1.ApplicationNumber: US-8866561-A
1.PublishNumber: US-3078212-A
2.Date Publish: 19630219
3.Inventor: NEWALLIS PETER E.
CHUPP JOHN P.
4.Inventor Harmonized: NEWALLIS PETER E()
CHUPP JOHN P()
5.Country: US
6.Claims:
7.Description:
(en)United States Patent Ofiice 3,078,212 Patented Feb. 19, 1953 3,078,212 O-(CYANOARYL) PHQSPHGNUTHIOATES Peter E. Newallis, Crestwood, and John P. Chupp, Kirk- Wood, M0., assignors to Monsanto Chemical Company, St. Louis, Mo., a corporation of Delaware N Drawing. Filed Feb. 13, 1961, Ser. No. 88,665 20 Claims. (Cl. 1167-30) RO S ON wherein R is a halogen substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, wherein R is a hydrocarbyl radical containing from 1 to 8 carbon atoms, and wherein n is a cardinal number from 0 to 1.
As illustrative of hydrocarbyl radicals are phenyl, Xylyl, tolyl, ethylpheuyl, bcnzyl, phenethyl, cyclopentyl, cyclohexyl, cycloheptyl, methylcyclohexyl, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, etc., and the various isomeric aryl, alkaryl, aralkyl, cycloalkyl, alkyl, etc., forms thereof containing up to 8 carbon atoms and which are free of olefinic and acetylenic unsaturation.
By halogen substituted aliphatic hydrocarbon radical is meant alkyl or alkenyl or alkynyl radical containing from 2 to 6 carbon atoms, the halogen substitution of which being halogen having an atomic number in the range of 8 to 36 (i.e. fluorine, bromine or chlorine, but particularly chlorine). Usually the halogen substituents will not exceed a total of 3 and can be like or unlike. These radicals are further characterized in that the alpha carbon thereof is free of any halogen substitution and contains 1 (i.e. secondary carbon) or 2 (i.e. primary carbon) hydrogen substituents. As illustrative of such radicals are 2-chloroethyl, 2-bromoethyl, 2 fluoroethyl, 2.2-dichloroethyl, 2,2difluoroethyl, Z-chloropropyl, 2,3- dichloropropyl, 3,3-dichloropropyl, 2,3 dibromopropyl, l-chlorobutyl-Z, 1-chlorobutyl-3, l-brornopropyl-Z, 3- bromo-l-chloropropyl-Z, 4-chlorobutyl-2, 3,4-dichlorobutyl, 3,4-dibromobutyl, 4,5-dichloroamyl, 4-chlorohexyl, 4-chlorohexyl-3, 2,3,3-trichlorobutyl, 2,2,3-trichlorobutyl, 2-chloroallyl, 2-bromoallyl, 3-chloroally-l, 3-bromoallyl, 2,3-dichloroallyl, 3,3-dichloroallyl, 2,3,3-trichloroallyl, 3- chloromethallyl, 3-chloroethallyl, 3-chlorobut-2-enyl, 2- chlorobut-Z-enyl, S-chloropent-Z-enyl, 4-chlorobut-2-ynyl, 4-bromobut-2-ynyl, etc.
A particularly useful class of phosphonothioates of this invention are those of the formula wherein R is an alkyl radical containing from 1 to 4 carbon atoms and wherein R is a chlorine substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the alpha-carbon atom of said R having two hydrogen substituents, that is CH Of this class a particularly economical group are those wherein R is (CHQ I-I wherein m is a whole number from 1 to 2 and wherein R is a chlorine substituted alkyl radical containing from 2 to 4 carbon atoms and containing from 1 to 3 chlorine substituents.
The method of this invention comprises reacting wherein n has the aforedescribed significance with RO\fi wherein R and R have the afored-escribed significance and wherein Z is halogen of atomic number in the range of 16 to 36 (i.e. chlorine or bromine, preferably chlorine) in the presence of one or more hydrogen halide scavenging agents.
As illustrative of the cyano substituted reactants of the method of this invention are 4-cyanophenol, 3-cyanophenol, Z-cyanophenol, 4-cyano-m-cresol, 4-cyano-ocresol, 3-cyano-p-cresol, etc. Usually the cyano substituted reactant will be 4-cyanophenol.
As illustrative of the hydrocarbylphosphonothionyl halide reactants of the method of this invention are 0-(2- chloroethyl) methylphosphonothionyl chloride, 0- (2- chloroethyl) ethylphosp-honothionyl chloride, O-(2,2-dichloroethyl) ethylphosphonothionyl chloride, 0-(2-chloroethyl) cyclohexylphosphonothionyl bromide, O-(2- chloroethyl) benzylph osphonothionyl bromide, O-( 2- chloroethyl) phenylphosphonothionyl chloride, 0- 2.- chloroethyl) isobutylphos-phonothionyl chloride, O-( 3- chloropropyl) ethylphosphonothionyl chloride, O-( 2- chloroallyl) n-propylphosphonothionyl chloride, 0*(2-3- dichloroallyl) methylphosphonothionyl chloride, O-(3,4 dichlorobutyl) ethylphosphonothionyl chloride, (J-(3,3- dichlorornethallyl) n-butylphosphonothionyl bromide, O-(4-chlorobut-2-ynyl) ethylphosphonothionyl chloride, O-(2,3,3-trichloroallyl) n-propylphosphonothionyl chloride, O-(Z-bromoethyl) ethylphosphonothionyl chloride, O-(4-chlorobutyl-2) methylphosphonothionyl chloride, 0 (3 bromo-l-chloropropyl-Z) ethylphosphonothionyl chloride, O-(2,2-dichloroethyl) methylphosphonothionyl chloride, etc.
As illustrative of hydrogen halide scavenging agents of the method of this invention are sodium carbonate, potassium carbonate, the tertiary amines such as triethylamine, tripropylamine, tributylamine, dimethylaniline, lutidine, pyridine, l-pipecoiine, etc. These scavenging agents will be employed ordinarily in an amount at least suflicient to absorb the hydrogen halide by-product of the reaction. They can be added at the beginning of the reaction or throughout the course of the reaction. Where and when desired an inert organic solvent such as benzene, toluene, xylene, acetone, butanone, dioxane, etc., can be used. 1
While a wide range of reaction temperature can be employed provided the system is fluid (i.e. a reaction temperature above the freezing point of the system up to and including the boiling point of the system) it is preferred to employ a reaction temperature in the range of from about 10 C. to about 120 C. In general the cyano substituted reactant and the hydrocarbylphophonothionyl halide reactant will be employed in substantially equimolecular amounts.
As illustrative of the preparation of the phosphonothioates of this invention but not limitative thereof is the following:
EXAMPLE I To a suitable reaction vessel equipped with a thermometer, agitator and reflux condenser is charged approximately 88 parts by weight of benzene, approximately 7.1 parts by weight (substantially 0.06 mole) of 4-cyanophenol, approximately 6.6 parts by weight (substantially 0.065 mole) of triethylamine, and approximately 12.4 parts by weight (substantially 0.06 mole) of O-(Z-chloroethyl) ethylphosphonothionyl chloride. While agitating the mixture is heated up to the reflux temperature and then refluxed for 6 hours. The reaction mass is then cooled to room temperature and then quenched with water. The organic layer is separated and washed first with aqueous 3% sodium carbonate and then with water. The so-Washed solution is then stripped of volatiles under vacuum. The residue, an oil, is O-(2-chloroethyl) O-(4- c y a n o p h e n y l) ethylphosphonothioate. Analysis.- Theory: 10.7% P, 12.3% C1. Found: 10.6% P, 12.6% C1.
EXAMPLE II Employing the procedure of Example I but replacing O-(2-chloroethyl) ethylphosphonothionyl chloride with a substantially cquimolecular amount of O-(Z-chloroethyl) n-butylphosphonothionyl bromide there is obtained O-(Z- chloroethyl) O-(4-cyanopheny1) n-butylphosphonothioate which is insoluble in Water.
EXAMPLE III Employing the procedure of Example I but replacing 4-cyanophenol with a substantially cquimolecular amount of 4-cyano-o-cresol there is obtained O-(2-chloroethyl) O-(4 cyano 2 methylphenyl) ethylphosphonothioate which is insoluble in water.
EXAMPLE IV To a suitable reaction vessel equipped with a thermometer, agitator and reflux condenser is charged approximately 88 parts by weight of benzene, approximately 7.1 parts by weight (substantially 0.06 mole) of 4- cyanophenol, approximately 6.6 parts by weight (substantially 0.065 mole) of triethylamine, and approximately 11.6 parts by weight (substantially 0.06 mole) of O (2 chloroethyl) methylphosphonothionyl chloride. While agitating the mixture is heated up to the reflux temperature and then refluxed for hours. The reaction mass is then cooled to room temperature and then quenched with water. The organic layer is separated and washed first with 3% aqueous sodium carbonate and then with water. The so-washed organic solution is then stripped of volatiles. The residue, an oil is O-(Z-chloroethyl) O (4 cyanophenyl) methylphosphonothioate. Analysis.-Theory: 12.9% CI. Found: 12.3% C1.
EXAMPLE V Employing the procedure of Example IV but replacing 4-cyanophenol with a substantially cquimolecular amount of 4-cyano-m-cresol there is obtained O-(2 chloroethyl) O-(4-cyano 3 methylphenyl) methylphosphonothioate which is insoluble in water.
EXAMPLE VI Employing the procedure of Example IV but replacing O-(Z-chloroethyl) methylphosphonothionyl chloride with an cquimolecular amount of O-(2-chloroallyl) methylphosphonothionyl chloride there is obtained O-(Z- 4 chloroallyl) O-(4-cyanophenol) methylphosphonothioate which is insoluble in water.
EXAMPLE VII To a suitable reaction vessel equipped with a thermometer, agitator and reflux condenser is charged approximately 88 parts by weight of benzene, approximately 5.9 parts by weight (substantially 0.04 mole) of 4-cyanophenol, approximately 5.1 parts by weight (substantially 0.05 mole) of triethylamine, and approximately 12.75 parts by weight (substantially 0.05 mole) of O-(Z-chloroethyl) phenylphosphonothionyl chloride. The mixture while agitating is heated to the reflux temperature and then refluxed for 5 hours. The reaction mass is then cooled to room temperature and then quenched with water. The organic layer is separated and washed first with aqueous 3% sodium carbonate and then stripped of volatiles under vacuum. The residue, an oil, is O-(2- chloroethyl) O-(4-cyanophenyl) phenylphosphonothioate. Analysis.-Theory: 9.2% P, 9.5% S, 10.6% C1. Found: 8.9% P, 9.9% S, 10.5% C1.
EXAMPLE VIII Employing the procedure of Example VII but replacing 4-cyanopheno1 with an cquimolecular amount of 4- cyano-m-cresol there is obtained O-(2-chloroethyl) O-(4- cya11o-3-methylphenyl) phenylphosphonothioate which is insoluble in water.
EXAMPLE IX Employing the procedure of Example VII but replacing 4-cyanophenol with an cquimolecular amount of 3- cyano-p-cresol there is obtained O-(Z-chloroethyl) O-(3- cyano-4-methylphenyl) phenylphosphonothioate which is insoluble in water.
EXAMPLE X Employing the procedure of Example I but replacing O-(Z-chlorethyl) ethylphosphonothionyl chloride with an cquimolecular amount of O-(2,2-dichloroethyl) methylphosphonothionyl chloride there is obtained O-i(2,2-dichloroethyl) O-(4-cyanophenyl) methylphosphonothioate which is insoluble in water.
EXAMPLE XI Employing the procedure of Example I but replacing O-(Z-chloroethyl) ethylphosphonotbionyl chloride with an cquimolecular amount of O-(2,2-dichloroethyl) methylphosphonothionyl chloride there is obtained .0- (2,2-dichloroethyl) O-(4-cyanophenyl) methylphosphonothioate which is insoluble in water.
EXAMPLE XII Employing the procedure of Example I but replacing O-(Z-chloroethyl) ethylphosphonothionyl chloride with an cquimolecular amount of O-(3,4-dichlorobutyl) ethylphosphonothionyl chloride there is obtained O-(3,4-dichlorobutyl) O-(4-cyanophenyl) ethylphosphonothioate which is insoluble in water.
EXAMPLE XIII Employing the procedure of Example I but replacing O-(2-chloroethyl) ethylphosphonothionyl chloride with an equimolecular amount of O-(4-chlorobut-2-ynyl) ethylphosphonothionyl bromide there is obtained O-(4- chlorobut-Z-ynyl) O-(4-cyanophenyl) ethylphosphonothioate which is insoluble in water.
The methods by which the phosphonothioates of this invention are isolated will vary slightly with the reactants employed and the product produced. Further purification by selective solvent extraction or by absorptive agents such as activated carbon or clays can precede the removal of the inert organic liquid or solvent when such is employed. Additionally an inert organic solvent can be added to and in the purification by absorptive agents.
However, the product is generally satisfactory for insecticidal purposes without further purification.
It will be understood that the terms insect and insecticide are used herein in their broad common usage to include spiders, mites, ticks, and like pests which are not in the strict biological sense classed as insects. Thus the usage herein conforms to the definitions provided by Congress in Public Law 104, the Federal Insecticide, Fungicide, and Rodenticide Act of 1947, Section 2, subsection lz, wherein the term insect is used to refer not only to those small invertebrate animals belonging mostly to the class Insecta, comprising six-legged, usually winged forms, as beetles, bugs, bees, flies, and so forth, but also to other allied classes of arthropods whose members are Wingless and usually have more than six legs, as spiders, mites, ticks, centipedes, and wood lice.
The phosphonothioates of this invention are efi'ective against a wide variety of insect pests. As illustrative of their activity but not limitative thereof is the following:
Contact Activity A rirnless, 25 x 200 mm. culture tube is rinsed with acetone and is placed in a holding block. The tube is filled with 70 cc. of distilled water. Next 0.1 cc. of liquid or 0.1 gr. of solid test chemical is dissolved in acetone to make a 1% by weight concentrate of the test chemical. 0.07 ml. of this concentrate is pipetted into the culture tube containing the distilled water. The tube is then stoppered with an acetone washed rubber stopper and shaken vigorously to facilitate complete mixing. Approximately 25 early fourth instar yellow fever mosquito larvae (Aedes acgypti) are transferred to the tube with the aid of a pipette. The larvae are held in the test tube at room temperature for 24 hours at which time mortality observations are taken. This procedure is repeated at decreasing concentrations and the minimum concentration giving 100% mortality determined. The following results were obtained:
Minimum cone. giving Test chemical: 100% mortality, ppm.
O-(2-chloroethyl) 0 -(4 cyanophenyl) cthylphos- Activity on Insect Body A 1% by weight concentrate :of the test chemical is prepared by dissolving the chemical in .10 ml. of acetone. A 0.25 cc. tuberculin, B.-D. Yale syringe is filled with the concentrate and placed in a microinjection apparatus. The injector lever is pressed several times to make certain that no air bubbles are trapped in the needle and the needle is wiped with filter paper to remove any excess solution. The injector lever is pressed once to produce one microliter which is applied directly to the ventral side of the abdomen of each of plus cu-rculio, Conatraciielus, ncnuphaz'. After application each insect is released within observation dishes and held for 24 hours at room temperature and mortality observations made at the end of that time. This procedure is repeated at decreasing concentrations and the minimum concentration giving 100% mortality determined. The following results were obtained:
Minimum conc. giving 100% Test chemical mortality, percent by weight O-(2-chloroethy1) O-(4-cynn0phenyl) methylphosphonothioate 0.063 O-(2-chlor0ethyl) 0 -(et cyanophenyl) ethylphosphonothioate 0.02
Insect Feeding Activity are trapped in the needle and the needle is wiped with 'filter paper to remove excess solution.
The injector lever is pressed once to produce one microliter which is applied Test chemical mortality, percent by weight 0-(2-chloroethyl) O-(4-cyanophenyl) methylphos- 0 iii ii B ff t li l t h l h 0'016 -c oroe 1y yanop eny e yp osphonothioate 0.004;
Although the phosphonothioates of this invention are useful per se in controlling a wide variety of insect pests, it is preferable that they be supplied to the pests or to the environment of the pest or pests in a dispersed form in a suitable extending agent.
In the instant specification and appended claims it is to be understood that the term dispersed is used in its widest possible sense. When it is said that the phosphonothioates of this invention are dispersed, it means that particles of the phosphonothioates of this invention may be molecular in size and held in true solution in a suitable organic solvent. It means further, that the particles may be colloidal in size and distributed throughout a liquid phase in the form of suspensions or emulsions or in the form of particles held in suspension by wetting agents. It also includes particles which are distributed in a semi-solid viscous carrier such as petrolatum or soap or other ointment base in which they may be actually dissolved in the semi-solid or held in suspension in the semi-solid with the aid of suitable wetting or emulsifying agents. The term dispersed also means that the particles may be mixed with and distributed throughout a solid carrier providing a mixture in particulate form, e.g. pellets, granules, powders, or dusts. The term dispersed also includes mixtures which are suitable for use as aerosols including solutions, suspensions or emulsions of the phosphonothioates of this invention in a carrier such as dichlorodifiuoromethane and the like fiuorochloroalkanes which boil below room temperature at atmospheric pressure.
p In the instant specification and appended claims it is to be understood that the expression extending agent includes any and all of those substances in which the phosphonothioates of this invention are dispersed. It includes, therefore, the solvents of a true solution, the liquid phase of suspensions, emulsions or aerosols, the semisolid carrier of ointments and the solid phase of particulate solids, e.g. pellets, granules, dusts and powders. The exact concentration of the phosphonothioates of this invention employed in combatting or controlling insect pests can vary considerably provided the required dosage (i.e. toxic or lethal amount) thereof is supplied to the pests or to the environment of the pests. When the extending agent is a liquid or mixture of liquids (cg. as in solutions, suspensions, emulsions, or aerosols) the concentration of the phosphonothioate employed to supply the desired dosage generally will be in the range of 0.001 to 50 percent by weight. When the extending agent is a semi-solid or solid, the concentration of the phosphonothioate employed to supply the desired dosage generally will be in the range of 0.1 to 25 percent by weight. From a practical point of view, the manufacturer must supply the agriculturist with a low-cost concentrate or spray base or particulate solid base in such form that, by merely mixing with water or solid extender (e.g. powdered clay or talc) or other low-cost material available to the agriculturist at the point of use, he will have an easily prepared insecticidal spray or particulate solid. In such a concentrate composition, the phosphonothioate generally will be present in a concentration of 5 to percent by weight, the residue being any one or more of the well known insecticidal adjuvants, such as the various surface active agent (e.g. detergents, a soap or oher emulsifying 7 or wetting agent), surface-active clays, solvents, diluents, carrier media, adhesives, spreading agents, humectants, and the like.
There are a large number of organic liquids which can be used for the preparation of solutions, suspensions of emulsion of the phosphonothioates of this invention. For example, isopropyl ether, acetone, methyl ethyl ketone, dioxane, eyclohexanone, carbon tetrachloride, ethylene dichloride, tetrachloroethane, hexane, heptane and like higher liquid alkanes, hydrogenated naphthalenes, solvent naphtha, benzene, toluene, xylene, petroleum fractions (e.g. those boiling almost entirely under 400 F. at atmospheric pressure and having a flash point above about 80 F., particularly kerosene), mineral oils having an unsulfonatable residue above about 80 percent and prefrably above about 90 percent. In those instances wherein there may be concern about the phytotoxicity of the organic liquid extending agent a portion of same can be replaced by such low molecular weight aliphatic hydrocarbons as dipentene, diisobutylene, propylene trimer, and the like or suitable polar organic liquids such as the aliphatic ethers and the aliphatic ketones containing not more than about 10 carbon atoms as exemplified by acetone, methyl ethyl ketone, diisobutyl ketone, dioxane, isopropyl ether, and the like. In certain instances, it is advantageous to employ a mixture of organic liquids as the extending agent.
When the phosphonothioates of this invention are to be supplied to the insect pests or to the environment of the pests as aerosols, it is convenient to dissolve them in a suitable solvent and disperse the resulting solution in dichlorodifluoromethane or like chlorofluoroalkane which boils below room temperature at atmospheric pressure.
The phosphonothioates of this invention are preferably supplied to the insect pests or to the environment of the insect pests in the form of emulsions or suspensions. Emulsions or suspensions are prepared by dispersing the phosphonothioate of this invention either per se or in the form of an organic solution thereof in water with the aid of a water-soluble surfactant. The term surfactant" as employed here and in the appended claims is used as in volume II of Schwartz, Perry, and Berchs Surface Active Agents and Detergents (1958, Interscience Publishers, Inc., New York) in place of the expression emulsifying agent to connote generically the various emulsifying agents, dispersing agents, wetting agents and spreading agents that are adapted to be admixed with the active compounds of this invention in order to secure better wetting and spreading of the active ingredients in the water vehicle or carrier in which they are insoluble through lowering the surface tension of the Water (see also Frear, Chemistry of Insecticides, Fungicides and Herbicides, second edition, page 280). These surfactants include the well-known capillary-active substances which may be anion-active or anionic), cation-active (or cationic), or non-ionizing (or non-ionic) which are described in detail in volumes I and II of Schwartz, Perry, and Berchs Surface Active Agents and Detergents (195 8, Interscience Publishers, Inc., New York) and also in the November 1947 issue of Chemical Industries (pages 811-824) in an article entitled Synthetic Detergents, by I ohn W. McCutcheon and also in the July, August, September and October 1952 issues of Soap and Sanitary Chemicals under the title Synthetic Detergents. The disclosures of these articles with respect to surfactants, i.e. the anion-active, cation-active and non-ionizing capillary active substances, are incorporated in this specification by reference in order to avoid unnecessary enlargement of this specification. The preferred surfactants are the water-soluble anionic surfaceactive agents and the water soluble non-ionic surface-active agents set forth in US. 2,846,398 (issued August 5, 1958). In general it is preferred that a mixture of Water-soluble anionic and water-soluble non-ionic surfactants be employed.
The phosphonothioates of this invention can be dispersed by suitable methods (e.g. tumbling or grinding) in solid extending agents either of organic or inorganic nature and supplied to the insect pests environment in particulate form. Such solid materials include for example, tricalcium phosphate, calcium carbonate, kaolin, bole, kieselguhr, talc, bentonite, fullers earth, pyrophillite, diatomaceous earth, calcined magnesia, volcanic ash, sulfur and the like inorganic solid materials, and include for example, such materials of organic nature as powdered cork, powdered wood, and powdered walnut shells. The preferred solid carriers are the adsorbent clays, e.g. bentonite. These mixtures can be used for insecticidal purposes in the dry form, or, by addition of water-soluble surfactants or wetting agents the dry particulate solids can be rendered wettable by water so as to obtain stable aqueous dispersions or suspensions suitable for use as sprays.
For special purposes the phosphonothioates of this invention can be dispersed in a semi-solid extending agent such as petrolatum or soap (e.g. sodium stearate or oleate or palmitate or mixtures thereof) with or without the aid of solubility promoters and/or surfactants or dispersing agents.
In all of the forms described above the dispersions can be provided ready for use in combatting insect pests or they can be provided in a concentrated form suitable for mixing with or dispersing in other extending agents. As illustrative of a particularly useful concentrate is an intimate mixture of phosphonothioate of this invention with a Water-soluble surfactant which lowers the surface tension of water in the weight proportions of 0.1 to 15 parts of surfactant with suflicient of the phosphonothioate of this invention to make 100 parts by weight. Such a concentrate is particularly adapted to be made into a spray for combatting various forms of insect pests by the addition of water thereto. As illustrative of such a concentrate is an intimate mixture of parts by weight of O-(2-chloroethyl) O-(4-cyanophenyl) ethylphosphonothioate and 5 parts by weight of a water-soluble non-ionic surfactant such as the polyoxyethylene derivative of sorbitan monolaurate.
Another useful concentrate adapted to be made into a spray for combatting a variety of insect pests is a solution (preferably as concentrated as possible) of a phosphonothioate of this invention in an organic solvent therefor. The said liquid concentrate preferably contains dissolved therein a minor amount (e.g. 0.5 to 10 percent by weight of the weight of the new insecticidal agent) of a surfactant (or emulsifying agent), which surfactant is also watersoluble. As illustrative of such a concentrate is a solution of O-(2-chloroethyl) O-(4-cyanophenyl) methylphosphonothioate in benzene which solution contains dissolved therein a water-soluble polyoxyethylene glycol non-ionic surfactant and a water-soluble alkylaryl sulfonate anionic surfactant.
Of the surfactants aforementioned in preparing the various emulsifiable, wettable or dispersible compositions or concentrates of this invention, the anionic and non-ionic surfactants are preferred. Of the anionic surfactants, the particularly preferred are the well known water-soluble alkali metal alkylaryl sulfonates as exemplified by sodium decylbenzene sulfonate and sodium dodecylbenzene sulfonate. Of the non-ionic surfactants, the particularly preferred are the water-soluble polyoxyethylene derivatives of alkylphenols (particularly isooctylphenol) and the water-soluble polyoxyethylene derivatives of the monohigher fatty acid esters of hexitol anhydrides (e.g. sorbitan) which materials usually contain 15 to 30 moles of ethylene oxide per mole of the hexitol anhydride or the alkylphenol.
In all of the various dispersions described hereinbefore for insecticidal purposes, the active ingredient can be one or more of the compounds of this invention. The compounds of this invention can also be advantageously employed in combination with other pesticides, including,
9 for example, nematocides, bactericides, and herbicides. In this manner it is possible to obtain mixtures which are effective against a wide variety of pests and other forms of noxious life.
In controlling or combatting insect pests the phosphonothioates of this invention either per se or compositions comprising same are supplied to the insect pests or to their environment in a lethal or toxic amount. This can be done by dispersing the new insecticidal agent or insecticidal composition comprising same in, on or over an infested environment or in, on or over an environment the insect pests frequent, e.g. agricultural soil or other growth edia or other media infested with insect pests or attractable to the pests for habitational or sustenance or propagational purposes, in any conventional fashion which permits contact between the insect pests and the phosphonothioates of this invention. Such dispersing can be brought about by applying sprays or particulate solid compositions to a surface infested with the insect pests or attractable to the pests, as for example, the surface of an agricultural soil or other media such as the above ground surface of plants by any of the conventional methods, e.g. power dusters, boom and hand Sprayers, and spray dusters. Also for sub-surface application such dispersing can be carried out by simply mixing the new insecticidal agent per se or insecticidal spray or particulate solid compositions comprising same with the infested environment or with the environment the insect pests frequent, or by employing a liquid carrier for the new insecticidal agent to accomplish sub-surface penetration and impregnation therein.
While this invention has been described with respect to certain embodiments, it is to be understood that it is not so limited and that variations and modifications thereof obvious to those skilled in the art can be made without departing from the spirit and scope thereof.
What is claimed is:
1. An O-(cyanoaryl) phosphonothioate of the formula wherein n is a cardinal number from O to 1, wherein R is a hydrocarbon radical containing from 1 to 8 carbon atoms and is selected from the group consisting of aryl, alkaryl, aralkyl, cycloalkyl and alkyl, and wherein R is a halogen substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the said halogen substitution bein halogen having an atomic number in the range of 8 to 36, the alpha-carbon of said R being free of halogen substitution and containing from 1 to 2 hydrogen substituents.
2. An O-(4-cyanophenyl phosphonothiate of the formula wherein m is a whole number from 1 to 2, and wherein R is a chlorine substituted alkyl radical containing from 2 to 4 carbon atoms and from 1 to 3 chlorine substituents, the alpha-carbon of said R having two hydrogen substituents.
10 4. O-(Z-chloroethyl) O-(4-cyanophenyl) ethylphosphonothioate.
5. O-(2-chloroethyl) O-(4-cyanophenyl) methylphosphonothioate.
6. O-(2,2-dichloroethyl) O-(4-cyanophenyl) ethylphosphonothioate.
7. O-(2,2-dichloroethyl) O-(4-cyanophenyl) methylphosphonothioate.
8. The method which comprises reacting 2)nH wherein n is a cardinal number from O to 1 with i ROI|-Z wherein Z is a halogen of atomic number in the range of 16 to 36, wherein R is a hydrocarbon radical containing 1 to 8 carbon atoms and is selected from the group consisting of aryl, alkaryl, aralkyl, cycloalkyl and alkyl, wherein R is a halogen substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the said halogen substitution being halogen having an atomic number in the range of 8 to 36, the alpha-carbon of said R being free of halogen substitution and having 1 to 2 hydrogen substituents, in the presence of a hydrogen halide scavenging agent.
9. The method which comprises reacting 4-cyanophenol with wherein R is an alkyl radical containing 1 to 4 carbon atoms and wherein R is a chlorine substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the alpha-carbon of said R having 2 hydrogen substituents, in the presence of a hydrogen chloride scavenging agent.
it). The method which comprises reacting 4-cyanophenol with wherein m is a whole number from 1 to 2 and wherein R is a chlorine substituted alkyl radical containing from 2 to 4 carbon atoms and containing from 1 to 3 chlorine substituents, the alpha-carbon of said R having 2 hydrogen substituents, in the presence of a hydrogen chloride scavenging agent.
11. An insecticidal composition comprising a compound of claim 1 dispersed in an extending agent.
12. An insecticidal composition comprising a compound of claim 1 dispersed in an extending agent selected from the group consisting of solid and semi-solid extending agents, the composition containing 0.1 to 25 percent by weight of said compound of claim 1.
13. An insecticidal composition comprising a compound of claim 1 dispersed in a liquid extending agent, the composition containing 0.001 to 50 percent by weight of said compound of claim 1.
14. An insecticidal concentrate comprising a compound of claim 2 and an insecticidal adjuvant, said concentrate containing from 5 to percent by weight of the compound of claim 2.
15. An insecticidal concentrate comprising a compound of claim 2 dispersed in an organic solvent therefor and having dissolved therein a minor amount of a surfactant, said concentrate forming an emulsion with water upon agitation therewith.
16. An insecticidal concentrate adapted to be made into attack which comprises applying to the plant an insecti- 10 cidal amount of at least one compound of claim 1.
12 19.' The method of controlling insects which comprises contacting the insects with a toxic amount of at least one compound of claim 2.
20. The method of controlling insects which comprises contacting the insects with a toxic amount of O-(Z-chloroethyl) O(4-cyanophenyl) ethylphosphonothioate.
References Cited in the file of this patent UNITED STATES PATENTS 2,828,241 Birum Mar. 25, 1958
1.PublishNumber: US-3078212-A
2.Date Publish: 19630219
3.Inventor: NEWALLIS PETER E.
CHUPP JOHN P.
4.Inventor Harmonized: NEWALLIS PETER E()
CHUPP JOHN P()
5.Country: US
6.Claims:
7.Description:
(en)United States Patent Ofiice 3,078,212 Patented Feb. 19, 1953 3,078,212 O-(CYANOARYL) PHQSPHGNUTHIOATES Peter E. Newallis, Crestwood, and John P. Chupp, Kirk- Wood, M0., assignors to Monsanto Chemical Company, St. Louis, Mo., a corporation of Delaware N Drawing. Filed Feb. 13, 1961, Ser. No. 88,665 20 Claims. (Cl. 1167-30) RO S ON wherein R is a halogen substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, wherein R is a hydrocarbyl radical containing from 1 to 8 carbon atoms, and wherein n is a cardinal number from 0 to 1.
As illustrative of hydrocarbyl radicals are phenyl, Xylyl, tolyl, ethylpheuyl, bcnzyl, phenethyl, cyclopentyl, cyclohexyl, cycloheptyl, methylcyclohexyl, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, etc., and the various isomeric aryl, alkaryl, aralkyl, cycloalkyl, alkyl, etc., forms thereof containing up to 8 carbon atoms and which are free of olefinic and acetylenic unsaturation.
By halogen substituted aliphatic hydrocarbon radical is meant alkyl or alkenyl or alkynyl radical containing from 2 to 6 carbon atoms, the halogen substitution of which being halogen having an atomic number in the range of 8 to 36 (i.e. fluorine, bromine or chlorine, but particularly chlorine). Usually the halogen substituents will not exceed a total of 3 and can be like or unlike. These radicals are further characterized in that the alpha carbon thereof is free of any halogen substitution and contains 1 (i.e. secondary carbon) or 2 (i.e. primary carbon) hydrogen substituents. As illustrative of such radicals are 2-chloroethyl, 2-bromoethyl, 2 fluoroethyl, 2.2-dichloroethyl, 2,2difluoroethyl, Z-chloropropyl, 2,3- dichloropropyl, 3,3-dichloropropyl, 2,3 dibromopropyl, l-chlorobutyl-Z, 1-chlorobutyl-3, l-brornopropyl-Z, 3- bromo-l-chloropropyl-Z, 4-chlorobutyl-2, 3,4-dichlorobutyl, 3,4-dibromobutyl, 4,5-dichloroamyl, 4-chlorohexyl, 4-chlorohexyl-3, 2,3,3-trichlorobutyl, 2,2,3-trichlorobutyl, 2-chloroallyl, 2-bromoallyl, 3-chloroally-l, 3-bromoallyl, 2,3-dichloroallyl, 3,3-dichloroallyl, 2,3,3-trichloroallyl, 3- chloromethallyl, 3-chloroethallyl, 3-chlorobut-2-enyl, 2- chlorobut-Z-enyl, S-chloropent-Z-enyl, 4-chlorobut-2-ynyl, 4-bromobut-2-ynyl, etc.
A particularly useful class of phosphonothioates of this invention are those of the formula wherein R is an alkyl radical containing from 1 to 4 carbon atoms and wherein R is a chlorine substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the alpha-carbon atom of said R having two hydrogen substituents, that is CH Of this class a particularly economical group are those wherein R is (CHQ I-I wherein m is a whole number from 1 to 2 and wherein R is a chlorine substituted alkyl radical containing from 2 to 4 carbon atoms and containing from 1 to 3 chlorine substituents.
The method of this invention comprises reacting wherein n has the aforedescribed significance with RO\fi wherein R and R have the afored-escribed significance and wherein Z is halogen of atomic number in the range of 16 to 36 (i.e. chlorine or bromine, preferably chlorine) in the presence of one or more hydrogen halide scavenging agents.
As illustrative of the cyano substituted reactants of the method of this invention are 4-cyanophenol, 3-cyanophenol, Z-cyanophenol, 4-cyano-m-cresol, 4-cyano-ocresol, 3-cyano-p-cresol, etc. Usually the cyano substituted reactant will be 4-cyanophenol.
As illustrative of the hydrocarbylphosphonothionyl halide reactants of the method of this invention are 0-(2- chloroethyl) methylphosphonothionyl chloride, 0- (2- chloroethyl) ethylphosp-honothionyl chloride, O-(2,2-dichloroethyl) ethylphosphonothionyl chloride, 0-(2-chloroethyl) cyclohexylphosphonothionyl bromide, O-(2- chloroethyl) benzylph osphonothionyl bromide, O-( 2- chloroethyl) phenylphosphonothionyl chloride, 0- 2.- chloroethyl) isobutylphos-phonothionyl chloride, O-( 3- chloropropyl) ethylphosphonothionyl chloride, O-( 2- chloroallyl) n-propylphosphonothionyl chloride, 0*(2-3- dichloroallyl) methylphosphonothionyl chloride, O-(3,4 dichlorobutyl) ethylphosphonothionyl chloride, (J-(3,3- dichlorornethallyl) n-butylphosphonothionyl bromide, O-(4-chlorobut-2-ynyl) ethylphosphonothionyl chloride, O-(2,3,3-trichloroallyl) n-propylphosphonothionyl chloride, O-(Z-bromoethyl) ethylphosphonothionyl chloride, O-(4-chlorobutyl-2) methylphosphonothionyl chloride, 0 (3 bromo-l-chloropropyl-Z) ethylphosphonothionyl chloride, O-(2,2-dichloroethyl) methylphosphonothionyl chloride, etc.
As illustrative of hydrogen halide scavenging agents of the method of this invention are sodium carbonate, potassium carbonate, the tertiary amines such as triethylamine, tripropylamine, tributylamine, dimethylaniline, lutidine, pyridine, l-pipecoiine, etc. These scavenging agents will be employed ordinarily in an amount at least suflicient to absorb the hydrogen halide by-product of the reaction. They can be added at the beginning of the reaction or throughout the course of the reaction. Where and when desired an inert organic solvent such as benzene, toluene, xylene, acetone, butanone, dioxane, etc., can be used. 1
While a wide range of reaction temperature can be employed provided the system is fluid (i.e. a reaction temperature above the freezing point of the system up to and including the boiling point of the system) it is preferred to employ a reaction temperature in the range of from about 10 C. to about 120 C. In general the cyano substituted reactant and the hydrocarbylphophonothionyl halide reactant will be employed in substantially equimolecular amounts.
As illustrative of the preparation of the phosphonothioates of this invention but not limitative thereof is the following:
EXAMPLE I To a suitable reaction vessel equipped with a thermometer, agitator and reflux condenser is charged approximately 88 parts by weight of benzene, approximately 7.1 parts by weight (substantially 0.06 mole) of 4-cyanophenol, approximately 6.6 parts by weight (substantially 0.065 mole) of triethylamine, and approximately 12.4 parts by weight (substantially 0.06 mole) of O-(Z-chloroethyl) ethylphosphonothionyl chloride. While agitating the mixture is heated up to the reflux temperature and then refluxed for 6 hours. The reaction mass is then cooled to room temperature and then quenched with water. The organic layer is separated and washed first with aqueous 3% sodium carbonate and then with water. The so-Washed solution is then stripped of volatiles under vacuum. The residue, an oil, is O-(2-chloroethyl) O-(4- c y a n o p h e n y l) ethylphosphonothioate. Analysis.- Theory: 10.7% P, 12.3% C1. Found: 10.6% P, 12.6% C1.
EXAMPLE II Employing the procedure of Example I but replacing O-(2-chloroethyl) ethylphosphonothionyl chloride with a substantially cquimolecular amount of O-(Z-chloroethyl) n-butylphosphonothionyl bromide there is obtained O-(Z- chloroethyl) O-(4-cyanopheny1) n-butylphosphonothioate which is insoluble in Water.
EXAMPLE III Employing the procedure of Example I but replacing 4-cyanophenol with a substantially cquimolecular amount of 4-cyano-o-cresol there is obtained O-(2-chloroethyl) O-(4 cyano 2 methylphenyl) ethylphosphonothioate which is insoluble in water.
EXAMPLE IV To a suitable reaction vessel equipped with a thermometer, agitator and reflux condenser is charged approximately 88 parts by weight of benzene, approximately 7.1 parts by weight (substantially 0.06 mole) of 4- cyanophenol, approximately 6.6 parts by weight (substantially 0.065 mole) of triethylamine, and approximately 11.6 parts by weight (substantially 0.06 mole) of O (2 chloroethyl) methylphosphonothionyl chloride. While agitating the mixture is heated up to the reflux temperature and then refluxed for hours. The reaction mass is then cooled to room temperature and then quenched with water. The organic layer is separated and washed first with 3% aqueous sodium carbonate and then with water. The so-washed organic solution is then stripped of volatiles. The residue, an oil is O-(Z-chloroethyl) O (4 cyanophenyl) methylphosphonothioate. Analysis.-Theory: 12.9% CI. Found: 12.3% C1.
EXAMPLE V Employing the procedure of Example IV but replacing 4-cyanophenol with a substantially cquimolecular amount of 4-cyano-m-cresol there is obtained O-(2 chloroethyl) O-(4-cyano 3 methylphenyl) methylphosphonothioate which is insoluble in water.
EXAMPLE VI Employing the procedure of Example IV but replacing O-(Z-chloroethyl) methylphosphonothionyl chloride with an cquimolecular amount of O-(2-chloroallyl) methylphosphonothionyl chloride there is obtained O-(Z- 4 chloroallyl) O-(4-cyanophenol) methylphosphonothioate which is insoluble in water.
EXAMPLE VII To a suitable reaction vessel equipped with a thermometer, agitator and reflux condenser is charged approximately 88 parts by weight of benzene, approximately 5.9 parts by weight (substantially 0.04 mole) of 4-cyanophenol, approximately 5.1 parts by weight (substantially 0.05 mole) of triethylamine, and approximately 12.75 parts by weight (substantially 0.05 mole) of O-(Z-chloroethyl) phenylphosphonothionyl chloride. The mixture while agitating is heated to the reflux temperature and then refluxed for 5 hours. The reaction mass is then cooled to room temperature and then quenched with water. The organic layer is separated and washed first with aqueous 3% sodium carbonate and then stripped of volatiles under vacuum. The residue, an oil, is O-(2- chloroethyl) O-(4-cyanophenyl) phenylphosphonothioate. Analysis.-Theory: 9.2% P, 9.5% S, 10.6% C1. Found: 8.9% P, 9.9% S, 10.5% C1.
EXAMPLE VIII Employing the procedure of Example VII but replacing 4-cyanopheno1 with an cquimolecular amount of 4- cyano-m-cresol there is obtained O-(2-chloroethyl) O-(4- cya11o-3-methylphenyl) phenylphosphonothioate which is insoluble in water.
EXAMPLE IX Employing the procedure of Example VII but replacing 4-cyanophenol with an cquimolecular amount of 3- cyano-p-cresol there is obtained O-(Z-chloroethyl) O-(3- cyano-4-methylphenyl) phenylphosphonothioate which is insoluble in water.
EXAMPLE X Employing the procedure of Example I but replacing O-(Z-chlorethyl) ethylphosphonothionyl chloride with an cquimolecular amount of O-(2,2-dichloroethyl) methylphosphonothionyl chloride there is obtained O-i(2,2-dichloroethyl) O-(4-cyanophenyl) methylphosphonothioate which is insoluble in water.
EXAMPLE XI Employing the procedure of Example I but replacing O-(Z-chloroethyl) ethylphosphonotbionyl chloride with an cquimolecular amount of O-(2,2-dichloroethyl) methylphosphonothionyl chloride there is obtained .0- (2,2-dichloroethyl) O-(4-cyanophenyl) methylphosphonothioate which is insoluble in water.
EXAMPLE XII Employing the procedure of Example I but replacing O-(Z-chloroethyl) ethylphosphonothionyl chloride with an cquimolecular amount of O-(3,4-dichlorobutyl) ethylphosphonothionyl chloride there is obtained O-(3,4-dichlorobutyl) O-(4-cyanophenyl) ethylphosphonothioate which is insoluble in water.
EXAMPLE XIII Employing the procedure of Example I but replacing O-(2-chloroethyl) ethylphosphonothionyl chloride with an equimolecular amount of O-(4-chlorobut-2-ynyl) ethylphosphonothionyl bromide there is obtained O-(4- chlorobut-Z-ynyl) O-(4-cyanophenyl) ethylphosphonothioate which is insoluble in water.
The methods by which the phosphonothioates of this invention are isolated will vary slightly with the reactants employed and the product produced. Further purification by selective solvent extraction or by absorptive agents such as activated carbon or clays can precede the removal of the inert organic liquid or solvent when such is employed. Additionally an inert organic solvent can be added to and in the purification by absorptive agents.
However, the product is generally satisfactory for insecticidal purposes without further purification.
It will be understood that the terms insect and insecticide are used herein in their broad common usage to include spiders, mites, ticks, and like pests which are not in the strict biological sense classed as insects. Thus the usage herein conforms to the definitions provided by Congress in Public Law 104, the Federal Insecticide, Fungicide, and Rodenticide Act of 1947, Section 2, subsection lz, wherein the term insect is used to refer not only to those small invertebrate animals belonging mostly to the class Insecta, comprising six-legged, usually winged forms, as beetles, bugs, bees, flies, and so forth, but also to other allied classes of arthropods whose members are Wingless and usually have more than six legs, as spiders, mites, ticks, centipedes, and wood lice.
The phosphonothioates of this invention are efi'ective against a wide variety of insect pests. As illustrative of their activity but not limitative thereof is the following:
Contact Activity A rirnless, 25 x 200 mm. culture tube is rinsed with acetone and is placed in a holding block. The tube is filled with 70 cc. of distilled water. Next 0.1 cc. of liquid or 0.1 gr. of solid test chemical is dissolved in acetone to make a 1% by weight concentrate of the test chemical. 0.07 ml. of this concentrate is pipetted into the culture tube containing the distilled water. The tube is then stoppered with an acetone washed rubber stopper and shaken vigorously to facilitate complete mixing. Approximately 25 early fourth instar yellow fever mosquito larvae (Aedes acgypti) are transferred to the tube with the aid of a pipette. The larvae are held in the test tube at room temperature for 24 hours at which time mortality observations are taken. This procedure is repeated at decreasing concentrations and the minimum concentration giving 100% mortality determined. The following results were obtained:
Minimum cone. giving Test chemical: 100% mortality, ppm.
O-(2-chloroethyl) 0 -(4 cyanophenyl) cthylphos- Activity on Insect Body A 1% by weight concentrate :of the test chemical is prepared by dissolving the chemical in .10 ml. of acetone. A 0.25 cc. tuberculin, B.-D. Yale syringe is filled with the concentrate and placed in a microinjection apparatus. The injector lever is pressed several times to make certain that no air bubbles are trapped in the needle and the needle is wiped with filter paper to remove any excess solution. The injector lever is pressed once to produce one microliter which is applied directly to the ventral side of the abdomen of each of plus cu-rculio, Conatraciielus, ncnuphaz'. After application each insect is released within observation dishes and held for 24 hours at room temperature and mortality observations made at the end of that time. This procedure is repeated at decreasing concentrations and the minimum concentration giving 100% mortality determined. The following results were obtained:
Minimum conc. giving 100% Test chemical mortality, percent by weight O-(2-chloroethy1) O-(4-cynn0phenyl) methylphosphonothioate 0.063 O-(2-chlor0ethyl) 0 -(et cyanophenyl) ethylphosphonothioate 0.02
Insect Feeding Activity are trapped in the needle and the needle is wiped with 'filter paper to remove excess solution.
The injector lever is pressed once to produce one microliter which is applied Test chemical mortality, percent by weight 0-(2-chloroethyl) O-(4-cyanophenyl) methylphos- 0 iii ii B ff t li l t h l h 0'016 -c oroe 1y yanop eny e yp osphonothioate 0.004;
Although the phosphonothioates of this invention are useful per se in controlling a wide variety of insect pests, it is preferable that they be supplied to the pests or to the environment of the pest or pests in a dispersed form in a suitable extending agent.
In the instant specification and appended claims it is to be understood that the term dispersed is used in its widest possible sense. When it is said that the phosphonothioates of this invention are dispersed, it means that particles of the phosphonothioates of this invention may be molecular in size and held in true solution in a suitable organic solvent. It means further, that the particles may be colloidal in size and distributed throughout a liquid phase in the form of suspensions or emulsions or in the form of particles held in suspension by wetting agents. It also includes particles which are distributed in a semi-solid viscous carrier such as petrolatum or soap or other ointment base in which they may be actually dissolved in the semi-solid or held in suspension in the semi-solid with the aid of suitable wetting or emulsifying agents. The term dispersed also means that the particles may be mixed with and distributed throughout a solid carrier providing a mixture in particulate form, e.g. pellets, granules, powders, or dusts. The term dispersed also includes mixtures which are suitable for use as aerosols including solutions, suspensions or emulsions of the phosphonothioates of this invention in a carrier such as dichlorodifiuoromethane and the like fiuorochloroalkanes which boil below room temperature at atmospheric pressure.
p In the instant specification and appended claims it is to be understood that the expression extending agent includes any and all of those substances in which the phosphonothioates of this invention are dispersed. It includes, therefore, the solvents of a true solution, the liquid phase of suspensions, emulsions or aerosols, the semisolid carrier of ointments and the solid phase of particulate solids, e.g. pellets, granules, dusts and powders. The exact concentration of the phosphonothioates of this invention employed in combatting or controlling insect pests can vary considerably provided the required dosage (i.e. toxic or lethal amount) thereof is supplied to the pests or to the environment of the pests. When the extending agent is a liquid or mixture of liquids (cg. as in solutions, suspensions, emulsions, or aerosols) the concentration of the phosphonothioate employed to supply the desired dosage generally will be in the range of 0.001 to 50 percent by weight. When the extending agent is a semi-solid or solid, the concentration of the phosphonothioate employed to supply the desired dosage generally will be in the range of 0.1 to 25 percent by weight. From a practical point of view, the manufacturer must supply the agriculturist with a low-cost concentrate or spray base or particulate solid base in such form that, by merely mixing with water or solid extender (e.g. powdered clay or talc) or other low-cost material available to the agriculturist at the point of use, he will have an easily prepared insecticidal spray or particulate solid. In such a concentrate composition, the phosphonothioate generally will be present in a concentration of 5 to percent by weight, the residue being any one or more of the well known insecticidal adjuvants, such as the various surface active agent (e.g. detergents, a soap or oher emulsifying 7 or wetting agent), surface-active clays, solvents, diluents, carrier media, adhesives, spreading agents, humectants, and the like.
There are a large number of organic liquids which can be used for the preparation of solutions, suspensions of emulsion of the phosphonothioates of this invention. For example, isopropyl ether, acetone, methyl ethyl ketone, dioxane, eyclohexanone, carbon tetrachloride, ethylene dichloride, tetrachloroethane, hexane, heptane and like higher liquid alkanes, hydrogenated naphthalenes, solvent naphtha, benzene, toluene, xylene, petroleum fractions (e.g. those boiling almost entirely under 400 F. at atmospheric pressure and having a flash point above about 80 F., particularly kerosene), mineral oils having an unsulfonatable residue above about 80 percent and prefrably above about 90 percent. In those instances wherein there may be concern about the phytotoxicity of the organic liquid extending agent a portion of same can be replaced by such low molecular weight aliphatic hydrocarbons as dipentene, diisobutylene, propylene trimer, and the like or suitable polar organic liquids such as the aliphatic ethers and the aliphatic ketones containing not more than about 10 carbon atoms as exemplified by acetone, methyl ethyl ketone, diisobutyl ketone, dioxane, isopropyl ether, and the like. In certain instances, it is advantageous to employ a mixture of organic liquids as the extending agent.
When the phosphonothioates of this invention are to be supplied to the insect pests or to the environment of the pests as aerosols, it is convenient to dissolve them in a suitable solvent and disperse the resulting solution in dichlorodifluoromethane or like chlorofluoroalkane which boils below room temperature at atmospheric pressure.
The phosphonothioates of this invention are preferably supplied to the insect pests or to the environment of the insect pests in the form of emulsions or suspensions. Emulsions or suspensions are prepared by dispersing the phosphonothioate of this invention either per se or in the form of an organic solution thereof in water with the aid of a water-soluble surfactant. The term surfactant" as employed here and in the appended claims is used as in volume II of Schwartz, Perry, and Berchs Surface Active Agents and Detergents (1958, Interscience Publishers, Inc., New York) in place of the expression emulsifying agent to connote generically the various emulsifying agents, dispersing agents, wetting agents and spreading agents that are adapted to be admixed with the active compounds of this invention in order to secure better wetting and spreading of the active ingredients in the water vehicle or carrier in which they are insoluble through lowering the surface tension of the Water (see also Frear, Chemistry of Insecticides, Fungicides and Herbicides, second edition, page 280). These surfactants include the well-known capillary-active substances which may be anion-active or anionic), cation-active (or cationic), or non-ionizing (or non-ionic) which are described in detail in volumes I and II of Schwartz, Perry, and Berchs Surface Active Agents and Detergents (195 8, Interscience Publishers, Inc., New York) and also in the November 1947 issue of Chemical Industries (pages 811-824) in an article entitled Synthetic Detergents, by I ohn W. McCutcheon and also in the July, August, September and October 1952 issues of Soap and Sanitary Chemicals under the title Synthetic Detergents. The disclosures of these articles with respect to surfactants, i.e. the anion-active, cation-active and non-ionizing capillary active substances, are incorporated in this specification by reference in order to avoid unnecessary enlargement of this specification. The preferred surfactants are the water-soluble anionic surfaceactive agents and the water soluble non-ionic surface-active agents set forth in US. 2,846,398 (issued August 5, 1958). In general it is preferred that a mixture of Water-soluble anionic and water-soluble non-ionic surfactants be employed.
The phosphonothioates of this invention can be dispersed by suitable methods (e.g. tumbling or grinding) in solid extending agents either of organic or inorganic nature and supplied to the insect pests environment in particulate form. Such solid materials include for example, tricalcium phosphate, calcium carbonate, kaolin, bole, kieselguhr, talc, bentonite, fullers earth, pyrophillite, diatomaceous earth, calcined magnesia, volcanic ash, sulfur and the like inorganic solid materials, and include for example, such materials of organic nature as powdered cork, powdered wood, and powdered walnut shells. The preferred solid carriers are the adsorbent clays, e.g. bentonite. These mixtures can be used for insecticidal purposes in the dry form, or, by addition of water-soluble surfactants or wetting agents the dry particulate solids can be rendered wettable by water so as to obtain stable aqueous dispersions or suspensions suitable for use as sprays.
For special purposes the phosphonothioates of this invention can be dispersed in a semi-solid extending agent such as petrolatum or soap (e.g. sodium stearate or oleate or palmitate or mixtures thereof) with or without the aid of solubility promoters and/or surfactants or dispersing agents.
In all of the forms described above the dispersions can be provided ready for use in combatting insect pests or they can be provided in a concentrated form suitable for mixing with or dispersing in other extending agents. As illustrative of a particularly useful concentrate is an intimate mixture of phosphonothioate of this invention with a Water-soluble surfactant which lowers the surface tension of water in the weight proportions of 0.1 to 15 parts of surfactant with suflicient of the phosphonothioate of this invention to make 100 parts by weight. Such a concentrate is particularly adapted to be made into a spray for combatting various forms of insect pests by the addition of water thereto. As illustrative of such a concentrate is an intimate mixture of parts by weight of O-(2-chloroethyl) O-(4-cyanophenyl) ethylphosphonothioate and 5 parts by weight of a water-soluble non-ionic surfactant such as the polyoxyethylene derivative of sorbitan monolaurate.
Another useful concentrate adapted to be made into a spray for combatting a variety of insect pests is a solution (preferably as concentrated as possible) of a phosphonothioate of this invention in an organic solvent therefor. The said liquid concentrate preferably contains dissolved therein a minor amount (e.g. 0.5 to 10 percent by weight of the weight of the new insecticidal agent) of a surfactant (or emulsifying agent), which surfactant is also watersoluble. As illustrative of such a concentrate is a solution of O-(2-chloroethyl) O-(4-cyanophenyl) methylphosphonothioate in benzene which solution contains dissolved therein a water-soluble polyoxyethylene glycol non-ionic surfactant and a water-soluble alkylaryl sulfonate anionic surfactant.
Of the surfactants aforementioned in preparing the various emulsifiable, wettable or dispersible compositions or concentrates of this invention, the anionic and non-ionic surfactants are preferred. Of the anionic surfactants, the particularly preferred are the well known water-soluble alkali metal alkylaryl sulfonates as exemplified by sodium decylbenzene sulfonate and sodium dodecylbenzene sulfonate. Of the non-ionic surfactants, the particularly preferred are the water-soluble polyoxyethylene derivatives of alkylphenols (particularly isooctylphenol) and the water-soluble polyoxyethylene derivatives of the monohigher fatty acid esters of hexitol anhydrides (e.g. sorbitan) which materials usually contain 15 to 30 moles of ethylene oxide per mole of the hexitol anhydride or the alkylphenol.
In all of the various dispersions described hereinbefore for insecticidal purposes, the active ingredient can be one or more of the compounds of this invention. The compounds of this invention can also be advantageously employed in combination with other pesticides, including,
9 for example, nematocides, bactericides, and herbicides. In this manner it is possible to obtain mixtures which are effective against a wide variety of pests and other forms of noxious life.
In controlling or combatting insect pests the phosphonothioates of this invention either per se or compositions comprising same are supplied to the insect pests or to their environment in a lethal or toxic amount. This can be done by dispersing the new insecticidal agent or insecticidal composition comprising same in, on or over an infested environment or in, on or over an environment the insect pests frequent, e.g. agricultural soil or other growth edia or other media infested with insect pests or attractable to the pests for habitational or sustenance or propagational purposes, in any conventional fashion which permits contact between the insect pests and the phosphonothioates of this invention. Such dispersing can be brought about by applying sprays or particulate solid compositions to a surface infested with the insect pests or attractable to the pests, as for example, the surface of an agricultural soil or other media such as the above ground surface of plants by any of the conventional methods, e.g. power dusters, boom and hand Sprayers, and spray dusters. Also for sub-surface application such dispersing can be carried out by simply mixing the new insecticidal agent per se or insecticidal spray or particulate solid compositions comprising same with the infested environment or with the environment the insect pests frequent, or by employing a liquid carrier for the new insecticidal agent to accomplish sub-surface penetration and impregnation therein.
While this invention has been described with respect to certain embodiments, it is to be understood that it is not so limited and that variations and modifications thereof obvious to those skilled in the art can be made without departing from the spirit and scope thereof.
What is claimed is:
1. An O-(cyanoaryl) phosphonothioate of the formula wherein n is a cardinal number from O to 1, wherein R is a hydrocarbon radical containing from 1 to 8 carbon atoms and is selected from the group consisting of aryl, alkaryl, aralkyl, cycloalkyl and alkyl, and wherein R is a halogen substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the said halogen substitution bein halogen having an atomic number in the range of 8 to 36, the alpha-carbon of said R being free of halogen substitution and containing from 1 to 2 hydrogen substituents.
2. An O-(4-cyanophenyl phosphonothiate of the formula wherein m is a whole number from 1 to 2, and wherein R is a chlorine substituted alkyl radical containing from 2 to 4 carbon atoms and from 1 to 3 chlorine substituents, the alpha-carbon of said R having two hydrogen substituents.
10 4. O-(Z-chloroethyl) O-(4-cyanophenyl) ethylphosphonothioate.
5. O-(2-chloroethyl) O-(4-cyanophenyl) methylphosphonothioate.
6. O-(2,2-dichloroethyl) O-(4-cyanophenyl) ethylphosphonothioate.
7. O-(2,2-dichloroethyl) O-(4-cyanophenyl) methylphosphonothioate.
8. The method which comprises reacting 2)nH wherein n is a cardinal number from O to 1 with i ROI|-Z wherein Z is a halogen of atomic number in the range of 16 to 36, wherein R is a hydrocarbon radical containing 1 to 8 carbon atoms and is selected from the group consisting of aryl, alkaryl, aralkyl, cycloalkyl and alkyl, wherein R is a halogen substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the said halogen substitution being halogen having an atomic number in the range of 8 to 36, the alpha-carbon of said R being free of halogen substitution and having 1 to 2 hydrogen substituents, in the presence of a hydrogen halide scavenging agent.
9. The method which comprises reacting 4-cyanophenol with wherein R is an alkyl radical containing 1 to 4 carbon atoms and wherein R is a chlorine substituted aliphatic hydrocarbon radical containing from 2 to 6 carbon atoms, the alpha-carbon of said R having 2 hydrogen substituents, in the presence of a hydrogen chloride scavenging agent.
it). The method which comprises reacting 4-cyanophenol with wherein m is a whole number from 1 to 2 and wherein R is a chlorine substituted alkyl radical containing from 2 to 4 carbon atoms and containing from 1 to 3 chlorine substituents, the alpha-carbon of said R having 2 hydrogen substituents, in the presence of a hydrogen chloride scavenging agent.
11. An insecticidal composition comprising a compound of claim 1 dispersed in an extending agent.
12. An insecticidal composition comprising a compound of claim 1 dispersed in an extending agent selected from the group consisting of solid and semi-solid extending agents, the composition containing 0.1 to 25 percent by weight of said compound of claim 1.
13. An insecticidal composition comprising a compound of claim 1 dispersed in a liquid extending agent, the composition containing 0.001 to 50 percent by weight of said compound of claim 1.
14. An insecticidal concentrate comprising a compound of claim 2 and an insecticidal adjuvant, said concentrate containing from 5 to percent by weight of the compound of claim 2.
15. An insecticidal concentrate comprising a compound of claim 2 dispersed in an organic solvent therefor and having dissolved therein a minor amount of a surfactant, said concentrate forming an emulsion with water upon agitation therewith.
16. An insecticidal concentrate adapted to be made into attack which comprises applying to the plant an insecti- 10 cidal amount of at least one compound of claim 1.
12 19.' The method of controlling insects which comprises contacting the insects with a toxic amount of at least one compound of claim 2.
20. The method of controlling insects which comprises contacting the insects with a toxic amount of O-(Z-chloroethyl) O(4-cyanophenyl) ethylphosphonothioate.
References Cited in the file of this patent UNITED STATES PATENTS 2,828,241 Birum Mar. 25, 1958
You are contracting for O-(cyanoaryl) phosphonothioates
Expert O-(cyanoaryl) phosphonothioates
You are commenting for O-(cyanoaryl) phosphonothioates