyde dehydrogenase
0.51
3.00E−2
UDP-GLUCOSYLTRANSFERASES
AT1G05560
UGT75B1
0.00E+0
AT2G15490
UGT73B4
0.00E+0
AT4G34138
UGT73B1
0.00E+0
AT2G30140
UGTB7A2
0.79
AT4G34131
UGT73B3
0.58
8.09E−4
AT3G11340
UGT76B1
0.58
8.97E−4
AT4G01070
UGT72B1
0.52
2.00E−2
TRANSPORTERS
AT3G23560
ALF5 (ABERRANT LATERAL ROOT FORMATION 5), antiporter/transporter
0.00E+0
AT2G36380
PDR6 (PLEIOTROPIC DRUG RESISTANCE 6) ATPase, coupled to transmembrane movement of substances
0.00E+0
AT3G51860
CAX3 (cation exchanger 3); cation; cation antiporter
0.00E+0
AT5G65380
Multidrug and toxic compound extrusion (MATE) efflux family protein
0.92
0.00E+0
AT1G79410
ATOCT5 (organic cation/carnitine transporter 5)
0.89
0.00E+0
AT5G13750
ZIFL1 (ZINC INDUCED FACILITOR-LIKE 1); tetracycline:hydrogen antiporter/transporter
0.78
AT1G76520
auxin efflux carrier family protein
0.70
4.27E−7
AT1G76530
auxin efflux carrier family protein
0.69
8.91E−7
AT4G18197
AT4G18200/PUP7 (purine permease 7); purine transporter
0.64
1.62E−5
AT4G28390
AAC3 (ADP/ATP CARRIER 3); ATP:ADP antiporter/binding
0.62
6.57E−5
AT5G45380
DUR3 (DEGRADATION OF UREA 3); sodium:solute:symporter family protein
0.61
1.05E−4
AT3G18830
PLT5 (POLYOL TRANSPORTER 5)
0.57
1.56E−3
AT2G17500
auxin efflux carrier family protein
0.55
3.26E−3
DETOXIFICATION
AT1G17170
ATGSTU24 (Glutathione S-transferase (class tau) 24)
0.00E+0
AT2G29420
ATGSTU7 (GLUTATHIONE S-TRANSFERASE 25)
0.00E+0
AT2G47730
ATGSTF8 (GLUTATHIONE S-TRANSFERASE 8)
0.00E+0
AT4G02520
ATGSTF2 (Glutathione S-transferase (class phi) 2)
0.78
AT3G09270
ATGSTU8 (Glutathione S-transferase (class tau) 8)
0.65
1.43E−5
AT2G29490
ATGSTU1 (GLUTATHIONE S-TRANSFERASE 19)
0.54
7.21E−3
AT4G19880
unknown protein, Glutathione S-transferase family protein
0.76
AT5G39050
ATPMaT1 (phenolic glucoside malonyltransferase 1); transferase family protein
0.77
AT5G39090
ATPMaT1-like; transferase family protein
0.52
2.13E−2
JASMONIC ACID METABOLISM
AT1G76680
OPR1 (12-oxophytodienoate reductase 1)
0.00E+0
AT5G54206
12-oxophytodienoate reductase-related
0.99
0.00E+0
STRESS INDUCIBLE/DEFENSE/SENESCENCE
AT5G49480
ATCP1 (CA2+-BINDING PROTEIN 1); calcium ion binding, NaCl stress inducible
0.00E+0
AT1G35260
Bet v I allergen family protein, defense response
0.88
0.00E+0
AT3G62550
universal stress protein (USP) family protein, Adenine nucleotide alpha-like protein
0.87
0.00E+0
AT1G73500
ATMKK9 (Arabidopsis thaliana MAP kinase kinase 9)
0.80
AT4G02380
SAG21 (SENESCENCE-ASSOCIATED GENE 21)
0.77
AT3G04720
PR4 (PATHOGENESIS-RELATED 4), similar to the antifungal chitin-binding protein hevein
0.64
2.04E−5
AT1G75270
DHAR2; glutathione dehydrogenase (ascorbate)
0.61
1.17E−4
AT1G70530
CRK3 (CYSTEINE-RICH RLK (RECEPTOR-LIKE PROTEIN KINASE) 3), protein kinase family protein
0.60
2.36E−4
AT3G50970
LTI3O/XERO2 (LOW TEMPERATURE-INDUCED 30); dehydrin stress-related
0.58
8.28E−4
AT5G27760
hypoxia-responsive family protein
0.54
6.87E−3
AT3G56710
SIB1 (SIGMA FACTOR BINDING PROTEIN 1); binding
0.51
2.30E−2
MISCELLANEOUS
Transcription factor
AT5G63790
ANAC102 (Arabidopsis NAC domain containing protein 102); transcription factor. Transcript variant 1
0.00E+0
AT1G77450
ANAC032 (Arabidopsis NAC domain containing protein 32); transcription factor
0.00E−0
AT5G63790
ANAC102 (Arabidopsis NAC domain containing protein 102); transcription factor, Transcript variant 2
0.65
1.26E−5
AT1G01720
ATAF1 (Arabidopsis NAC domain containing protein 2); transcription factor
0.54
7.23E−3
Glycine-rich protein
AT2G05380
GRP3S (GLYCINE-RICH PROTEIN 3 SHORT ISOFORM) Transcript variant 1
0.00E+0
AT2G05380
GRP3S (GLYCINE-RICH PROTEIN 3 SHORT ISOFORM) Transcript variant 2
0.00E+0
AT2G05530
glycine-rich protein
0.96
0.00E+0
AT2G05540
glycine-rich protein
0.90
0.00E+0
Auxin metabolism
AT3G44300
NIT2 (NITRILASE 2)
0.00E+0
AT3G44310
NIT1 (NITRILASE 1)
0.51
3.32E−2
Other
AT5G30870
transposable element gene; pseudogene, hypothetical protein
0.00E+0
AT3G14990
4-methyl-5(b-hydroxyethyl)-thiazole monophosphate biosynthesis protein, putative
0.00E+0
AT1G65280
heat shock protein binding/unfolded protein binding
0.00E+0
AT4G16190
cysteine proteinase, putative
0.89
0.00E+0
AT1G02850
glycosyl hydrolase family 1 protein BGLU11
0.86
AT1G17860
trypsin and protease inhibitor family protein/Kunitz family protein
0.86
AT3G49780
ATPSK4 (PHYTOSULFOKINE 4 PRECURSOR); growth factor
0.82
AT2G41380
embryo-abundant protein-related, methyltransferase activity
0.82
AT3G24420
hydrolase, alpha/beta fold family protein
0.79
AT5G52810
ornithine cyclodeaminase/mu-crystallin family protein
0.67
2.65E−6
AT5G17380
pyruvate decarboxylase family protein
0.64
1.84E−5
AT1G23890
NHL repeat-containing protein
0.59
3.35E−4
AT4G28380
leucine-rich repeat family protein, zinc ion binding
0.59
3.52E−4
AT4G01870
tolB protein-related
0.59
4.41E−4
AT1G37130
NIA2 (NITRATE REDUCTASE 2)
0.62
6.75E−5
AT1G24610
SET domain-containing protein, unknown protein
0.58
9.14E−4
AT4G11600
ATGPX6 (GLUTATHIONE PEROXIDASE 6); glutathione peroxidase
0.52
1.83E−2
UNKNOWN
AT5G61820
unknown protein
0.00E+0
AT1G76600
unknown protein
0.00E+0
AT1G76960
unknown protein
0.71
2.01E−7
AT4G17840
unknown protein
0.67
2.77E−6
AT1G21680
unknown protein
0.61
1.38E−4
AT5G40960
unknown protein, DUF3339
0.59
5.08E−4
AT4G08555
unknown protein
0.58
8.16E−4
AT2G30690
unknown protein, DUF593
0.53
8.86E−3
AT5G66052
unknown protein
0.50
4.05E−2
CARBOHYDRATE METABOLISM
AT2G06850
EXGT-A1 (ENDO-XYLOGLUCAN TRANSFERASE); hydrolase, acting on glycosyl bonds
−0.51
2.51E−2
AT3G52840
BGAL2 (beta-galactosidase 2), Glycoside hydrolase family 35, putative lactase
−0.52
1.83E−2
AT3G01345
Glycoside hydrolase family 35, beta-galactosidase putative
−0.53
1.13E−2
AT3G53190
pectate lyase family protein
−0.56
1.69E−3
AT5G03350
legume lectin family protein, carbohydrate binding
−0.57
1.28E−3
AT1G26810
GALT1 (galactosyltransferase 1), Glycoside transferase family 31
−0.61
1.02E−4
AT1G19600
pfkB-type carbohydrate kinase family protein
−0.63
3.41E−5
AT4G28250
ATEXPB3 (ARABIDOPSIS THALIANA EXPANSIN B3)
−0.79
AT3G30720
unknown protein, QUA-QUINE STARCH (QQS)
−1.08
0.00E+0
MISCELLANEOUS
AT4G27440
PORB (PROTOCHLOROPHYLLIDE OXIDOREDUCTASE B); protochlorophyllide reductase
−0.50
4.45E−2
AT5G02890
HXXXD-type acyl-transferase family protein
−0.50
3.86E−2
AT1G18950
aminoacyl-tRNA synthetase family
−0.51
3.29E−2
AT5G47330
palmitoyl protein thioesterase family protein
−0.53
1.07E−2
AT1G03870
FLA9 (FLA9)
−0.54
4.82E−3
AT1G20530
unknown protein, DUF630 and DUF632
−0.55
4.67E−3
ATCG00470
ATP SYNTHASE EPSILON CHAIN, rotational mechanism
−0.55
3.12E−3
AT5G51720
unknown protein, 2 iron, 2 sulfur cluster binding
−0.56
2.02E−3
ATCG00330
RPS14, CHLOROPLAST RIBOSOMAL PROTEIN S14
−0.58
8.70E−4
ATCG00340
D1 subunit of photosystem I and II reaction centers, Transcript variant 1
−0.62
5.42E−5
AT2G38870
serine-type endopeptidase inhibitor activity, pathogenesis-related peptide of the PR-6 proteinase inhibitor family
−0.64
1.54E−5
ATCG00340
D1 subunit of photosystem I and II reaction centers, Transcript variant 2
−0.71
2.75E−7
You are contracting for Lignification reduction in plants
Expert Lignification reduction in plants
You are commenting for Lignification reduction in plants